1
|
Ambartsumyan O, Gribanyov D, Kukushkin V, Kopylov A, Zavyalova E. SERS-Based Biosensors for Virus Determination with Oligonucleotides as Recognition Elements. Int J Mol Sci 2020; 21:ijms21093373. [PMID: 32397680 PMCID: PMC7247000 DOI: 10.3390/ijms21093373] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
Viral infections are among the main causes of morbidity and mortality of humans; sensitive and specific diagnostic methods for the rapid identification of viral pathogens are required. Surface-enhanced Raman spectroscopy (SERS) is one of the most promising techniques for routine analysis due to its excellent sensitivity, simple and low-cost instrumentation and minimal required sample preparation. The outstanding sensitivity of SERS is achieved due to tiny nanostructures which must be assembled before or during the analysis. As for specificity, it may be provided using recognition elements. Antibodies, complimentary nucleic acids and aptamers are the most usable recognition elements for virus identification. Here, SERS-based biosensors for virus identification with oligonucleotides as recognition elements are reviewed, and the potential of these biosensors is discussed.
Collapse
|
Review |
5 |
44 |
2
|
Zavyalova E, Ambartsumyan O, Zhdanov G, Gribanyov D, Gushchin V, Tkachuk A, Rudakova E, Nikiforova M, Kuznetsova N, Popova L, Verdiev B, Alatyrev A, Burtseva E, Ignatieva A, Iliukhina A, Dolzhikova I, Arutyunyan A, Gambaryan A, Kukushkin V. SERS-Based Aptasensor for Rapid Quantitative Detection of SARS-CoV-2. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1394. [PMID: 34070421 PMCID: PMC8228355 DOI: 10.3390/nano11061394] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
During the COVID-19 pandemic, the development of sensitive and rapid techniques for detection of viruses have become vital. Surface-enhanced Raman scattering (SERS) is an appropriate tool for new techniques due to its high sensitivity. SERS materials modified with short-structured oligonucleotides (DNA aptamers) provide specificity for SERS biosensors. Existing SERS-based aptasensors for rapid virus detection are either inapplicable for quantitative determination or have sophisticated and expensive construction and implementation. In this paper, we provide a SERS-aptasensor based on colloidal solutions which combines rapidity and specificity in quantitative determination of SARS-CoV-2 virus, discriminating it from the other respiratory viruses.
Collapse
|
research-article |
4 |
29 |
3
|
Gribanyov D, Zhdanov G, Olenin A, Lisichkin G, Gambaryan A, Kukushkin V, Zavyalova E. SERS-Based Colloidal Aptasensors for Quantitative Determination of Influenza Virus. Int J Mol Sci 2021; 22:1842. [PMID: 33673314 PMCID: PMC7918581 DOI: 10.3390/ijms22041842] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Development of sensitive techniques for rapid detection of viruses is on a high demand. Surface-enhanced Raman spectroscopy (SERS) is an appropriate tool for new techniques due to its high sensitivity. DNA aptamers are short structured oligonucleotides that can provide specificity for SERS biosensors. Existing SERS-based aptasensors for rapid virus detection had several disadvantages. Some of them lacked possibility of quantitative determination, while others had sophisticated and expensive implementation. In this paper, we provide a new approach that combines rapid specific detection and the possibility of quantitative determination of viruses using the example of influenza A virus.
Collapse
|
research-article |
4 |
20 |
4
|
Zhdanov G, Nyhrikova E, Meshcheryakova N, Kristavchuk O, Akhmetova A, Andreev E, Rudakova E, Gambaryan A, Yaminsky I, Aralov A, Kukushkin V, Zavyalova E. A Combination of Membrane Filtration and Raman-Active DNA Ligand Greatly Enhances Sensitivity of SERS-Based Aptasensors for Influenza A Virus. Front Chem 2022; 10:937180. [PMID: 35844641 PMCID: PMC9279936 DOI: 10.3389/fchem.2022.937180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/20/2023] Open
Abstract
Biosensors combining the ultrahigh sensitivity of surface-enhanced Raman scattering (SERS) and the specificity of nucleic acid aptamers have recently drawn attention in the detection of respiratory viruses. The most sensitive SERS-based aptasensors allow determining as low as 104 virus particles per mL that is 100-fold lower than any antibody-based lateral flow tests but 10-100-times higher than a routine polymerase chain reaction with reversed transcription (RT-PCR). Sensitivity of RT-PCR has not been achieved in SERS-based aptasensors despite the usage of sophisticated SERS-active substrates. Here, we proposed a novel design of a SERS-based aptasensor with the limit of detection of just 103 particles per ml of the influenza A virus that approaches closely to RT-PCR sensitivity. The sensor utilizes silver nanoparticles with the simplest preparation instead of sophisticated SERS-active surfaces. The analytical signal is provided by a unique Raman-active dye that competes with the virus for the binding to the G-quadruplex core of the aptamer. The aptasensor functions even with aliquots of the biological fluids due to separation of the off-target molecules by pre-filtration through a polymeric membrane. The aptasensor detects influenza viruses in the range of 1·103-5·1010 virus particles per ml.
