1
|
Gilbert M, Pullano G, Pinotti F, Valdano E, Poletto C, Boëlle PY, D'Ortenzio E, Yazdanpanah Y, Eholie SP, Altmann M, Gutierrez B, Kraemer MUG, Colizza V. Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. Lancet 2020; 395:871-877. [PMID: 32087820 PMCID: PMC7159277 DOI: 10.1016/s0140-6736(20)30411-6] [Citation(s) in RCA: 638] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19) epidemic has spread from China to 25 countries. Local cycles of transmission have already occurred in 12 countries after case importation. In Africa, Egypt has so far confirmed one case. The management and control of COVID-19 importations heavily rely on a country's health capacity. Here we evaluate the preparedness and vulnerability of African countries against their risk of importation of COVID-19. METHODS We used data on the volume of air travel departing from airports in the infected provinces in China and directed to Africa to estimate the risk of importation per country. We determined the country's capacity to detect and respond to cases with two indicators: preparedness, using the WHO International Health Regulations Monitoring and Evaluation Framework; and vulnerability, using the Infectious Disease Vulnerability Index. Countries were clustered according to the Chinese regions contributing most to their risk. FINDINGS Countries with the highest importation risk (ie, Egypt, Algeria, and South Africa) have moderate to high capacity to respond to outbreaks. Countries at moderate risk (ie, Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, and Kenya) have variable capacity and high vulnerability. We identified three clusters of countries that share the same exposure to the risk originating from the provinces of Guangdong, Fujian, and the city of Beijing, respectively. INTERPRETATION Many countries in Africa are stepping up their preparedness to detect and cope with COVID-19 importations. Resources, intensified surveillance, and capacity building should be urgently prioritised in countries with moderate risk that might be ill-prepared to detect imported cases and to limit onward transmission. FUNDING EU Framework Programme for Research and Innovation Horizon 2020, Agence Nationale de la Recherche.
Collapse
|
research-article |
5 |
638 |
2
|
Colizza V, Barrat A, Barthélemy M, Vespignani A. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci U S A 2006; 103:2015-20. [PMID: 16461461 PMCID: PMC1413717 DOI: 10.1073/pnas.0510525103] [Citation(s) in RCA: 482] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Indexed: 11/18/2022] Open
Abstract
The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large-scale heterogeneities and unbounded statistical fluctuations. These features affect dramatically the behavior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this article, we present a stochastic computational framework for the forecast of global epidemics that considers the complete worldwide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: (i) we study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; and (ii) we evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticity of disease transmission and traffic flows. To address these issues we define a set of quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern. These measures may be used for the analysis of containment policies and epidemic risk assessment.
Collapse
|
research-article |
19 |
482 |
3
|
Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A. Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med 2007; 4:e13. [PMID: 17253899 PMCID: PMC1779816 DOI: 10.1371/journal.pmed.0040013] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 11/27/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The highly pathogenic H5N1 avian influenza virus, which is now widespread in Southeast Asia and which diffused recently in some areas of the Balkans region and Western Europe, has raised a public alert toward the potential occurrence of a new severe influenza pandemic. Here we study the worldwide spread of a pandemic and its possible containment at a global level taking into account all available information on air travel. METHODS AND FINDINGS We studied a metapopulation stochastic epidemic model on a global scale that considers airline travel flow data among urban areas. We provided a temporal and spatial evolution of the pandemic with a sensitivity analysis of different levels of infectiousness of the virus and initial outbreak conditions (both geographical and seasonal). For each spreading scenario we provided the timeline and the geographical impact of the pandemic in 3,100 urban areas, located in 220 different countries. We compared the baseline cases with different containment strategies, including travel restrictions and the therapeutic use of antiviral (AV) drugs. We investigated the effect of the use of AV drugs in the event that therapeutic protocols can be carried out with maximal coverage for the populations in all countries. In view of the wide diversity of AV stockpiles in different regions of the world, we also studied scenarios in which only a limited number of countries are prepared (i.e., have considerable AV supplies). In particular, we compared different plans in which, on the one hand, only prepared and wealthy countries benefit from large AV resources, with, on the other hand, cooperative containment scenarios in which countries with large AV stockpiles make a small portion of their supplies available worldwide. CONCLUSIONS We show that the inclusion of air transportation is crucial in the assessment of the occurrence probability of global outbreaks. The large-scale therapeutic usage of AV drugs in all hit countries would be able to mitigate a pandemic effect with a reproductive rate as high as 1.9 during the first year; with AV supply use sufficient to treat approximately 2% to 6% of the population, in conjunction with efficient case detection and timely drug distribution. For highly contagious viruses (i.e., a reproductive rate as high as 2.3), even the unrealistic use of supplies corresponding to the treatment of approximately 20% of the population leaves 30%-50% of the population infected. In the case of limited AV supplies and pandemics with a reproductive rate as high as 1.9, we demonstrate that the more cooperative the strategy, the more effective are the containment results in all regions of the world, including those countries that made part of their resources available for global use.
