1
|
Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D'Agostino VG. RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles 2020; 10:e12043. [PMID: 33391635 PMCID: PMC7769857 DOI: 10.1002/jev2.12043] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous particles released from the cells through different biogenetic and secretory mechanisms. We now conceive EVs as shuttles mediating cellular communication, carrying a variety of molecules resulting from intracellular homeostatic mechanisms. The RNA is a widely detected cargo and, impressively, a recognized functional intermediate that elects EVs as modulators of cancer cell phenotypes, determinants of disease spreading, cell surrogates in regenerative medicine, and a source for non-invasive molecular diagnostics. The mechanistic elucidation of the intracellular events responsible for the engagement of RNA into EVs will significantly improve the comprehension and possibly the prediction of EV "quality" in association with cell physiology. Interestingly, the application of multidisciplinary approaches, including biochemical as well as cell-based and computational strategies, is increasingly revealing an active RNA-packaging process implicating RNA-binding proteins (RBPs) in the sorting of coding and non-coding RNAs. In this review, we provide a comprehensive view of RBPs recently emerging as part of the EV biology, considering the scenarios where: (i) individual RBPs were detected in EVs along with their RNA substrates, (ii) RBPs were detected in EVs with inferred RNA targets, and (iii) EV-transcripts were found to harbour sequence motifs mirroring the activity of RBPs. Proteins so far identified are members of the hnRNP family (hnRNPA2B1, hnRNPC1, hnRNPG, hnRNPH1, hnRNPK, and hnRNPQ), as well as YBX1, HuR, AGO2, IGF2BP1, MEX3C, ANXA2, ALIX, NCL, FUS, TDP-43, MVP, LIN28, SRP9/14, QKI, and TERT. We describe the RBPs based on protein domain features, current knowledge on the association with human diseases, recognition of RNA consensus motifs, and the need to clarify the functional significance in different cellular contexts. We also summarize data on previously identified RBP inhibitor small molecules that could also be introduced in EV research as potential modulators of vesicular RNA sorting.
Collapse
|
Review |
5 |
160 |
2
|
Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, Mastracci L, Boero S, Montecucco F, Sociali G, Lasigliè D, Damonte P, Grozio A, Mannino E, Poggi A, D'Agostino VG, Monacelli F, Provenzani A, Odetti P, Ballestrero A, Bruzzone S, Nencioni A. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem 2014; 289:34189-204. [PMID: 25331943 DOI: 10.1074/jbc.m114.594721] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Boosting NAD(+) biosynthesis with NAD(+) intermediates has been proposed as a strategy for preventing and treating age-associated diseases, including cancer. However, concerns in this area were raised by observations that nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in mammalian NAD(+) biosynthesis, is frequently up-regulated in human malignancies, including breast cancer, suggesting possible protumorigenic effects for this protein. We addressed this issue by studying NAMPT expression and function in human breast cancer in vivo and in vitro. Our data indicate that high NAMPT levels are associated with aggressive pathological and molecular features, such as estrogen receptor negativity as well as HER2-enriched and basal-like PAM50 phenotypes. Consistent with these findings, we found that NAMPT overexpression in mammary epithelial cells induced epithelial-to-mesenchymal transition, a morphological and functional switch that confers cancer cells an increased metastatic potential. However, importantly, NAMPT-induced epithelial-to-mesenchymal transition was found to be independent of NAMPT enzymatic activity and of the NAMPT product nicotinamide mononucleotide. Instead, it was mediated by secreted NAMPT through its ability to activate the TGFβ signaling pathway via increased TGFβ1 production. These findings have implications for the design of therapeutic strategies exploiting NAD(+) biosynthesis via NAMPT in aging and cancer and also suggest the potential of anticancer agents designed to specifically neutralize extracellular NAMPT. Notably, because high levels of circulating NAMPT are found in obese and diabetic patients, our data could also explain the increased predisposition to cancer of these subjects.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
