1
|
Collin RWJ, van den Born LI, Klevering BJ, de Castro-Miró M, Littink KW, Arimadyo K, Azam M, Yazar V, Zonneveld MN, Paun CC, Siemiatkowska AM, Strom TM, Hehir-Kwa JY, Kroes HY, de Faber JTHN, van Schooneveld MJ, Heckenlively JR, Hoyng CB, den Hollander AI, Cremers FPM. High-resolution homozygosity mapping is a powerful tool to detect novel mutations causative of autosomal recessive RP in the Dutch population. Invest Ophthalmol Vis Sci 2011; 52:2227-39. [PMID: 21217109 DOI: 10.1167/iovs.10-6185] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the genetic defects underlying autosomal recessive retinitis pigmentosa (arRP) in the Dutch population and in a subset of patients originating from other countries. The hypothesis was that, because there has been little migration over the past centuries in certain areas of The Netherlands, a significant fraction of Dutch arRP patients carry their genetic defect in the homozygous state. METHODS High-resolution genome-wide SNP genotyping on SNP arrays and subsequent homozygosity mapping were performed in a large cohort of 186 mainly nonconsanguineous arRP families living in The Netherlands. Candidate genes residing in homozygous regions were sequenced. RESULTS In ~94% of the affected individuals, large homozygous sequences were identified in their genome. In 42 probands, at least one of these homozygous regions contained one of the 26 known arRP genes. Sequence analysis of the corresponding genes in each of these patients revealed 21 mutations and two possible pathogenic changes, 14 of which were novel. All mutations were identified in only a single family, illustrating the genetic diversity within the Dutch population. CONCLUSIONS This report demonstrates that homozygosity mapping is a powerful tool for identifying the genetic defect underlying genetically heterogeneous recessive disorders like RP, even in populations with little consanguinity.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
53 |
2
|
Alpdundar Bulut E, Bayyurt Kocabas B, Yazar V, Aykut G, Guler U, Salih B, Surucu Yilmaz N, Ayanoglu IC, Polat MM, Akcali KC, Gursel I, Gursel M. Human Gut Commensal Membrane Vesicles Modulate Inflammation by Generating M2-like Macrophages and Myeloid-Derived Suppressor Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2707-2718. [PMID: 33028617 DOI: 10.4049/jimmunol.2000731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Immunomodulatory commensal bacteria modify host immunity through delivery of regulatory microbial-derived products to host cells. Extracellular membrane vesicles (MVs) secreted from symbiont commensals represent one such transport mechanism. How MVs exert their anti-inflammatory effects or whether their tolerance-inducing potential can be used for therapeutic purposes remains poorly defined. In this study, we show that MVs isolated from the human lactic acid commensal bacteria Pediococcus pentosaceus suppressed Ag-specific humoral and cellular responses. MV treatment of bone marrow-derived macrophages and bone marrow progenitors promoted M2-like macrophage polarization and myeloid-derived suppressor cell differentiation, respectively, most likely in a TLR2-dependent manner. Consistent with their immunomodulatory activity, MV-differentiated cells upregulated expression of IL-10, arginase-1, and PD-L1 and suppressed the proliferation of activated T cells. MVs' anti-inflammatory effects were further tested in acute inflammation models in mice. In carbon tetrachloride-induced fibrosis and zymosan-induced peritonitis models, MVs ameliorated inflammation. In the dextran sodium sulfate-induced acute colitis model, systemic treatment with MVs prevented colon shortening and loss of crypt architecture. In an excisional wound healing model, i.p. MV administration accelerated wound closure through recruitment of PD-L1-expressing myeloid cells to the wound site. Collectively, these results indicate that P. pentosaceus-derived MVs hold promise as therapeutic agents in management/treatment of inflammatory conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
29 |
3
|
Astuti GDN, Sun V, Bauwens M, Zobor D, Leroy BP, Omar A, Jurklies B, Lopez I, Ren H, Yazar V, Hamel C, Kellner U, Wissinger B, Kohl S, De Baere E, Collin RWJ, Koenekoop RK. Novel insights into the molecular pathogenesis of CYP4V2-associated Bietti's retinal dystrophy. Mol Genet Genomic Med 2014; 3:14-29. [PMID: 25629076 PMCID: PMC4299712 DOI: 10.1002/mgg3.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/24/2014] [Accepted: 07/31/2014] [Indexed: 11/09/2022] Open
Abstract