Collapse
|
research-article |
3 |
8 |
5
|
Kukushkin V, Kristavchuk O, Andreev E, Meshcheryakova N, Zaborova O, Gambaryan A, Nechaev A, Zavyalova E. Aptamer-coated track-etched membranes with a nanostructured silver layer for single virus detection in biological fluids. Front Bioeng Biotechnol 2023; 10:1076749. [PMID: 36704305 PMCID: PMC9871243 DOI: 10.3389/fbioe.2022.1076749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Aptasensors based on surface-enhanced Raman spectroscopy (SERS) are of high interest due to the superior specificity and low limit of detection. It is possible to produce stable and cheap SERS-active substrates and portable equipment meeting the requirements of point-of-care devices. Here we combine the membrane filtration and SERS-active substrate in the one pot. This approach allows efficient adsorption of the viruses from the solution onto aptamer-covered silver nanoparticles. Specific determination of the viruses was provided by the aptamer to influenza A virus labeled with the Raman-active label. The SERS-signal from the label was decreased with a descending concentration of the target virus. Even several virus particles in the sample provided an increase in SERS-spectra intensity, requiring only a few minutes for the interaction between the aptamer and the virus. The limit of detection of the aptasensor was as low as 10 viral particles per mL (VP/mL) of influenza A virus or 2 VP/mL per probe. This value overcomes the limit of detection of PCR techniques (∼103 VP/mL). The proposed biosensor is very convenient for point-of-care applications.
Collapse
|
research-article |
2 |
5 |
6
|
Kukushkin V, Ambartsumyan O, Subekin A, Astrakhantseva A, Gushchin V, Nikonova A, Dorofeeva A, Zverev V, Keshek A, Meshcheryakova N, Zaborova O, Gambaryan A, Zavyalova E. Multiplex Lithographic SERS Aptasensor for Detection of Several Respiratory Viruses in One Pot. Int J Mol Sci 2023; 24:ijms24098081. [PMID: 37175786 PMCID: PMC10178974 DOI: 10.3390/ijms24098081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid and reliable techniques for virus identification are required in light of recurring epidemics and pandemics throughout the world. Several techniques have been distributed for testing the flow of patients. Polymerase chain reaction with reverse transcription is a reliable and sensitive, though not rapid, tool. The antibody-based strip is a rapid, though not reliable, and sensitive tool. A set of alternative tools is being developed to meet all the needs of the customer. Surface-enhanced Raman spectroscopy (SERS) provides the possibility of single molecule detection taking several minutes. Here, a multiplex lithographic SERS aptasensor was developed aiming at the detection of several respiratory viruses in one pot within 17 min. The four labeled aptamers were anchored onto the metal surface of four SERS zones; the caught viruses affect the SERS signals of the labels, providing changes in the analytical signals. The sensor was able to decode mixes of SARS-CoV-2 (severe acute respiratory syndrome coronavirus two), influenza A virus, respiratory syncytial virus, and adenovirus within a single experiment through a one-stage recognition process.
Collapse
|
|
2 |
3 |
7
|
Kukushkin V, Ambartsumyan O, Astrakhantseva A, Gushchin V, Nikonova A, Dorofeeva A, Zverev V, Gambaryan A, Tikhonova D, Sovetnikov T, Akhmetova A, Yaminsky I, Zavyalova E. Lithographic SERS Aptasensor for Ultrasensitive Detection of SARS-CoV-2 in Biological Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213854. [PMID: 36364630 PMCID: PMC9659100 DOI: 10.3390/nano12213854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 05/27/2023]
Abstract
In this paper, we propose a technology for the rapid and sensitive detection of the whole viral particles of SARS-CoV-2 using double-labeled DNA aptamers as recognition elements together with the SERS method for detecting the optical response. We report on the development of a SERS-aptasensor based on a reproducible lithographic SERS substrate, featuring the combination of high speed, specificity, and ultrasensitive quantitative detection of SARS-CoV-2 virions. The sensor makes it possible to identify SARS-CoV-2 in very low concentrations (the limit of detection was 100 copies/mL), demonstrating a sensitivity level comparable to the existing diagnostic golden standard-the reverse transcription polymerase chain reaction.