66 |
3
|
Molatore S, Russo MT, D'Agostino VG, Barone F, Matsumoto Y, Albertini AM, Minoprio A, Degan P, Mazzei F, Bignami M, Ranzani GN. MUTYH mutations associated with familial adenomatous polyposis: functional characterization by a mammalian cell-based assay. Hum Mutat 2010; 31:159-66. [PMID: 19953527 DOI: 10.1002/humu.21158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MUTYH-associated polyposis (MAP) is a colorectal cancer syndrome, due to biallelic mutations of MUTYH. This Base Excision Repair gene encodes for a DNA glycosylase that specifically mitigates the high mutagenic potential of the 8-hydroxyguanine (8-oxodG) along the DNA. Aim of this study was to characterize the biological effects, in a mammalian cell background, of human MUTYH mutations identified in MAP patients (137insIW [c.411_416dupATGGAT; p.137insIleTrp]; R171W [c.511C>T; p.Arg171Trp]; E466del [c.1395_1397delGGA; p.Glu466del]; Y165C [c.494A>G; p.Tyr165Cys]; and G382D [c.1145G>A; p.Gly382Asp]). We set up a novel assay in which the human proteins were expressed in Mutyh(-/-) mouse defective cells. Several parameters, including accumulation of 8-oxodG in the genome and hypersensitivity to oxidative stress, were then used to evaluate the consequences of MUTYH expression. Human proteins were also obtained from Escherichia coli and their glycosylase activity was tested in vitro. The cell-based analysis demonstrated that all MUTYH variants we investigated were dysfunctional in Base Excision Repair. In vitro data complemented the in vivo observations, with the exception of the G382D mutant, which showed a glycosylase activity very similar to the wild-type protein. Our cell-based assay can provide useful information on the significance of MUTYH variants, improving molecular diagnosis and genetic counseling in families with mutations of uncertain pathogenicity.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
36 |
4
|
Notarangelo M, Zucal C, Modelska A, Pesce I, Scarduelli G, Potrich C, Lunelli L, Pederzolli C, Pavan P, la Marca G, Pasini L, Ulivi P, Beltran H, Demichelis F, Provenzani A, Quattrone A, D'Agostino VG. Ultrasensitive detection of cancer biomarkers by nickel-based isolation of polydisperse extracellular vesicles from blood. EBioMedicine 2019; 43:114-126. [PMID: 31047861 PMCID: PMC6558028 DOI: 10.1016/j.ebiom.2019.04.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/06/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are secreted membranous particles intensively studied for their potential cargo of diagnostic markers. Efficient and cost-effective isolation methods need to be established for the reproducible and high-throughput study of EVs in the clinical practice. METHODS We designed the nickel-based isolation (NBI) to rapidly isolate EVs and combined it with newly-designed amplified luminescent proximity homogeneous assay or digital PCR to detect biomarkers of clinical utility. FINDINGS From plasma of 46 healthy donors, we systematically recovered small EV (~250 nm of mean diameter; ~3 × 1010/ml) and large EV (~560 nm of mean diameter; ~5 × 108/ml) lineages ranging from 50 to 700 nm, which displayed hematopoietic/endothelial cell markers that were also used in spike-in experiments using EVs from tumor cell lines. In retrospective studies, we detected picomolar concentrations of prostate-specific membrane antigen (PSMA) in fractions of EVs isolated from the plasma of prostate cancer patients, discriminating them from control subjects. Directly from oil-encapsulated EVs for digital PCR, we identified somatic BRAF and KRAS mutations circulating in the plasma of metastatic colorectal cancer (CRC) patients, matching 100% of concordance with tissue diagnostics. Importantly, with higher sensitivity and specificity compared with immuno-isolated EVs, we revealed additional somatic alterations in 7% of wild-type CRC cases that were subsequently validated by further inspections in the matched tissue biopsies. INTERPRETATION We propose NBI-combined approaches as simple, fast, and robust strategies to probe the tumor heterogeneity and contribute to the development of EV-based liquid biopsy studies. FUND: Associazione Italiana per la Ricerca sul Cancro (AIRC), Fondazione Cassa di Risparmio Trento e Rovereto (CARITRO), and the Italian Ministero Istruzione, Università e Ricerca (Miur).