Bietti's crystalline dystrophy (BCD) is a rare, autosomal recessive retinal degenerative disease associated with mutations in CYP4V2. In this study, we describe the genetic and clinical findings in 19 unrelated BCD patients recruited from five international retinal dystrophy clinics. Patients underwent ophthalmic examinations and were screened for CYP4V2 mutations by Sanger sequencing and quantitative polymerase chain reaction (qPCR) copy number variation screening. Eight CYP4V2 mutations were found in 10/19 patients, including three patients in whom only monoallelic mutations were detected. Four novel mutations were identified: c.604G>A; p.(Glu202Lys), c.242C>G; p.(Thr81Arg), c.604+4A>G; p.(?), and c.1249dup; p.(Thr417Asnfs*2). In addition, we identified a heterozygous paternally inherited genomic deletion of at least 3.8 Mb, encompassing the complete CYP4V2 gene and several other genes, which is novel. Clinically, patients demonstrated phenotypic variability, predominantly showing choroidal sclerosis, attenuated vessels, and crystalline deposits of varying degrees of severity. To our knowledge, our study reports the first heterozygous CYP4V2 deletion and hence a novel mutational mechanism underlying BCD. Our results emphasize the importance of copy number screening in BCD. Finally, the identification of CYP4V2-negative patients with indistinguishable phenotypes from CYP4V2-positive patients might suggest the presence of mutations outside the coding regions of CYP4V2, or locus heterogeneity, which is unreported so far.
Collapse
|
Journal Article |
11 |
25 |
4
|
Camões SP, Bulut O, Yazar V, Gaspar M, Simões S, Ferreira R, Vitorino R, Santos JM, Gursel I, Miranda JP. 3D-MSCs A151 ODN-Loaded Exosomes Are Immunomodulatory And Reveal A Proteomic Cargo That Sustains Wound Resolution. J Adv Res 2022; 41:113-128. [PMID: 36328741 PMCID: PMC9637564 DOI: 10.1016/j.jare.2022.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
The MSC-derived secretome from 3D cultures enhances fibroblast and keratinocyte mitogenic and motogenic capacity in vitro, respectively. The cargo of the 3D MSC-derived exosomes (Exo3D) reveals wound healing-related proteins and promotes wound resolution in a wound healing in vivo model. Loading MSC-derived exosomes with A151 ODN further reduces the systemic levels of IL-6 and TNF-α pro-inflammatory cytokines at the late stage of wound healing in vivo, crucial for a full regenerated tissue. A151-loaded Exo3D have a great potential as a noncellular off-the-shelf therapy for non-healing wound treatment. Introduction Non-healing wounds remain a major burden due to the lack of effective treatments. Mesenchymal stem cell-derived exosomes (MSC-Exo) have emerged as therapeutic options given their pro-regenerative and immunomodulatory features. Still, little is known on the exact mechanisms mediated by MSC-Exo. Importantly, modulation of their efficacy through 3D-physiologic cultures together with loading strategies continues underexplored. Objectives To uncover the MSC-Exo-mediated mechanism via proteomic analyses, and to use 3D-culture and loading technologies to expand MSC-Exo efficacy for cutaneous wound healing. Methods MSC-Exo were produced in either 3D or 2D cultures (Exo3D/Exo2D) and loaded with an exogenous immunosuppressive oligodeoxynucleotide (A151 ODN). Both, loaded and naïve exosomes were characterised regarding size, morphology and the presence of specific protein markers; while IPA analyses enabled to correlate their protein content with the effects observed in vitro and in vivo. The Exo3D/Exo2D regenerative potential was evaluated in vitro by assessing keratinocyte and fibroblast mitogenicity, motogenicity, and cytokine secretion as well as using an in vivo wound splinting model. Accordingly, the modulation of inflammatory and immune responses by A151-loaded Exo3D/Exo2D was also assessed. Results Exo3D stimulated mitogenically and motogenically keratinocytes and fibroblasts in vitro, with upregulation of IL-1α and VEGF-α or increased secretion of TGF-β, TNF-α and IL-10. In vivo, Exo3D reduced the granulation tissue area and promoted complete re-epithelization of the wound. These observations were sustained by the proteomic profiling of the Exo3D cargo that identified wound healing-related proteins, such as TGF-β, ITGA1-3/5, IL-6, CDC151, S100A10 and Wnt5α. Moreover, when loaded with A151 ODN, Exo3D differentially mediated wound healing-related trophic factors reducing the systemic levels of IL-6 and TNF-α at the late stage of wound healing in vivo. Conclusion Our results support the potential of A151-loaded Exo3D for the treatment of chronic wounds by promoting skin regeneration, while modulating the systemic levels of the pro-inflammatory cytokines.