Collapse
|
research-article |
18 |
342 |
4
|
Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A. Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One 2010; 5:e11596. [PMID: 20657651 PMCID: PMC2904704 DOI: 10.1371/journal.pone.0011596] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/22/2010] [Indexed: 11/19/2022] Open
Abstract
Background Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities. Methods and Findings We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections. Conclusions Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
326 |
5
|
Oliver N, Lepri B, Sterly H, Lambiotte R, Deletaille S, De Nadai M, Letouzé E, Salah AA, Benjamins R, Cattuto C, Colizza V, de Cordes N, Fraiberger SP, Koebe T, Lehmann S, Murillo J, Pentland A, Pham PN, Pivetta F, Saramäki J, Scarpino SV, Tizzoni M, Verhulst S, Vinck P. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. SCIENCE ADVANCES 2020; 6:eabc0764. [PMID: 32548274 PMCID: PMC7274807 DOI: 10.1126/sciadv.abc0764] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 05/19/2023]
|
Editorial |
5 |
289 |
6
|
Bajardi P, Poletto C, Ramasco JJ, Tizzoni M, Colizza V, Vespignani A. Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic. PLoS One 2011; 6:e16591. [PMID: 21304943 PMCID: PMC3031602 DOI: 10.1371/journal.pone.0016591] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/30/2010] [Indexed: 11/19/2022] Open
Abstract
After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related controls during the early stage of the outbreak in an attempt to contain or slow down its international spread. These controls along with self-imposed travel limitations contributed to a decline of about 40% in international air traffic to/from Mexico following the international alert. However, no containment was achieved by such restrictions and the virus was able to reach pandemic proportions in a short time. When gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on epidemic models that integrate the wide range of features characterizing human mobility and the many options available to public health organizations for responding to a pandemic. Here we present a comprehensive computational and theoretical study of the role of travel restrictions in halting and delaying pandemics by using a model that explicitly integrates air travel and short-range mobility data with high-resolution demographic data across the world and that is validated by the accumulation of data from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1 pandemic by assessing the potential impact of mobility restrictions that vary with respect to their magnitude and their position in the pandemic timeline. We provide a quantitative discussion of the delay obtained by different mobility restrictions and the likelihood of containing outbreaks of infectious diseases at their source, confirming the limited value and feasibility of international travel restrictions. These results are rationalized in the theoretical framework characterizing the invasion dynamics of the epidemics at the metapopulation level.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
235 |
7
|
Balcan D, Gonçalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A. Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model. JOURNAL OF COMPUTATIONAL SCIENCE 2010; 1:132-145. [PMID: 21415939 PMCID: PMC3056392 DOI: 10.1016/j.jocs.2010.07.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic and population mobility data in a spatially structured stochastic disease approach to simulate the spread of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the inclusion of different disease structures and local intervention policies. This makes GLEaM suitable for the computational modeling and anticipation of the spatio-temporal patterns of global epidemic spreading, the understanding of historical epidemics, the assessment of the role of human mobility in shaping global epidemics, and the analysis of mitigation and containment scenarios.