Collapse
|
research-article |
6 |
32 |
5
|
Mangiapane G, Parolini I, Conte K, Malfatti MC, Corsi J, Sanchez M, Pietrantoni A, D'Agostino VG, Tell G. Enzymatically active apurinic/apyrimidinic endodeoxyribonuclease 1 is released by mammalian cells through exosomes. J Biol Chem 2021; 296:100569. [PMID: 33753167 PMCID: PMC8080531 DOI: 10.1016/j.jbc.2021.100569] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), the main AP-endonuclease of the DNA base excision repair pathway, is a key molecule of interest to researchers due to its unsuspected roles in different nonrepair activities, such as: i) adaptive cell response to genotoxic stress, ii) regulation of gene expression, and iii) processing of microRNAs, which make it an excellent drug target for cancer treatment. We and others recently demonstrated that APE1 can be secreted in the extracellular environment and that serum APE1 may represent a novel prognostic biomarker in hepatocellular and non-small-cell lung cancers. However, the mechanism by which APE1 is released extracellularly was not described before. Here, using three different approaches for exosomes isolation: commercial kit, nickel-based isolation, and ultracentrifugation methods and various mammalian cell lines, we elucidated the mechanisms responsible for APE1 secretion. We demonstrated that APE1 p37 and p33 forms are actively secreted through extracellular vesicles (EVs), including exosomes from different mammalian cell lines. We then observed that APE1 p33 form is generated by proteasomal-mediated degradation and is enzymatically active in EVs. Finally, we revealed that the p33 form of APE1 accumulates in EVs upon genotoxic treatment by cisplatin and doxorubicin, compounds commonly found in chemotherapy pharmacological treatments. Taken together, these findings provide for the first time evidence that a functional Base Excision Repair protein is delivered through exosomes in response to genotoxic stresses, shedding new light into the complex noncanonical biological functions of APE1 and opening new intriguing perspectives on its role in cancer biology.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
22 |
6
|
Venesio T, Balsamo A, D'Agostino VG, Ranzani GN. MUTYH-associated polyposis (MAP), the syndrome implicating base excision repair in inherited predisposition to colorectal tumors. Front Oncol 2012; 2:83. [PMID: 22876359 PMCID: PMC3410368 DOI: 10.3389/fonc.2012.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
In 2002, Al-Tassan and co-workers described for the first time a recessive form of inherited polyposis associated with germline mutations of MUTYH, a gene encoding a base excision repair (BER) protein that counteracts the DNA damage induced by the oxidative stress. MUTYH-associated polyposis (MAP) is now a well-defined cancer susceptibility syndrome, showing peculiar molecular features that characterize disease progression. However, some aspects of MAP, including diagnostic criteria, genotype-phenotype correlations, pathogenicity of variants, as well as relationships between BER and other DNA repair pathways, are still poorly understood. A deeper knowledge of the MUTYH expression pattern is likely to refine our understanding of the protein role and, finally, to improve guidances for identifying and handling MAP patients.
Collapse
|
Journal Article |
13 |
14 |
7
|
Dalle Vedove A, Spiliotopoulos D, D'Agostino VG, Marchand JR, Unzue A, Nevado C, Lolli G, Caflisch A. Structural Analysis of Small-Molecule Binding to the BAZ2A and BAZ2B Bromodomains. ChemMedChem 2018; 13:1479-1487. [DOI: 10.1002/cmdc.201800234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/14/2018] [Indexed: 12/12/2022]
|
|
7 |
8 |
8
|
Barros O, D'Agostino VG, Lara Santos L, Vitorino R, Ferreira R. Shaping the future of oral cancer diagnosis: advances in salivary proteomics. Expert Rev Proteomics 2024; 21:149-168. [PMID: 38626289 DOI: 10.1080/14789450.2024.2343585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/19/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION Saliva has gained increasing attention in the quest for disease biomarkers. Because it is a biological fluid that can be collected is an easy, painless, and safe way, it has been increasingly studied for the identification of oral cancer biomarkers. This is particularly important because oral cancer is often diagnosed at late stages with a poor prognosis. AREAS COVERED The review addresses the evolution of the experimental approaches used in salivary proteomics studies of oral cancer over the years and outlines advantages and pitfalls related to each one. In addition, examines the current landscape of oral cancer biomarker discovery and translation focusing on salivary proteomic studies. This discussion is based on an extensive literature search (PubMed, Scopus and Google Scholar). EXPERT OPINION The introduction of mass spectrometry has revolutionized the study of salivary proteomics. In the future, the focus will be on refining existing methods and introducing powerful experimental techniques such as mass spectrometry with selected reaction monitoring, which, despite their effectiveness, are still underutilized due to their high cost. In addition, conducting studies with larger cohorts and establishing standardized protocols for salivary proteomics are key challenges that need to be addressed in the coming years.