Collapse
|
|
3 |
19 |
5
|
Yazar V, Kang SU, Ha S, Dawson VL, Dawson TM. Integrative genome-wide analysis of dopaminergic neuron-specific PARIS expression in Drosophila dissects recognition of multiple PPAR-γ associated gene regulation. Sci Rep 2021; 11:21500. [PMID: 34728675 PMCID: PMC8563805 DOI: 10.1038/s41598-021-00858-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
The transcriptional repressor called parkin interacting substrate (PARIS; ZNF746) was initially identified as a novel co-substrate of parkin and PINK1 that leads to Parkinson’s disease (PD) by disrupting mitochondrial biogenesis through peroxisome proliferator-activated receptor gamma (PPARγ) coactivator -1α (PGC-1α) suppression. Since its initial discovery, growing evidence has linked PARIS to defective mitochondrial biogenesis observed in PD pathogenesis. Yet, dopaminergic (DA) neuron-specific mechanistic underpinnings and genome-wide PARIS binding landscape has not been explored. We employed conditional translating ribosome affinity purification (TRAP) followed by RNA sequencing (TRAP-seq) for transcriptome profiling of DA neurons in transgenic Drosophila lines expressing human PARIS wild type (WT) or mutant (C571A). We also generated genome-wide maps of PARIS occupancy using ChIP-seq in human SH-SY5Y cells. The results demonstrated that PPARγ functions as a master regulator of PARIS-induced molecular changes at the transcriptome level, confirming that PARIS acts primarily on PGC-1α to lead to neurodegeneration in PD. Moreover, we identified that PARIS actively modulates expression of PPARγ target genes by physically binding to the promoter regions. Together, our work revealed how PARIS drives adverse effects on modulation of PPAR-γ associated gene clusters in DA neurons.
Collapse
|
|
4 |
7 |
6
|
Yazar V, Kilic G, Bulut O, Canavar Yildirim T, Yagci FC, Aykut G, Klinman DM, Gursel M, Gursel I. A suppressive oligodeoxynucleotide expressing TTAGGG motifs modulates cellular energetics through the mTOR signaling pathway. Int Immunol 2020; 32:39-48. [PMID: 31633763 DOI: 10.1093/intimm/dxz059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023] Open
Abstract
Immune-mediated inflammation must be down-regulated to facilitate tissue remodeling during homeostatic restoration of an inflammatory response. Uncontrolled or over-exuberant immune activation can cause autoimmune diseases, as well as tissue destruction. A151, the archetypal example of a chemically synthesized suppressive oligodeoxynucleotide (ODN) based on repetitive telomere-derived TTAGGG sequences, was shown to successfully down-regulate a variety of immune responses. However, the degree, duration and breadth of A151-induced transcriptome alterations remain elusive. Here, we performed a comprehensive microarray analysis in combination with Ingenuity Pathway Analysis (IPA) using murine splenocytes to investigate the underlying mechanism of A151-dependent immune suppression. Our results revealed that A151 significantly down-regulates critical mammalian target of rapamycin (mTOR) activators (Pi3kcd, Pdpk1 and Rheb), elements downstream of mTOR signaling (Rps6ka1, Myc, Stat3 and Slc2a1), an important component of the mTORC2 protein complex (Rictor) and Mtor itself. The effects of A151 on mTOR signaling were dose- and time-dependent. Moreover, flow cytometry and immunoblotting analyses demonstrated that A151 is able to reverse mTOR phosphorylation comparably to the well-known mTOR inhibitor rapamycin. Furthermore, Seahorse metabolic assays showed an A151 ODN-induced decrease in both oxygen consumption and glycolysis implying that a metabolically inert state in macrophages could be triggered by A151 treatment. Overall, our findings suggested novel insights into the mechanism by which the immune system is metabolically modulated by A151 ODN.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
7
|