Collapse
|
research-article |
15 |
214 |
8
|
Colizza V, Vespignani A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J Theor Biol 2007; 251:450-67. [PMID: 18222487 DOI: 10.1016/j.jtbi.2007.11.028] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/25/2007] [Accepted: 11/26/2007] [Indexed: 11/29/2022]
Abstract
The spatial structure of populations is a key element in the understanding of the large-scale spreading of epidemics. Motivated by the recent empirical evidence on the heterogeneous properties of transportation and commuting patterns among urban areas, we present a thorough analysis of the behavior of infectious diseases in metapopulation models characterized by heterogeneous connectivity and mobility patterns. We derive the basic reaction-diffusion equations describing the metapopulation system at the mechanistic level and derive an early stage dynamics approximation for the subpopulation invasion dynamics. The analytical description uses a homogeneous assumption on degree block variables that allows us to take into account arbitrary degree distribution of the metapopulation network. We show that along with the usual single population epidemic threshold the metapopulation network exhibits a global threshold for the subpopulation invasion. We find an explicit analytic expression for the invasion threshold that determines the minimum number of individuals traveling among subpopulations in order to have the infection of a macroscopic number of subpopulations. The invasion threshold is a function of factors such as the basic reproductive number, the infectious period and the mobility process and it is found to decrease for increasing network heterogeneity. We provide extensive mechanistic numerical Monte Carlo simulations that recover the analytical finding in a wide range of metapopulation network connectivity patterns. The results can be useful in the understanding of recent data driven computational approaches to disease spreading in large transportation networks and the effect of containment measures such as travel restrictions.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
210 |
9
|
Balcan D, Hu H, Goncalves B, Bajardi P, Poletto C, Ramasco JJ, Paolotti D, Perra N, Tizzoni M, Van den Broeck W, Colizza V, Vespignani A. Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Med 2009; 7:45. [PMID: 19744314 PMCID: PMC2755471 DOI: 10.1186/1741-7015-7-45] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND On 11 June the World Health Organization officially raised the phase of pandemic alert (with regard to the new H1N1 influenza strain) to level 6. As of 19 July, 137,232 cases of the H1N1 influenza strain have been officially confirmed in 142 different countries, and the pandemic unfolding in the Southern hemisphere is now under scrutiny to gain insights about the next winter wave in the Northern hemisphere. A major challenge is pre-emptied by the need to estimate the transmission potential of the virus and to assess its dependence on seasonality aspects in order to be able to use numerical models capable of projecting the spatiotemporal pattern of the pandemic. METHODS In the present work, we use a global structured metapopulation model integrating mobility and transportation data worldwide. The model considers data on 3,362 subpopulations in 220 different countries and individual mobility across them. The model generates stochastic realizations of the epidemic evolution worldwide considering 6 billion individuals, from which we can gather information such as prevalence, morbidity, number of secondary cases and number and date of imported cases for each subpopulation, all with a time resolution of 1 day. In order to estimate the transmission potential and the relevant model parameters we used the data on the chronology of the 2009 novel influenza A(H1N1). The method is based on the maximum likelihood analysis of the arrival time distribution generated by the model in 12 countries seeded by Mexico by using 1 million computationally simulated epidemics. An extended chronology including 93 countries worldwide seeded before 18 June was used to ascertain the seasonality effects. RESULTS We found the best estimate R0 = 1.75 (95% confidence interval (CI) 1.64 to 1.88) for the basic reproductive number. Correlation analysis allows the selection of the most probable seasonal behavior based on the observed pattern, leading to the identification of plausible scenarios for the future unfolding of the pandemic and the estimate of pandemic activity peaks in the different hemispheres. We provide estimates for the number of hospitalizations and the attack rate for the next wave as well as an extensive sensitivity analysis on the disease parameter values. We also studied the effect of systematic therapeutic use of antiviral drugs on the epidemic timeline. CONCLUSION The analysis shows the potential for an early epidemic peak occurring in October/November in the Northern hemisphere, likely before large-scale vaccination campaigns could be carried out. The baseline results refer to a worst-case scenario in which additional mitigation policies are not considered. We suggest that the planning of additional mitigation policies such as systematic antiviral treatments might be the key to delay the activity peak in order to restore the effectiveness of the vaccination programs.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