Collapse
|
Review |
1 |
|
9
|
Corsi J, Semnani PS, Peroni D, Belli R, Morelli A, Lassandro M, Sidarovich V, Adami V, Valentini C, Cavallerio P, Grosskreutz J, Fabbiano F, Grossmann D, Hermann A, Tell G, Basso M, D'Agostino VG. Small molecule inhibitors of hnRNPA2B1-RNA interactions reveal a predictable sorting of RNA subsets into extracellular vesicles. Nucleic Acids Res 2025; 53:gkaf176. [PMID: 40103230 PMCID: PMC11915509 DOI: 10.1093/nar/gkaf176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025] Open
Abstract
Extracellular vesicles (EVs) are cell-secreted membranous particles contributing to intercellular communication. Coding and noncoding RNAs can be detected as EV cargo, and RNA-binding proteins (RBPs), such as hnRNPA2B1, have been circumstantially implicated in EV-RNA sorting mechanisms. However, the contribution of competitive RBP-RNA interactions responsible for RNA-sorting outcomes is still unclear, especially for predicting the EV-RNA content. We designed a reverse proteomic analysis exploiting the EV-RNA to identify intracellular protein binders in vitro. Using cells expressing a recombinant hnRNPA2B1 to normalize competitive interactions, we prioritized a network of heterogeneous nuclear ribonucleoproteins and purine-rich RNA sequences subsequently validated in secreted EV-RNA through short fluorescent RNA oligos. Then, we designed a GGGAG-enriched RNA probe that efficiently interacted with a full-length human hnRNPA2B1 protein. We exploited the interaction to conduct a pharmacological screening and identify inhibitors of the protein-RNA binding. Small molecules were orthogonally validated through biochemical and cell-based approaches. Selected drugs remarkably impacted secreted EV-RNAs and reduced an RNA-dependent, EV-mediated paracrine activation of NF-kB in recipient cells. These results demonstrate the relevance of post-transcriptional mechanisms for EV-RNA sorting and the possibility of predicting the EV-RNA quality for developing innovative strategies targeting discrete paracrine functions.
Collapse
|
|
1 |
|
10
|
Bongiovanni A, Radeghieri A, Arnaboldi L, Lucchetti D, Barbieri G, Lucio B, Fiani ML, Bedoni M, Tripodi M, Cavallero S, Bergese P, Biffi S, Pozzobon M, Morasso C, Bussolati B, Monticone S, Buratta S, Osto E, Ambrosone A, Parisse P, Crippa V, Bruno S, Tasso R, Laitinen S, Fontana S, Collino F, D'Agnano I, Catalano M, Mebarek S, D'Agostino VG, Santantonio T, Panzarini E, Matteucci C, Brizzi MF, Ferrara F, Fortunato O, Gori A, Cretich M, Raimondo S, Bellezza I, Martini C, Affabris E, Olivieri F, Iraci N, D'Amico G, Balbi C, Papa S, Tarallo V, Fallarino F, Lisini D, Bianchi F, Budillon A, Lazzari L, Bollati V, Giusti I, Manno M, Ruscica M, Romano A, Cauda V, Chiara G, Bosisio D, Schiavi ED, Luciana D, Lupia E, Vassalli G, Daniela G, Simioni P, Pisano R, Denaro V, Urbanelli L, Melli G, Fenoglio C. Meeting abstracts of the 3° EVIta symposium. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:615-683. [PMID: 39697805 PMCID: PMC11651120 DOI: 10.20517/evcna.2023.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2024]
|
meeting-report |
2 |
|
11
|
Basso M, Gori A, Nardella C, Palviainen M, Holcar M, Sotiropoulos I, Bobis‐Wozowicz S, D'Agostino VG, Casarotto E, Ciani Y, Suetsugu S, Gualerzi A, Martin‐Jaular L, Boselli D, Kashkanova A, Parisse P, Lippens L, Pagliuca M, Blessing M, Frigerio R, Fourniols T, Meliciano A, Fietta A, Fioretti PV, Soroczyńska K, Picciolini S, Salviano‐Silva A, Bergese P, Zocco D, Chiari M, Jenster G, Waldron L, Milosavljevic A, Nolan J, Monopoli MP, Witwer KW, Bussolati B, Di Vizio D, Falcon Perez J, Lenassi M, Cretich M, Demichelis F. International Society for Extracellular Vesicles Workshop. QuantitatEVs: multiscale analyses, from bulk to single extracellular vesicle. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e137. [PMID: 38405579 PMCID: PMC10883470 DOI: 10.1002/jex2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 02/27/2024]
Abstract
The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.
Collapse
|
meeting-report |
1 |
|