1
|
Shylesh S, Schünemann V, Thiel WR. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed Engl 2010; 49:3428-59. [PMID: 20419718 DOI: 10.1002/anie.200905684] [Citation(s) in RCA: 951] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
15 |
951 |
2
|
Jagadeesh RV, Surkus AE, Junge H, Pohl MM, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013; 342:1073-6. [PMID: 24288327 DOI: 10.1126/science.1242005] [Citation(s) in RCA: 641] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Production of anilines--key intermediates for the fine chemical, agrochemical, and pharmaceutical industries--relies on precious metal catalysts that selectively hydrogenate aryl nitro groups in the presence of other easily reducible functionalities. Herein, we report convenient and stable iron oxide (Fe2O3)-based catalysts as a more earth-abundant alternative for this transformation. Pyrolysis of iron-phenanthroline complexes on carbon furnishes a unique structure in which the active Fe2O3 particles are surrounded by a nitrogen-doped carbon layer. Highly selective hydrogenation of numerous structurally diverse nitroarenes (more than 80 examples) proceeded in good to excellent yield under industrially viable conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
641 |
3
|
Müller A, Sarkar S, Shah SQN, Bögge H, Schmidtmann M, Sarkar S, Kögerler P, Hauptfleisch B, Trautwein AX, Schünemann V. Archimedean Synthesis and Magic Numbers: “Sizing” Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3773(19991102)38:21<3238::aid-anie3238>3.0.co;2-6] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
26 |
342 |
4
|
Zecca L, Gallorini M, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 2001; 76:1766-73. [PMID: 11259494 DOI: 10.1046/j.1471-4159.2001.00186.x] [Citation(s) in RCA: 291] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Information on the molecular distribution and ageing trend of brain iron in post-mortem material from normal subjects is scarce. Because it is known that neuromelanin and ferritin form stable complexes with iron(III), in this study we measured the concentration of iron, ferritin and neuromelanin in substantia nigra from normal subjects, aged between 1 and 90 years, dissected post mortem. Iron levels in substantia nigra were 20 ng/mg in the first year of life, had increased to 200 ng/mg by the fourth decade and remained stable until 90 years of age. The H-ferritin concentration was also very low (29 ng/mg) during the first year of life but increased rapidly to values of approximately 200 ng/mg at 20 years of age, which then remained constant until the eighth decade of life. L-Ferritin also showed an increasing trend during life although the concentrations were approximately 50% less than that of H-ferritin at each age point. Neuromelanin was not detectable during the first year, increased to approximately 1000 ng/mg in the second decade and then increased continuously to 3500 ng/mg in the 80th year. A Mössbauer study revealed that the high-spin trivalent iron is probably arranged in a ferritin-like iron--oxyhydroxide cluster form in the substantia nigra. Based on this data and on the low H- and L-ferritin content in neurones it is concluded that neuromelanin is the major iron storage in substantia nigra neurones in normal individuals.