Serras AS, Camões SP, Antunes B, Costa VM, Dionísio F, Yazar V, Vitorino R, Remião F, Castro M, Oliveira NG, Miranda JP. The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells. Int J Mol Sci 2021; 22:ijms222313072. [PMID: 34884877 PMCID: PMC8657836 DOI: 10.3390/ijms222313072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (Dox) is one of the most widely used treatments for breast cancer, although limited by the well-documented cardiotoxicity and other off-target effects. Mesenchymal stem cell (MSC) secretome has shown immunomodulatory and regenerative properties, further potentiated under 3D conditions. This work aimed to uncover the effect of the MSC-derived secretome from 3D (CM3D) or 2D (CM2D) cultures, in human malignant breast cells (MDA-MB-231), non-tumor breast epithelial cells (MCF10A) and differentiated AC16 cardiomyocytes, co-treated with Dox. A comprehensive proteomic analysis of CM3D/CM2D was also performed to unravel the underlying mechanism. CM3D/CM2D co-incubation with Dox revealed no significant differences in MDA-MB-231 viability when compared to Dox alone, whereas MCF10A and AC16 viability was consistently improved in Dox+CM3D-treated cells. Moreover, neither CM2D nor CM3D affected Dox anti-migratory and anti-invasive effects in MDA-MB-231. Notably, Ge-LC-MS/MS proteomic analysis revealed that CM3D displayed protective features that might be linked to the regulation of cell proliferation (CAPN1, CST1, LAMC2, RANBP3), migration (CCN3, MMP8, PDCD5), invasion (TIMP1/2), oxidative stress (COX6B1, AIFM1, CD9, GSR) and inflammation (CCN3, ANXA5, CDH13, GDF15). Overall, CM3D decreased Dox-induced cytotoxicity in non-tumor cells, without compromising Dox chemotherapeutic profile in malignant cells, suggesting its potential use as a chemotherapy adjuvant to reduce off-target side effects.
Collapse
|
|
4 |
6 |
8
|
Eroglu FK, Yazar V, Guler U, Yıldırım M, Yildirim T, Gungor T, Celikkaya E, Karakaya D, Turay N, Ciftci Dede E, Korkusuz P, Salih B, Bulbul M, Gursel I. Circulating extracellular vesicles of patients with steroid-sensitive nephrotic syndrome have higher RAC1 and induce recapitulation of nephrotic syndrome phenotype in podocytes. Am J Physiol Renal Physiol 2021; 321:F659-F673. [PMID: 34569252 DOI: 10.1152/ajprenal.00097.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since previous research suggests a role of a circulating factor in the pathogenesis of steroid-sensitive nephrotic syndrome (NS), we speculated that circulating plasma extracellular vesicles (EVs) are a candidate source of such a soluble mediator. Here, we aimed to characterize and try to delineate the effects of these EVs in vitro. Plasma EVs from 20 children with steroid-sensitive NS in relapse and remission, 10 healthy controls, and 6 disease controls were obtained by serial ultracentrifugation. Characterization of these EVs was performed by electron microscopy, flow cytometry, and Western blot analysis. Major proteins from plasma EVs were identified via mass spectrometry. Gene Ontology classification analysis and Ingenuity Pathway Analysis were performed on selectively expressed EV proteins during relapse. Immortalized human podocyte culture was used to detect the effects of EVs on podocytes. The protein content and particle number of plasma EVs were significantly increased during NS relapse. Relapse NS EVs selectively expressed proteins that involved actin cytoskeleton rearrangement. Among these, the level of RAC-GTP was significantly increased in relapse EVs compared with remission and disease control EVs. Relapse EVs were efficiently internalized by podocytes and induced significantly enhanced motility and albumin permeability. Moreover, relapse EVs induced significantly higher levels of RAC-GTP and phospho-p38 and decreased the levels of synaptopodin in podocytes. Circulating relapse EVs are biologically active molecules that carry active RAC1 as cargo and induce recapitulation of the NS phenotype in podocytes in vitro.NEW & NOTEWORTHY Up to now, the role of extracellular vesicles (EVs) in the pathogenesis of steroid-sensitive nephrotic syndrome (NS) has not been studied. Here, we found that relapse NS EVs contain significantly increased active RAC1, induce enhanced podocyte motility, and increase expression of RAC-GTP and phospho-p38 expression in vitro. These results suggest that plasma EVs are biologically active molecules in the pathogenesis of NS.