206 |
10
|
Di Domenico L, Pullano G, Sabbatini CE, Boëlle PY, Colizza V. Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies. BMC Med 2020; 18:240. [PMID: 32727547 PMCID: PMC7391016 DOI: 10.1186/s12916-020-01698-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND More than half of the global population is under strict forms of social distancing. Estimating the expected impact of lockdown and exit strategies is critical to inform decision makers on the management of the COVID-19 health crisis. METHODS We use a stochastic age-structured transmission model integrating data on age profile and social contacts in Île-de-France to (i) assess the epidemic in the region, (ii) evaluate the impact of lockdown, and (iii) propose possible exit strategies and estimate their effectiveness. The model is calibrated to hospital admission data before lockdown. Interventions are modeled by reconstructing the associated changes in the contact matrices and informed by mobility reductions during lockdown evaluated from mobile phone data. Different types and durations of social distancing are simulated, including progressive and targeted strategies, with large-scale testing. RESULTS We estimate the reproductive number at 3.18 [3.09, 3.24] (95% confidence interval) prior to lockdown and at 0.68 [0.66, 0.69] during lockdown, thanks to an 81% reduction of the average number of contacts. Model predictions capture the disease dynamics during lockdown, showing the epidemic curve reaching ICU system capacity, largely strengthened during the emergency, and slowly decreasing. Results suggest that physical contacts outside households were largely avoided during lockdown. Lifting the lockdown with no exit strategy would lead to a second wave overwhelming the healthcare system, if conditions return to normal. Extensive case finding and isolation are required for social distancing strategies to gradually relax lockdown constraints. CONCLUSIONS As France experiences the first wave of COVID-19 pandemic in lockdown, intensive forms of social distancing are required in the upcoming months due to the currently low population immunity. Extensive case finding and isolation would allow the partial release of the socio-economic pressure caused by extreme measures, while avoiding healthcare demand exceeding capacity. Response planning needs to urgently prioritize the logistics and capacity for these interventions.
Collapse
|
research-article |
5 |
203 |
11
|
Stehlé J, Voirin N, Barrat A, Cattuto C, Colizza V, Isella L, Régis C, Pinton JF, Khanafer N, Van den Broeck W, Vanhems P. Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 2011; 9:87. [PMID: 21771290 PMCID: PMC3162551 DOI: 10.1186/1741-7015-9-87] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. METHODS We considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID) devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects. RESULTS We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic. CONCLUSIONS These results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics. Please see related article BMC Medicine, 2011, 9:88.
Collapse
|
research-article |
14 |
177 |
12
|
Opsahl T, Colizza V, Panzarasa P, Ramasco JJ. Prominence and control: the weighted rich-club effect. PHYSICAL REVIEW LETTERS 2008; 101:168702. [PMID: 18999722 DOI: 10.1103/physrevlett.101.168702] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Indexed: 05/27/2023]
Abstract
Complex systems are often characterized by large-scale hierarchical organizations. Whether the prominent elements, at the top of the hierarchy, share and control resources or avoid one another lies at the heart of a system's global organization and functioning. Inspired by network perspectives, we propose a new general framework for studying the tendency of prominent elements to form clubs with exclusive control over the majority of a system's resources. We explore associations between prominence and control in the fields of transportation, scientific collaboration, and online communication.