Collapse
|
|
24 |
291 |
5
|
Jahn MR, Andreasen HB, Fütterer S, Nawroth T, Schünemann V, Kolb U, Hofmeister W, Muñoz M, Bock K, Meldal M, Langguth P. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm 2011; 78:480-91. [PMID: 21439379 DOI: 10.1016/j.ejpb.2011.03.016] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/03/2011] [Accepted: 03/15/2011] [Indexed: 12/14/2022]
Abstract
The treatment of iron deficiency anemia with polynuclear iron formulations is an established therapy in patients with chronic kidney disease but also in other disease areas like gastroenterology, cardiology, oncology, pre/post operatively and obstetrics' and gynecology. Parenteral iron formulations represent colloidal systems in the lower nanometer size range which have traditionally been shown to consist of an iron core surrounded by a carbohydrate shell. In this publication, we for the first time describe the novel matrix structure of iron isomaltoside 1000 which differs from the traditional picture of an iron core surrounded by a carbohydrate. Despite some structural similarities between the different iron formulations, the products differ significantly in their physicochemical properties such as particle size, zeta potential, free and labile iron content, and release of iron in serum. This study compares the physiochemical properties of iron isomaltoside 1000 (Monofer) with the currently available intravenous iron preparations and relates them to their biopharmaceutical properties and their approved clinical applications. The investigated products encompass low molecular weight iron dextran (CosmoFer), sodium ferric gluconate (Ferrlecit), iron sucrose (Venofer), iron carboxymaltose (Ferinject/Injectafer), and ferumoxytol (Feraheme) which are compared to iron isomaltoside 1000 (Monofer). It is shown that significant and clinically relevant differences exist between sodium ferric gluconate and iron sucrose as labile iron formulations and iron dextran, iron carboxymaltose, ferumoxytol, and iron isomaltoside 1000 as stable polynuclear formulations. The differences exist in terms of their immunogenic potential, safety, and convenience of use, the latter being expressed by the opportunity for high single-dose administration and short infusion times. Monofer is a new parenteral iron product with a very low immunogenic potential and a very low content of labile and free iron. This enables Monofer, as the only IV iron formulation, to be administered as a rapid high dose infusion in doses exceeding 1000 mg without the application of a test dose. This offers considerable dose flexibility, including the possibility of providing full iron repletion in a single infusion (one-dose iron repletion).
Collapse
|
Journal Article |
14 |
187 |
6
|
Schulenburg H, Stankov S, Schünemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H. Catalysts for the Oxygen Reduction from Heat-Treated Iron(III) Tetramethoxyphenylporphyrin Chloride: Structure and Stability of Active Sites. J Phys Chem B 2003. [DOI: 10.1021/jp030349j] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
22 |
160 |
7
|
Shylesh S, Schünemann V, Thiel W. Magnetisch abtrennbare Nanokatalysatoren: Brücken zwischen homogener und heterogener Katalyse. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905684] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
15 |
134 |
8
|
Double KL, Gerlach M, Schünemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MBH, Riederer P, Ben-Shachar D. Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 2003; 66:489-94. [PMID: 12907248 DOI: 10.1016/s0006-2952(03)00293-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The vulnerability of the dopaminergic neurons of the substantia nigra (SN) in Parkinson's disease has been related to the presence of the pigment neuromelanin (NM) in these neurons. It is hypothesised that NM may act as an endogenous storage molecule for iron, an interaction suggested to influence free radical production. The current study quantified and characterised the interaction between NM and iron. Iron-binding studies demonstrated that both NM and synthetically-produced dopamine melanin contain equivalent numbers of high and low-affinity binding sites for iron but that the affinity of NM for iron is higher than that of synthetic melanin. Quantification of the total iron content in iron-loaded NM and synthetic melanin demonstrated that the iron-binding capacity of NM is 10-fold greater than that of the model melanin. This data was in agreement with the larger iron cluster size demonstrated by Mössbauer spectroscopy in the native pigment compared with the synthetic melanin. These findings are consistent with the hypothesis that NM may act as an endogenous iron-binding molecule in dopaminergic neurons of the SN in the human brain. The interaction between NM and iron has implications for disorders such as Parkinson's disease where an increase in iron in the SN is associated with increased indices of oxidative stress.
Collapse
|
|
22 |
129 |
9
|
Gervason S, Larkem D, Mansour AB, Botzanowski T, Müller CS, Pecqueur L, Le Pavec G, Delaunay-Moisan A, Brun O, Agramunt J, Grandas A, Fontecave M, Schünemann V, Cianférani S, Sizun C, Tolédano MB, D'Autréaux B. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat Commun 2019; 10:3566. [PMID: 31395877 PMCID: PMC6687725 DOI: 10.1038/s41467-019-11470-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to severe diseases among which is Friedreich's ataxia caused by impaired expression of frataxin (FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desulfurase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a process stimulated by FXN but not clearly understood. Here, we report the breakdown of this process, made possible by removing a zinc ion in ISCU that hinders iron insertion and promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clusters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that this reconstitution recapitulates physiological conditions which provides a model for Fe-S cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich's ataxia therapies.