Collapse
|
|
4 |
2 |
9
|
Yazar V, Ruf WP, Knehr A, Günther K, Ammerpohl O, Danzer KM, Ludolph AC. DNA Methylation Analysis in Monozygotic Twins Discordant for ALS in Blood Cells. Epigenet Insights 2023; 16:25168657231172159. [PMID: 37152709 PMCID: PMC10161312 DOI: 10.1177/25168657231172159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023] Open
Abstract
ALS is a fatal motor neuron disease that displays a broad variety of phenotypes ranging from early fatal courses to slowly progressing and rather benign courses. Such divergence can also be seen in genetic ALS cases with varying phenotypes bearing specific mutations, suggesting epigenetic mechanisms like DNA methylation act as disease modifiers. However, the epigenotype dictated by, in addition to other mechanisms, DNA methylation is also strongly influenced by the individual's genotype. Hence, we performed a DNA methylation study using EPIC arrays on 7 monozygotic (MZ) twin pairs discordant for ALS in whole blood, which serves as an ideal model for eliminating the effects of the genetic-epigenetic interplay to a large extent. We found one CpG site showing intra-pair hypermethylation in the affected co-twins, which maps to the Glutamate Ionotropic Receptor Kainate Type Subunit 1 gene (GRIK1). Additionally, we found 4 DMPs which were subsequently confirmed using 2 different statistical approaches. Differentially methylated regions or blocks could not be detected within the scope of this work. In conclusion, we revealed that despite a low sample size, monozygotic twin studies discordant for the disease can bring new insights into epigenetic processes in ALS, pointing to new target loci for further investigations.
Collapse
|
research-article |
2 |
1 |
10
|
Yazar V, Dawson VL, Dawson TM, Kang SU. DNA Methylation Signature of Aging: Potential Impact on the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:145-164. [PMID: 36710687 PMCID: PMC10041453 DOI: 10.3233/jpd-223517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of gene expression by epigenetic modifications means lasting and heritable changes in the function of genes without alterations in the DNA sequence. Of all epigenetic mechanisms identified thus far, DNA methylation has been of particular interest in both aging and age-related disease research over the last decade given the consistency of site-specific DNA methylation changes during aging that can predict future health and lifespan. An increasing line of evidence has implied the dynamic nature of DNA (de)methylation events that occur throughout the lifespan has a role in the pathophysiology of aging and age-associated neurodegenerative conditions, including Parkinson's disease (PD). In this regard, PD methylome shows, to some extent, similar genome-wide changes observed in the methylome of healthy individuals of matching age. In this review, we start by providing a brief overview of studies outlining global patterns of DNA methylation, then its mechanisms and regulation, within the context of aging and PD. Considering diverging lines of evidence from different experimental and animal models of neurodegeneration and how they combine to shape our current understanding of tissue-specific changes in DNA methylome in health and disease, we report a high-level comparison of the genomic methylation landscapes of brain, with an emphasis on dopaminergic neurons in PD and in natural aging. We believe this will be particularly useful for systematically dissecting overlapping genome-wide alterations in DNA methylation during PD and healthy aging, and for improving our knowledge of PD-specific changes in methylation patterns independent of aging process.