Collapse
|
|
17 |
155 |
13
|
Bajardi P, Barrat A, Natale F, Savini L, Colizza V. Dynamical patterns of cattle trade movements. PLoS One 2011; 6:e19869. [PMID: 21625633 PMCID: PMC3097215 DOI: 10.1371/journal.pone.0019869] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 11/24/2022] Open
Abstract
Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
155 |
14
|
Pullano G, Valdano E, Scarpa N, Rubrichi S, Colizza V. Evaluating the effect of demographic factors, socioeconomic factors, and risk aversion on mobility during the COVID-19 epidemic in France under lockdown: a population-based study. LANCET DIGITAL HEALTH 2020; 2:e638-e649. [PMID: 33163951 PMCID: PMC7598368 DOI: 10.1016/s2589-7500(20)30243-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background On March 17, 2020, French authorities implemented a nationwide lockdown to respond to the COVID-19 epidemic and curb the surge of patients requiring critical care. Assessing the effect of lockdown on individual displacements is essential to quantify achievable mobility reductions and identify the factors driving the changes in social dynamics that affected viral diffusion. We aimed to use mobile phone data to study how mobility in France changed before and during lockdown, breaking down our findings by trip distance, user age and residency, and time of day, and analysing regional data and spatial heterogeneities. Methods For this population-based study, we used temporally resolved travel flows among 1436 administrative areas of mainland France reconstructed from mobile phone trajectories. Data were stratified by age class (younger than 18 years, 18–64 years, and 65 years or older). We distinguished between residents and non-residents and used population data and regional socioeconomic indicators from the French National Statistical Institute. We measured mobility changes before and during lockdown at both local and country scales using a case-crossover framework. We analysed all trips combined and trips longer than 100 km (termed long trips), and separated trips by daytime or night-time, weekdays or weekends, and rush hours. Findings Lockdown caused a 65% reduction in the countrywide number of displacements (from about 57 million to about 20 million trips per day) and was particularly effective in reducing work-related short-range mobility, especially during rush hour, and long trips. Geographical heterogeneities showed anomalous increases in long-range movements even before lockdown announcement that were tightly localised in space. During lockdown, mobility drops were unevenly distributed across regions (eg, Île-de-France, the region of Paris, went from 585 000 to 117 000 outgoing trips per day). They were strongly associated with active populations, workers employed in sectors highly affected by lockdown, and number of hospitalisations per region, and moderately associated with the socioeconomic level of the regions. Major cities largely shrank their pattern of connectivity, reducing it mainly to short-range commuting (95% of traffic leaving Paris was contained in a 201 km radius before lockdown, which was reduced to 29 km during lockdown). Interpretation Lockdown was effective in reducing population mobility across scales. Caution should be taken in the timing of policy announcements and implementation, because anomalous mobility followed policy announcements, which might act as seeding events. Conversely, risk aversion might be beneficial in further decreasing mobility in highly affected regions. We also identified socioeconomic and demographic constraints to the efficacy of restrictions. The unveiled links between geography, demography, and timing of the response to mobility restrictions might help to design interventions that minimise invasiveness while contributing to the current epidemic response. Funding Agence Nationale de la Recherche, EU, REACTing.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
152 |
15
|
Tizzoni M, Bajardi P, Decuyper A, Kon Kam King G, Schneider CM, Blondel V, Smoreda Z, González MC, Colizza V. On the use of human mobility proxies for modeling epidemics. PLoS Comput Biol 2014; 10:e1003716. [PMID: 25010676 PMCID: PMC4091706 DOI: 10.1371/journal.pcbi.1003716] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling and quantifying human mobility is critical for improving epidemic control, but may be hindered by data incompleteness or unavailability. Here we explore the opportunity of using proxies for individual mobility to describe commuting flows and predict the diffusion of an influenza-like-illness epidemic. We consider three European countries and the corresponding commuting networks at different resolution scales, obtained from (i) official census surveys, (ii) proxy mobility data extracted from mobile phone call records, and (iii) the radiation model calibrated with census data. Metapopulation models defined on these countries