Collapse
|
research-article |
3 |
2 |
8
|
Zavyalova E, Tikhonova D, Zhdanov G, Rudakova E, Alferova V, Moiseenko A, Kamzeeva P, Khrulev A, Zalevsky A, Arutyunyan A, Novikov R, Kukushkin V, Aralov A. SERS-based biosensor with Raman-active external responsive element for rapid determination of adenosine monophosphate. Anal Chim Acta 2022; 1221:340140. [DOI: 10.1016/j.aca.2022.340140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/28/2022]
|
|
3 |
2 |
9
|
Belik A, Goryachev N, Kotelnikov A, Kraevaya O, Kukushkin V, Mikhaylov P, Romanova V, Rybkin A, Troshin P. Application of SERS and SEF Spectroscopy for Detection of Water-Soluble Fullerene-Chlorin Dyads and Chlorin e6. ACTA ACUST UNITED AC 2018. [DOI: 10.31857/s086956520001376-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
7 |
1 |
10
|
Subekin A, Alieva R, Kukushkin V, Oleynikov I, Zavyalova E. Rapid SERS Detection of Botulinum Neurotoxin Type A. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2531. [PMID: 37764560 PMCID: PMC10535226 DOI: 10.3390/nano13182531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for decoding of 2-5-component mixes of analytes. Low concentrations of analytes and complex biological media are usually non-decodable with SERS. Recognition molecules, such as antibodies and aptamers, provide an opportunity for a specific binding of ultra-low contents of analyte dissolved in complex biological media. Different approaches have been proposed to provide changes in SERS intensity of an external label upon binding of ultra-low contents of the analytes. In this paper, we propose a SERS-based sensor for the rapid and sensitive detection of botulinum toxin type A. The silver nanoisland SERS substrate was functionalized using an aptamer conjugated with a Raman label. The binding of the target affects the orientation of the label, providing changes in an analytical signal. This trick allowed detecting botulinum toxin type A in a one-stage manner without additional staining with a monotonous dose dependence and a limit of detection of 2.4 ng/mL. The proposed sensor architecture is consistent with the multiarray detection systems for multiplex analyses.
Collapse
|
research-article |
2 |
1 |
11
|
Tregub T, Lytvynenko M, Kukushkin V, Chebotarova S, Oliynyk N, Gulbs O, Nazaryan R. PHARMACOLOGY OF POST-TRAUMATIC STRESS DISORDER. GEORGIAN MEDICAL NEWS 2023:122-124. [PMID: 37991966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The aim of this study was to evaluate current approaches to the pharmacotherapy of posttraumatic stress disorder. An information search was carried out in the databases PubMed, Ovid, EMBASE by keywords: "posttraumatic stress disorder", "treatment", and "medications". Search depth 2012-2022 years. From the general data (4877 articles) there were selected 14 articles with the highest degree of relevance. A content analysis of selected articles was carried out with the formation of recommendations for the use of pharmacotherapy in posttraumatic stress disorder. Currently, there are no unified approaches to the pharmacotherapy of posttraumatic stress disorder. Antidepressants (SSRI SNRIs) are primarily considered as first-line drugs, but only sertraline, paroxetine, and fluoxetine are approved by the FDA. But these drugs have a fairly wide range of side effects, including suicidal thoughts. The use of benzodiazepines should be limited as they increase the risk of developing posttraumatic stress disorder. Vortioxetine becomes a very promising option. The most significant benefits of vortioxetine are the significant positive effects of vortioxetine on attention, memory, and executive function. There is some evidence for the use of alpha-1 adrenoceptor antagonists and alpha-2 adrenoceptor agonists in therapy. In insomnia the use of prazosin and trazodone is recommended. Pharmacotherapy of posttraumatic stress disorder requires administration of medications with multimodal action. Currently, there are no unified approaches to the pharmacotherapy of posttraumatic stress disorder. Further randomized clinical trials are necessary for developing effective treatment of posttraumatic stress disorder.