Collapse
|
research-article |
6 |
124 |
10
|
Zakharieva O, Schünemann V, Gerdan M, Licoccia S, Cai S, Walker FA, Trautwein AX. Is the corrolate macrocycle innocent or noninnocent? Magnetic susceptibility, Mössbauer, 1H NMR, and DFT investigations of chloro- and phenyliron corrolates. J Am Chem Soc 2002; 124:6636-48. [PMID: 12047184 DOI: 10.1021/ja012701h] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an attempt to determine the electron configuration of (anion)iron corrolates, i.e., whether they are S = 1 Fe(IV)-corrolate(3-) or S = 3/2 Fe(III)-corrolate(2-*), with antiferromagnetic coupling between the iron and macrocycle electrons to yield overall S = 1, two axial ligand complexes of an iron octaalkylcorrolate have been studied by temperature-dependent magnetic susceptibility, magnetic Mössbauer, and 1H NMR spectroscopy, and the results have been compared to those determined on the basis of spin-unrestricted DFT calculations. Magnetic susceptibility measurements indicate the presence of a noninnocent macrocycle (corrolate (2-*)) for the chloroiron corrolate, with strong antiferromagnetic coupling to the S = 3/2 Fe(III) center, while those for the phenyliron corrolate are not conclusive as to the electron configuration. Temperature- and field-dependent Mössbauer spectroscopic investigations of these two complexes yielded spectra that could be simulated with either electron configuration, except that the isomer shift of the phenyl-iron complex is -0.10 mm/s while that of the chloroiron complex is +0.21 mm/s, suggesting that the iron in the former is Fe(IV) while in the latter it is Fe(III). 1H NMR spectroscopic studies of both axial ligand complexes show large negative spin density at the meso carbons, with those of the chloroiron complex (Cai, S.; Walker, F. A.; Licoccia, S. Inorg. Chem. 2000, 39, 3466) being roughly four times larger than those of the phenyliron complex. The temperature dependence of the proton chemical shifts of the phenyliron complex is strictly linear. DFT calculations are consistent with the chloroiron complex being formulated as S1 = 3/2 Fe(III)-corrolate (2-*) S2 = 1/2, with negative spin density at all nitrogens and meso carbons, and a net spin density of -0.79 on the corrolate ring and positive spin density (+0.17) on the chloride ion and +2.58 on the iron. In contrast, the phenyliron complex is best formulated as S = 1 Fe(IV)-corrolate (3-), but again with negative spin density at all nitrogens and meso carbons of the macrocycle, yet with the net spin density on the corrolate ring being virtually zero; the phenyl carbanion carbon has relatively large negative spin density of -0.15 and the iron +2.05. On the basis of all of the results, we conclude that in both the chloroiron and phenyliron complexes the corrolate ring is noninnocent, in the chloroiron complex to a much larger extent than in the phenyliron complex.
Collapse
|
|
23 |
114 |
11
|
Shylesh S, Schweizer J, Demeshko S, Schünemann V, Ernst S, Thiel W. Nanoparticle Supported, Magnetically Recoverable Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for Selective Epoxidation Reactions. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900416] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
16 |
106 |
12
|
Saalfrank RW, Glaser H, Demleitner B, Hampel F, Chowdhry MM, Schünemann V, Trautwein AX, Vaughan GBM, Yeh R, Davis AV, Raymond KN. Self-assembly of tetrahedral and trigonal antiprismatic clusters [Fe4(L4)4] and [Fe6(L5)6] on the basis of trigonal tris-bidentate chelators. Chemistry 2002; 8:493-7. [PMID: 11858175 DOI: 10.1002/1521-3765(20020118)8:2<493::aid-chem493>3.0.co;2-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In a one-pot reaction, the tetranuclear iron chelate complex [Fe4(L4)4] 6 was generated from benzene-1,3,5-tricarboxylic acid trichloride (4), bis-tert-butyl malonate (5a), methyllithium, and iron(II) dichloride under aerobic conditions. Alternatively, hexanuclear iron chelate complex [Fe(L5)6] 7 was formed starting from bis-para-tolyl malonate (5b) by employing identical reaction conditions to those applied for the synthesis of 6. The clusters 6 and 7 are present as racemic mixtures of homoconfigurational (delta,delta,delta,delta)/(lambda,lambda,lambda,lambda)-fac or (delta,delta,delta,delta,delta,delta)/(lambda,lambda,lambda,lambda,lambda,lambda)-fac stereoisomers. The structures of 6 and 7 were unequivocally resolved by single-crystal X-ray analyses. The all-iron(III) character of 6 and 7 was determined by Mössbauer spectroscopy.