and integrating the different mobility layers are compared in terms of epidemic observables. We show that commuting networks from mobile phone data capture the empirical commuting patterns well, accounting for more than 87% of the total fluxes. The distributions of commuting fluxes per link from mobile phones and census sources are similar and highly correlated, however a systematic overestimation of commuting traffic in the mobile phone data is observed. This leads to epidemics that spread faster than on census commuting networks, once the mobile phone commuting network is considered in the epidemic model, however preserving to a high degree the order of infection of newly affected locations. Proxies' calibration affects the arrival times' agreement across different models, and the observed topological and traffic discrepancies among mobility sources alter the resulting epidemic invasion patterns. Results also suggest that proxies perform differently in approximating commuting patterns for disease spread at different resolution scales, with the radiation model showing higher accuracy than mobile phone data when the seed is central in the network, the opposite being observed for peripheral locations. Proxies should therefore be chosen in light of the desired accuracy for the epidemic situation under study.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
151 |
16
|
Pullano G, Di Domenico L, Sabbatini CE, Valdano E, Turbelin C, Debin M, Guerrisi C, Kengne-Kuetche C, Souty C, Hanslik T, Blanchon T, Boëlle PY, Figoni J, Vaux S, Campèse C, Bernard-Stoecklin S, Colizza V. Underdetection of cases of COVID-19 in France threatens epidemic control. Nature 2020; 590:134-139. [PMID: 33348340 DOI: 10.1038/s41586-020-03095-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023]
Abstract
As countries in Europe gradually relaxed lockdown restrictions after the first wave, test-trace-isolate strategies became critical to maintain the incidence of coronavirus disease 2019 (COVID-19) at low levels1,2. Reviewing their shortcomings can provide elements to consider in light of the second wave that is currently underway in Europe. Here we estimate the rate of detection of symptomatic cases of COVID-19 in France after lockdown through the use of virological3 and participatory syndromic4 surveillance data coupled with mathematical transmission models calibrated to regional hospitalizations2. Our findings indicate that around 90,000 symptomatic infections, corresponding to 9 out 10 cases, were not ascertained by the surveillance system in the first 7 weeks after lockdown from 11 May to 28 June 2020, although the test positivity rate did not exceed the 5% recommendation of the World Health Organization (WHO)5. The median detection rate increased from 7% (95% confidence interval, 6-8%) to 38% (35-44%) over time, with large regional variations, owing to a strengthening of the system as well as a decrease in epidemic activity. According to participatory surveillance data, only 31% of individuals with COVID-19-like symptoms consulted a doctor in the study period. This suggests that large numbers of symptomatic cases of COVID-19 did not seek medical advice despite recommendations, as confirmed by serological studies6,7. Encouraging awareness and same-day healthcare-seeking behaviour of suspected cases of COVID-19 is critical to improve detection. However, the capacity of the system remained insufficient even at the low epidemic activity achieved after lockdown, and was predicted to deteriorate rapidly with increasing incidence of COVID-19 cases. Substantially more aggressive, targeted and efficient testing with easier access is required to act as a tool to control the COVID-19 pandemic. The testing strategy will be critical to enable partial lifting of the current restrictive measures in Europe and to avoid a third wave.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
143 |
17
|
Colizza V, Vespignani A. Invasion threshold in heterogeneous metapopulation networks. PHYSICAL REVIEW LETTERS 2007; 99:148701. [PMID: 17930732 DOI: 10.1103/physrevlett.99.148701] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Indexed: 05/21/2023]
Abstract
We study the dynamics of epidemic and reaction-diffusion processes in metapopulation models with heterogeneous connectivity patterns. In susceptible-infected-removed-like processes, along with the standard local epidemic threshold, the system exhibits a global invasion threshold. We provide an explicit expression of the threshold that sets a critical value of the diffusion/mobility rate below, which the epidemic is not able to spread to a macroscopic fraction of subpopulations. The invasion threshold is found to be affected by the topological fluctuations of the metapopulation network. The results presented provide a general framework for the understanding of the effect of travel restrictions in epidemic containment.