Collapse
|
Review |
2 |
|
11
|
Kahraman T, Akpinar GG, Yildirim M, Larssen P, Bayyurt-Kocabas B, Yagci FC, Gursel A, Horuluoglu BH, Yazar V, Ayanoglu IC, Yildirim TC, Evcili I, Yilmaz IC, Eldh M, Gabrielsson S, Guler U, Salih B, Gursel M, Gursel I. Enhancing preventive and therapeutic cancer vaccine efficacy through biotherapeutic ligand-associated extracellular vesicles. J Control Release 2024; 376:618-631. [PMID: 39419449 DOI: 10.1016/j.jconrel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs), secreted by almost all living cells, have gained significant attention for their role in intercellular communication and their potential as versatile carriers for biotherapeutics. However, the clinical translation of EV-based therapies faces significant challenges, primarily due to the lack of efficient methods for loading biotherapeutic agents into EVs. This study introduces a simple, reproducible strategy for the simultaneous incorporation of various biotherapeutics within EVs. The process is gentle and preserves the essential physicochemical and biological characteristics of EVs, thereby protecting labile ligands from premature degradation and elimination. The binding and uptake efficiency of EVs by target cells reached approximately 97 % within 24 h of incubation. Administration of EVs loaded with oligodeoxynucleotides (ODN) resulted in a 4-fold increase in IFNγ+ CD4+ T cells and a 5-fold increase in IFNγ+ CD8+ T cells in the spleens and lymph nodes. Additionally, the co-administration of EVs with ODN and ovalbumin (OVA) induced elevated Th1-biased antibody responses and antigen-specific cytotoxic T-cell responses, providing long-lasting complete protection in 60 % of mice against T-cell thymoma challenge. Furthermore, EVs associated with three different ligands (OVA, CpG-ODN, and α-GalCer) effectively regressed established murine melanoma and significantly improved survival rates in mice. This study presents a powerful and promising approach to overcoming the limitations of EV-based cancer vaccines, advancing the development of effective cancer immunotherapies. SUMMARY: Immunization with EVs that are co-associated with antigen and biotherapeutic cargo through a lyophilization-based technique elicits potent anti-cancer immunity.
Collapse
|
|
1 |
|
12
|
Ayanoğlu İC, İpekoğlu EM, Yazar V, Yılmaz İC, Gürsel İ, Gürsel M. Verem Aşısı Uygulayan Ülkelerin Bireyleri SARS-CoV-2 Virüsünün Yol Açtığı Enfeksiyona Karşı Daha Dirençli Olabilir mi? TURKISH JOURNAL OF IMMUNOLOGY 2020. [DOI: 10.25002/tji.2020.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
5 |
|
13
|
Yazar V, Kühlwein JK, Knehr A, Grozdanov V, Ekici AB, Ludolph AC, Danzer KM. Impaired ATF3 signaling involves SNAP25 in SOD1 mutant ALS patients. Sci Rep 2023; 13:12019. [PMID: 37491426 PMCID: PMC10368635 DOI: 10.1038/s41598-023-38684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Epigenetic remodeling is emerging as a critical process for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Genetics alone fails to explain the etiology of ALS, the investigation of the epigenome might therefore provide novel insights into the molecular mechanisms of the disease. In this study, we interrogated the epigenetic landscape in peripheral blood mononuclear cells (PBMCs) of familial ALS (fALS) patients with either chromosome 9 open reading frame 72 (C9orf72) or superoxide dismutase 1 (SOD1) mutation and aimed to identify key epigenetic footprints of the disease. To this end, we used an integrative approach that combines chromatin immunoprecipitation targeting H3K27me3 (ChIP-Seq) with the matching gene expression data to gain new insights into the likely impact of blood-specific chromatin remodeling on ALS-related molecular mechanisms. We demonstrated that one of the hub molecules that modulates changes in PBMC transcriptome in SOD1-mutant ALS patients is ATF3, which has been previously reported in an SOD1G93A mouse model. We also identified potential suppression of SNAP25, with impaired ATF3 signaling in SOD1-mutant ALS blood. Together, our study shed light on the mechanistic underpinnings of SOD1 mutations in ALS.