Collapse
|
|
23 |
91 |
13
|
Saalfrank RW, Scheurer A, Bernt I, Heinemann FW, Postnikov AV, Schünemann V, Trautwein AX, Alam MS, Rupp H, Müller P. The {FeIII[FeIII(L1)2]3} star-type single-molecule magnet. Dalton Trans 2006:2865-74. [PMID: 16751895 DOI: 10.1039/b515980f] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Star-shaped complex [Fe(III)[Fe(III)(L1)2]3] (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by Mössbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane. The unit cell of 3.4CHCl3 contains the enantiomers (delta)-[(S,S)(R,R)(R,R)] and (lambda)-[(R,R)(S,S)(S,S)], whereas in case of 3.3CH2Cl2 four independent molecules, forming pairs of the enantiomers [lambda-(R,R)(R,R)(R,R)]-3 and [lambda-(S,S)(S,S)(S,S)]-3, were observed in the unit cell. According to SQUID measurements, the antiferromagnetic intramolecular coupling of the iron(III) ions in 3 results in a S = 10/2 ground state multiplet. The anisotropy is of the easy-axis type. EPR measurements enabled an accurate determination of the ligand-field splitting parameters. The ferric star 3 is a single-molecule magnet (SMM) and shows hysteretic magnetization characteristics below a blocking temperature of about 1.2 K. However, weak intermolecular couplings, mediated in a chainlike fashion via solvent molecules, have a strong influence on the magnetic properties. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to determine the structural and electronic properties of star-type tetranuclear iron(III) complex 3. The molecules were deposited onto highly ordered pyrolytic graphite (HOPG). Small, regular molecule clusters, two-dimensional monolayers as well as separated single molecules were observed. In our STS measurements we found a rather large contrast at the expected locations of the metal centers of the molecules. This direct addressing of the metal centers was confirmed by DFT calculations.
Collapse
|
|
19 |
90 |
14
|
Matzanke BF, Anemüller S, Schünemann V, Trautwein AX, Hantke K. FhuF, Part of a Siderophore−Reductase System†. Biochemistry 2004; 43:1386-92. [PMID: 14756576 DOI: 10.1021/bi0357661] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FhuF is a cytoplasmic 2Fe-2S protein of Escherichia coli loosely associated with the cytoplasmic membrane. E. coli fhuF mutants showed reduced growth on plates with ferrioxamine B as the sole iron source, although siderophore uptake was not defective in transport experiments. Removal of iron from coprogen, ferrichrome, and ferrioxamine B was significantly lower in fhuF mutants compared to the corresponding parental strains, which suggested that FhuF is involved in iron removal from these hydroxamate-type siderophores. A redox potential E(1/2) of -310 +/- 25 mV relative to the normal hydrogen electrode was determined for FhuF by EPR redox titration; this redox potential is sufficient to reduce the siderophores coprogen and ferrichrome. Mössbauer spectra revealed that FhuF in its [Fe(2+)-Fe(3+)] state is also capable of direct reduction of ferrioxamine B-bound ferric iron, thus proving its reductase function. This is the first report on a bacterial siderophore-iron reductase which in vivo seems to be specific for a certain group of hydroxamates.