Collapse
|
|
18 |
140 |
18
|
Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, Gonçalves B, Perra N, Colizza V, Vespignani A. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med 2012; 10:165. [PMID: 23237460 PMCID: PMC3585792 DOI: 10.1186/1741-7015-10-165] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. METHODS We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. RESULTS Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. CONCLUSIONS Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
136 |
19
|
Ajelli M, Gonçalves B, Balcan D, Colizza V, Hu H, Ramasco JJ, Merler S, Vespignani A. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect Dis 2010; 10:190. [PMID: 20587041 PMCID: PMC2914769 DOI: 10.1186/1471-2334-10-190] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 06/29/2010] [Indexed: 11/10/2022] Open
Abstract
Background In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the geotemporal spreading pattern found by different modeling approaches may differ and depend on the different approximations and assumptions used. Methods We provide for the first time a side-by-side comparison of the results obtained with a stochastic agent-based model and a structured metapopulation stochastic model for the progression of a baseline pandemic event in Italy, a large and geographically heterogeneous European country. The agent-based model is based on the explicit representation of the Italian population through highly detailed data on the socio-demographic structure. The metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high-resolution census data worldwide, and integrating airline travel flow data with short-range human mobility patterns at the global scale. The model also considers age structure data for Italy. GLEaM and the agent-based models are synchronized in their initial conditions by using the same disease parameterization, and by defining the same importation of infected cases from international travels. Results The results obtained show that both models provide epidemic patterns that are in very good agreement at the granularity levels accessible by both approaches, with differences in peak timing on the order of a few days. The relative difference of the epidemic size depends on the basic reproductive ratio, R0, and on the fact that the metapopulation model consistently yields a larger incidence than the agent-based model, as expected due to the differences in the structure in the intra-population contact pattern of the approaches. The age breakdown analysis shows that similar attack rates are obtained for the younger age classes. Conclusions The good agreement between the two modeling approaches is very important for defining the tradeoff between data availability and the information provided by the models. The results we present define the possibility of hybrid models combining the agent-based and the metapopulation approaches according to the available data and computational resources.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
131 |
20
|
Lemey P, Ruktanonchai N, Hong SL, Colizza V, Poletto C, Van den Broeck F, Gill MS, Ji X, Levasseur A, Oude Munnink BB, Koopmans M, Sadilek A, Lai S, Tatem AJ, Baele G, Suchard MA, Dellicour S. Untangling introductions and persistence in COVID-19 resurgence in Europe. Nature 2021; 595:713-717. [PMID: 34192736 PMCID: PMC8324533 DOI: 10.1038/s41586-021-03754-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022]
Abstract
After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
118 |
21
|
Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, Gesualdo F, Pandolfi E, Ravà L, Rizzo C, Tozzi AE. Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One 2011; 6:e17144. [PMID: 21386902 PMCID: PMC3046133 DOI: 10.1371/journal.pone.0017144] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/21/2011] [Indexed: 11/19/2022] Open
Abstract
Background Nosocomial infections place a substantial burden on health care systems and represent one of the major issues in current public health, requiring notable efforts for its prevention. Understanding the dynamics of infection transmission in a hospital setting is essential for tailoring interventions and predicting the spread among individuals. Mathematical models need to be informed with accurate data on contacts among individuals. Methods and Findings We used wearable active Radio-Frequency Identification Devices (RFID) to detect face-to-face contacts among individuals with a spatial resolution of about 1.5 meters, and a time resolution of 20 seconds. The study was conducted in a general pediatrics hospital ward, during a one-week period, and included 119 participants, with 51 health care workers, 37 patients, and 31 caregivers. Nearly 16,000 contacts were recorded during the study period, with a median of approximately 20 contacts per participants per day. Overall, 25% of the contacts involved a ward assistant, 23% a nurse, 22% a patient, 22% a caregiver, and 8% a physician. The majority of contacts were of brief duration, but long and frequent contacts especially between patients and caregivers were also found. In the setting under study, caregivers do not represent a significant potential for infection spread to a large number of individuals, as their interactions mainly involve the corresponding patient. Nurses would deserve priority in prevention strategies due to their central role in the potential propagation paths of infections. Conclusions Our study shows the feasibility of accurate and reproducible measures of the pattern of contacts in a hospital setting. The obtained results are particularly useful for the study of the spread of respiratory infections, for monitoring critical patterns, and for setting up tailored prevention strategies. Proximity-sensing technology should be considered as a valuable tool for measuring such patterns and evaluating nosocomial prevention strategies in specific settings.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