Collapse
|
|
2 |
|
14
|
Serras A, Camões S, Antunes B, Costa V, Dionísio F, Yazar V, Vitorino R, Remião F, Castro M, Oliveira N, Miranda J. The secretome of mesenchymal stem cells ameliorates the cytotoxic effects of doxorubicin in non-tumoral cells. Toxicol Lett 2021. [DOI: 10.1016/s0378-4274(21)00547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
4 |
|
15
|
Canavar Yildirim T, Ozsurekci Y, Yildirim M, Evcili I, Yazar V, Aykac K, Guler U, Salih B, Gursel M, Gursel I. Immunogenicity and protective capacity of a CpG ODN adjuvanted alum adsorbed bivalent meningococcal outer membrane vesicle vaccine. Int Immunol 2024; 36:393-404. [PMID: 38536954 DOI: 10.1093/intimm/dxae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 07/14/2024] Open
Abstract
Invasive meningococcal disease (IMD) is caused by Neisseria meningitidis, with the main serogroups responsible for the disease being A, B, C, W, X, and Y. To date, several vaccines targeting N. meningitidis have been developed albeit with a short-lived protection. Given that MenW and MenB are the most common causes of IMD in Europe, Turkey, and the Middle East, we aimed to develop an outer membrane vesicle (OMV) based bivalent vaccine as the heterologous antigen source. Herein, we compared the immunogenicity, and breadth of serum bactericidal activity (SBA) assay-based protective coverage of OMV vaccine to the X serotype with existing commercial meningococcal conjugate and polysaccharide (PS) vaccines in a murine model. BALB/c mice were immunized with preclinical batches of the W + B OMV vaccine, either adjuvanted with Alum, CpG ODN, or their combinations, and compared with a MenACYW conjugate vaccine (NimenrixTM, Pfizer), and a MenB OMV-based vaccine (Bexsero®, GSK), The immune responses were assessed through enzyme-linked immunosorbent assay (ELISA) and SBA assay. Antibody responses and SBA titers were significantly higher in the W + B OMV vaccine when adjuvanted with Alum or CpG ODN, as compared to the control groups. Moreover, the SBA titers were not only significantly higher than those achieved with available conjugated ACYW vaccines but also on par with the 4CMenB vaccines. In conclusion, the W + B OMV vaccine demonstrated the capacity to elicit robust antibody responses, surpassing or matching the levels induced by licensed meningococcal vaccines. Consequently, the W + B OMV vaccine could potentially serve as a viable alternative or supplement to existing meningococcal vaccines.
Collapse
|
|
1 |
|
16
|
Yazar V, Yilmaz IC, Bulbul A, Klinman DM, Gursel I. Gene network landscape of mouse splenocytes reveals integrin complex as the A151 ODN-responsive hub molecule in the immune transcriptome. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:553-565. [PMID: 36895952 PMCID: PMC9989320 DOI: 10.1016/j.omtn.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Homeostatic restoration of an inflammatory response requires quenching of the immune system after pathogen threats vanish. A continued assault orchestrated by host defense results in tissue destruction or autoimmunity. A151 is the epitome of synthetic oligodeoxynucleotides (ODNs) that curb the immune response by a subset of white corpuscles through repetitive telomere-derived TTAGGG sequences. Currently, the genuine effect of A151 on the immune cell transcriptome remains unknown. Here, we leveraged an integrative approach where weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and gene set enrichment analysis (GSEA) of our in-house microarray datasets aided our understanding of how A151 ODN suppresses the immune response in mouse splenocytes. Our bioinformatics results, together with experimental validations, indicated that A151 ODN acts on components of integrin complexes, Itgam and Itga6, to interfere with immune cell adhesion and thereby suppresses the immune response in mice. Moreover, independent lines of evidence in this work converged on the observation that cell adhesion by integrin complexes serves as a focal point for cellular response to A151 ODN treatment in immune cells. Taken together, the outcome of this study sheds light on the molecular basis of immune suppression by a clinically useful DNA-based therapeutic agent.
Collapse
|
research-article |
2 |
|