Collapse
|
|
21 |
88 |
15
|
Barthelme D, Scheele U, Dinkelaker S, Janoschka A, Macmillan F, Albers SV, Driessen AJM, Stagni MS, Bill E, Meyer-Klaucke W, Schünemann V, Tampé R. Structural Organization of Essential Iron-Sulfur Clusters in the Evolutionarily Highly Conserved ATP-binding Cassette Protein ABCE1. J Biol Chem 2007; 282:14598-607. [PMID: 17355973 DOI: 10.1074/jbc.m700825200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular mechanism has, however, not been elucidated. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines, predicted to coordinate iron-sulfur clusters. Here we present detailed information on the type and on the structural organization of the Fe-S clusters in ABCE1. Based on biophysical, biochemical, and yeast genetic analyses, ABCE1 harbors two essential diamagnetic [4Fe-4S](2+) clusters with different electronic environments, one ferredoxin-like (CPX(n)CX(2)CX(2)C; Cys at positions 4-7) and one unique ABCE1-type cluster (CXPX(2)CX(3)CX(n)CP; Cys at positions 1, 2, 3, and 8). Strikingly, only seven of the eight conserved cysteines coordinating the Fe-S clusters are essential for cell viability. Mutagenesis of the cysteine at position 6 yielded a functional ABCE1 with the ferredoxin-like Fe-S cluster in a paramagnetic [3Fe-4S](+) state. Notably, a lethal mutation of the cysteine at position 4 can be rescued by ligand swapping with an adjacent, extra cysteine conserved among all eukaryotes.
Collapse
|
|
18 |
86 |
16
|
Paulsen H, Schünemann V, Wolny JA. Progress in Electronic Structure Calculations on Spin-Crossover Complexes. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201201289] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
12 |
86 |
17
|
Saalfrank RW, Dresel A, Seitz V, Trummer S, Hampel F, Teichert M, Stalke D, Stadler C, Daub J, Schünemann V, Trautwein AX. Topologic Equivalents of Coronands, Cryptands and Their Inclusion Complexes: Synthesis, Structure and Properties of {2}-Metallacryptands and {2}-Metallacryptates. Chemistry 1997. [DOI: 10.1002/chem.19970031222] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
28 |
83 |
18
|
Kopriva S, Büchert T, Fritz G, Suter M, Benda R, Schünemann V, Koprivova A, Schürmann P, Trautwein AX, Kroneck PMH, Brunold C. The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation. J Biol Chem 2002; 277:21786-91. [PMID: 11940598 DOI: 10.1074/jbc.m202152200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5'-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5'-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25-30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organisms, which were retrieved from the GenBank(TM), revealed two clusters. The first cluster comprised known PAPS reductases from enteric bacteria, cyanobacteria, and yeast. On the other hand, plant APS reductase sequences were clustered together with many bacterial ones, including those from Pseudomonas and Rhizobium. The gene for APS reductase cloned from the APS-reducing cyanobacterium Plectonema also clustered together with the plant sequences, confirming that the two classes of sequences represent PAPS and APS reductases, respectively. Compared with the PAPS reductase, all sequences of the APS reductase cluster contained two additional cysteine pairs homologous to the cysteine residues involved in binding an iron-sulfur cluster in plants. Mössbauer analysis revealed that the recombinant APS reductase from Pseudomonas aeruginosa contains a [4Fe-4S] cluster with the same characteristics as the plant enzyme. We conclude, therefore, that the presence of an iron-sulfur cluster determines the APS specificity of the sulfate-reducing enzymes and thus separates the APS- and PAPS-dependent assimilatory sulfate reduction pathways.