Collapse
|
|
2 |
|
12
|
Zhdanov G, Gambaryan A, Akhmetova A, Yaminsky I, Kukushkin V, Zavyalova E. Nanoisland SERS-Substrates for Specific Detection and Quantification of Influenza A Virus. BIOSENSORS 2023; 14:20. [PMID: 38248397 PMCID: PMC10813417 DOI: 10.3390/bios14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based aptasensors for virus determination have attracted a lot of interest recently. This approach provides both specificity due to an aptamer component and a low limit of detection due to signal enhancement by a SERS substrate. The most successful SERS-based aptasensors have a limit of detection (LoD) of 10-100 viral particles per mL (VP/mL) that is advantageous compared to polymerase chain reactions. These characteristics of the sensors require the use of complex substrates. Previously, we described silver nanoisland SERS-substrate with a reproducible and uniform surface, demonstrating high potency for industrial production and a suboptimal LoD of 4 × 105 VP/mL of influenza A virus. Here we describe a study of the sensor morphology, revealing an unexpected mechanism of signal enhancement through the distortion of the nanoisland layer. A novel modification of the aptasensor was proposed with chromium-enhanced adhesion of silver nanoparticles to the surface as well as elimination of the buffer-dependent distortion-triggering steps. As a result, the LoD of the Influenza A virus was decreased to 190 VP/mL, placing the nanoisland SERS-based aptasensors in the rank of the most powerful sensors for viral detection.
Collapse
|
research-article |
2 |
|
13
|
Mushenkov V, Zhigalova K, Denisov P, Gordeev A, Lukyanov D, Kukushkin V, Priputnevich T, Zavyalova E. Rapid Raman spectroscopy-based test for antimicrobial resistance. Open Biol 2025; 15:240258. [PMID: 39999876 PMCID: PMC11858750 DOI: 10.1098/rsob.240258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Antimicrobial resistance (AMR) is one of the top global health threats. In 2019, AMR was associated with 4.95 million deaths, of which 1.97 million were caused by drug-resistant infections directly. The main subset of AMR is antibiotic resistance, that is, the resistance of bacteria to antibiotic treatment. Traditional and most commonly used antibiotic susceptibility tests are based on the detection of bacterial growth and its inhibition in the presence of an antimicrobial. These tests typically take over 1-2 days to perform, so empirical therapy schemes are often administered before proper testing. Rapid tests for AMR are necessary to optimize the treatment of bacterial infection. Here, we combine the MTT test with Raman spectroscopy to provide a 1.5 h long test for minimal inhibitory concentration determination. Several Escherichia coli and Klebsiella pneumoniae strains were tested with three types of antibiotics, including ampicillin from penicillin family, kanamycin from aminoglycoside family and levofloxacin from fluoroquinolone family. The test provided the same minimal inhibitory concentrations as traditional Etest confirming its robustness.
Collapse
|
research-article |
1 |
|
14
|
Aryayev N, Kukushkin V, Nepomyashcha V. The significance of ante- and perinatal periods for formation of risk of sudden infant death syndrome. Ginekol Pol 2001; 72:931-9. [PMID: 11883247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The results of the research, which are carried out according to two international programs on studying and prevention of the sudden infant death syndrome (SIDS), are submitted in the article. The features of ante- and perinatal periods, characteristics of obstetric history of the mothers of deceased babies are analyzed, the relative risk of SIDS development is estimated at the influence of a complex of factors. High parity, young age of mother at the time of delivery, poor antenatal care, preterm delivery, intrauterine fetal growth retardation, fast delivery, alcohol and coffee abuse by a mother, smoking during pregnancy, early change of the child's feeding from breast to bottle are referred to the most significant risk factors of SIDS stipulated by the unfavorable course of pregnancy and delivery. The practical recommendations directed on elimination of the risk factors of SIDS in ante- and perinatal periods are offered.
Collapse
|
Multicenter Study |
24 |
|
15
|
Lövqvist K, Kukushkin V, Oskarsson Å. cis/ trans- influence in platinum(II) complexes. Crystal structure of cis-[Pt(dimethylsulfoxide)(dimethylsulfide)Cl 2]. Acta Crystallogr A 1993. [DOI: 10.1107/s0108767378093745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
32 |
|