118 |
22
|
Poletto C, Gomes MF, Pastore y Piontti A, Rossi L, Bioglio L, Chao DL, Longini IM, Halloran ME, Colizza V, Vespignani A. Assessing the impact of travel restrictions on international spread of the 2014 West African Ebola epidemic. ACTA ACUST UNITED AC 2014; 19. [PMID: 25358040 DOI: 10.2807/1560-7917.es2014.19.42.20936] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The quick spread of an Ebola outbreak in West Africa has led a number of countries and airline companies to issue travel bans to the affected areas. Considering data up to 31 Aug 2014, we assess the impact of the resulting traffic reductions with detailed numerical simulations of the international spread of the epidemic. Traffic reductions are shown to delay by only a few weeks the risk that the outbreak extends to new countries.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
107 |
23
|
Paolotti D, Carnahan A, Colizza V, Eames K, Edmunds J, Gomes G, Koppeschaar C, Rehn M, Smallenburg R, Turbelin C, Van Noort S, Vespignani A. Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience. Clin Microbiol Infect 2014; 20:17-21. [PMID: 24350723 PMCID: PMC7128292 DOI: 10.1111/1469-0691.12477] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To overcome the limitations of the state-of-the-art influenza surveillance systems in Europe, we established in 2008 a European-wide consortium aimed at introducing an innovative information and communication technology approach for a web-based surveillance system across different European countries, called Influenzanet. The system, based on earlier efforts in The Netherlands and Portugal, works with the participation of the population in each country to collect real-time information on the distribution of influenza-like illness cases through web surveys administered to volunteers reporting their symptoms (or lack of symptoms) every week during the influenza season. Such a large European-wide web-based monitoring infrastructure is intended to rapidly identify public health emergencies, contribute to understanding global trends, inform data-driven forecast models to assess the impact on the population, optimize the allocation of resources, and help in devising mitigation and containment measures. In this article, we describe the scientific and technological issues faced during the development and deployment of a flexible and readily deployable web tool capable of coping with the requirements of different countries for data collection, during either a public health emergency or an ordinary influenza season. Even though the system is based on previous successful experience, the implementation in each new country represented a separate scientific challenge. Only after more than 5 years of development are the existing platforms based on a plug-and-play tool that can be promptly deployed in any country wishing to be part of the Influenzanet network, now composed of The Netherlands, Belgium, Portugal, Italy, the UK, France, Sweden, Spain, Ireland, and Denmark.
Collapse
|
Review |
11 |
101 |
24
|
Lemey P, Hong SL, Hill V, Baele G, Poletto C, Colizza V, O'Toole Á, McCrone JT, Andersen KG, Worobey M, Nelson MI, Rambaut A, Suchard MA. Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2. Nat Commun 2020; 11:5110. [PMID: 33037213 PMCID: PMC7547076 DOI: 10.1038/s41467-020-18877-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
99 |
25
|
Bajardi P, Barrat A, Savini L, Colizza V. Optimizing surveillance for livestock disease spreading through animal movements. J R Soc Interface 2012; 9:2814-25. [PMID: 22728387 DOI: 10.1098/rsif.2012.0289] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The spatial propagation of many livestock infectious diseases critically depends on the animal movements among premises; so the knowledge of movement data may help us to detect, manage and control an outbreak. The identification of robust spreading features of the system is however hampered by the temporal dimension characterizing population interactions through movements. Traditional centrality measures do not provide relevant information as results strongly fluctuate in time and outbreak properties heavily depend on geotemporal initial conditions. By focusing on the case study of cattle displacements in Italy, we aim at characterizing livestock epidemics in terms of robust features useful for planning and control, to deal with temporal fluctuations, sensitivity to initial conditions and missing information during an outbreak. Through spatial disease simulations, we detect spreading paths that are stable across different initial conditions, allowing the clustering of the seeds and reducing the epidemic variability. Paths also allow us to identify premises, called sentinels, having a large probability of being infected and providing critical information on the outbreak origin, as encoded in the clusters. This novel procedure provides a general framework that can be applied to specific diseases, for aiding risk assessment analysis and informing the design of optimal surveillance systems.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
97 |