Collapse
|
|
23 |
78 |
19
|
Müller A, Das SK, Kögerler P, Bögge H, Schmidtmann M, Trautwein AX, Schünemann V, Krickemeyer E, Preetz W. A New Type of Supramolecular Compound: Molybdenum-Oxide-Based Composites Consisting of Magnetic Nanocapsules with Encapsulated Keggin-Ion Electron Reservoirs Cross-Linked to a Two-Dimensional Network We thank Prof. Dr. H. U. Güdel (Bern), Dr. L. Cronin (Birmingham), and Dr. E. Diemann (Bielefeld) for helpful discussions. Angew Chem Int Ed Engl 2000; 39:3413-3417. [PMID: 11091372 DOI: 10.1002/1521-3773(20001002)39:19<3413::aid-anie3413>3.0.co;2-q] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
25 |
75 |
20
|
Glaser T, Beissel T, Bill E, Weyhermüller T, Schünemann V, Meyer-Klaucke W, Trautwein AX, Wieghardt K. Electronic Structure of Linear Thiophenolate-Bridged Heterotrinuclear Complexes [LFeMFeL]n+ (M = Cr, Co, Fe; n = 1−3): Localized vs Delocalized Models. J Am Chem Soc 1999. [DOI: 10.1021/ja982898m] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
26 |
74 |
21
|
Simonneaux G, Schünemann V, Morice C, Carel L, Toupet L, Winkler H, Trautwein AX, Walker FA. Structural, Magnetic, and Dynamic Characterization of the (dxz,dyz)4(dxy)1 Ground-State Low-Spin Iron(III) Tetraphenylporphyrinate Complex [(p-TTP)Fe(2,6-XylylNC)2]CF3SO3. J Am Chem Soc 2000. [DOI: 10.1021/ja994190t] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
25 |
74 |
22
|
Schünemann V, Lendzian F, Jung C, Contzen J, Barra AL, Sligar SG, Trautwein AX. Tyrosine radical formation in the reaction of wild type and mutant cytochrome P450cam with peroxy acids: a multifrequency EPR study of intermediates on the millisecond time scale. J Biol Chem 2003; 279:10919-30. [PMID: 14688245 DOI: 10.1074/jbc.m307884200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a multifrequency (9.6-, 94-, 190-, and 285-GHz) EPR study of a freeze-quenched intermediate obtained from reaction of substrate-free cytochrome P450cam (CYP101) and its Y96F and Y96F/Y75F mutants with peroxy acids. It is generally assumed that in such a shunt reaction an intermediate [Fe(IV)=O, porphyrin-pi-cation radical] is formed, which should be identical to the species in the natural reaction cycle. However, for the wild type as well as for the mutant proteins, a porphyrin-pi-cation radical is not detectable within 8 ms. Instead, EPR signals corresponding to tyrosine radicals are obtained for the wild type and the Y96F mutant. Replacement of both Tyr-96 and Tyr-75 by phenylalanine leads to the disappearance of the tyrosine EPR signals. EPR studies at 285 GHz on freeze-quenched wild type and Y96F samples reveal g tensor components for the radical (stretched g(x) values from 2.0078 to 2.0064, g(y) = 2.0043, and g(z) = 2.0022), which are fingerprints for tyrosine radicals in a heterogeneous polar environment. The measurements at 94 GHz using a fundamental mode microwave resonator setup confirm the 285-GHz study. From the simulation of the hyperfine structure in the 94-GHz EPR spectra the signals have been assigned to Tyr-96 in the wild type and to Tyr-75 in the Y96F mutant. We suggest that a transiently formed Fe(IV)=O porphyrin-pi-cation radical intermediate in P450cam is reduced by intramolecular electron transfer from these tyrosines within 8 ms.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
74 |
23
|
Pérez Vélez R, Ellmers I, Huang H, Bentrup U, Schünemann V, Grünert W, Brückner A. Identifying active sites for fast NH3-SCR of NO/NO2 mixtures over Fe-ZSM-5 by operando EPR and UV–vis spectroscopy. J Catal 2014. [DOI: 10.1016/j.jcat.2014.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
11 |
73 |
24
|
Mekmouche Y, Hummel H, Ho RYN, Que L, Schünemann V, Thomas F, Trautwein AX, Lebrun C, Gorgy K, Leprêtre JC, Collomb MN, Deronzier A, Fontecave M, Ménage S. Sulfide oxidation by hydrogen peroxide catalyzed by iron complexes: two metal centers are better than one. Chemistry 2002; 8:1196-204. [PMID: 11891908 DOI: 10.1002/1521-3765(20020301)8:5<1196::aid-chem1196>3.0.co;2-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peroxoiron species have been proposed to be involved in catalytic cycles of iron-dependent oxygenases and in some cases as the active intermediates during oxygen-transfer reactions. The catalytic properties of a mononuclear iron complex, [Fe(II)(pb)(2)(CH(3)CN)(2)] (pb=(-)4,5-pinene-2,2'-bipyridine), have been compared to those of its related dinuclear analogue. Each system generates specific peroxo adducts, which are responsible for the oxidation of sulfides to sulfoxides. The dinuclear catalyst was found to be more reactive and (enantio)selective than its mononuclear counterpart, suggesting that a second metal site affords specific advantages for stereoselective catalysis. These results might help for the design of future enantioselective iron catalysts.
Collapse
|
|
23 |
72 |
25
|
Jayaraj K, Gold A, Austin RN, Ball LM, Terner J, Mandon D, Weiss R, Fischer J, DeCian A, Bill E, Müther M, Schünemann V, Trautwein AX. Compound I and Compound II Analogues from Porpholactones. Inorg Chem 1997; 36:4555-4566. [PMID: 11670121 DOI: 10.1021/ic970597s] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetraaza macrocycles 2-oxa-3-oxotetramesitylporphine (|H(2) 1|) and 2-oxa-3-oxotetrakis(2,6-dichlorophenyl)porphine (|H(2) 2|) and the corresponding iron complexes (|Fe(III)(X) 1| and |Fe(III)(X) 2|; X= Cl(-), OH(-), or SO(3)CF(3)(-)) have been synthesized. These macrocycles are derived from porphyrins by transformation of one pyrrole ring to an oxazolone ring. The resulting lactone functionality serves to restrict but not completely block pi-conjugation around the periphery. These complexes thus share properties with both porphyrins and chlorins. The ferric and high-valent iron complexes have been characterized by a variety of spectroscopic techniques. The molecular structure of |Fe(III)(Cl) 2| has been obtained by X-ray crystallography and shows that the structural changes at the macrocycle periphery do not perturb the coordination sphere of iron relative to the corresponding porphyrin complexes. This is illustrated by the observation that Fe-O frequencies in the resonance Raman spectra of the porpholactone analogues of compounds I and II are not substantially different from those of porphyrins and by the axial appearance of the EPR signals of the high-spin ferric complexes. This is consistent with reports that the Fe=O unit of oxidized porphyrins and chlorins is relatively insensitive to alteration of macrocycle symmetry. Nevertheless, probes of properties of the porpholactone macrocycle ((1)H NMR, resonance Raman skeletal modes) show effects of the asymmetry induced by the oxazolone ring. On the basis of (1)H NMR, EPR, Mössbauer, and resonance Raman data, the singly occupied molecular orbital of oxoferryl porpholactone pi-cation radicals correlates with the a(1u) molecular orbital of porphyrins under D(4)(h)() symmetry. Moreover, the paramagnetic properties and the intramolecular exchange interaction of ferryl iron and the porpholactone pi-radical have been characterized by EPR and magnetic Mössbauer measurements and spin-Hamiltonian analyses. The values J(0) = 17 cm(-)(1) and J(0) = 11 cm(-)(1) obtained for the exchange coupling constants of the oxoferryl porpholactone pi-cation radical complexes |Fe(IV)=O 1|(+) and |Fe(IV)=O 2|(+), respectively, are among the lowest found for synthetic compound I analogues.
Collapse
|
|
28 |
71 |