1
|
Wang X, Jones AM, Seyler KL, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F. Highly anisotropic and robust excitons in monolayer black phosphorus. NATURE NANOTECHNOLOGY 2015; 10:517-21. [PMID: 25915195 DOI: 10.1038/nnano.2015.71] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/13/2015] [Indexed: 05/22/2023]
Abstract
Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of ∼0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices.
Collapse
|
|
10 |
546 |
2
|
Imberty A, Chanzy H, Pérez S, Buléon A, Tran V. The double-helical nature of the crystalline part of A-starch. J Mol Biol 1988; 201:365-78. [PMID: 3418703 DOI: 10.1016/0022-2836(88)90144-1] [Citation(s) in RCA: 404] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new three-dimensional structure of the crystalline part of A-starch is described in which the unit cell contains 12 glucose residues located in two left-handed, parallel-stranded double helices packed in a parallel fashion; four water molecules are located between these helices. Chains are crystallized in a monoclinic lattice with a = 2.124 nm, b = 1.172 nm, c = 1.069 nm and gamma = 123.5 degrees, the c axis being parallel to the helix axis. Systematic absences are consistent with the space group B2. The structure was derived from joint use of electron diffraction of single crystals, X-ray powder patterns decomposed into individual peaks and previously reported X-ray fibre diffraction data after adequate re-indexing. The repeating unit consists of a maltotriose moiety where the glucose residues have the 4C1 pyranose conformation and are alpha(1----4) linked. The conformation of the glycosidic linkage is characterized by torsion angles (phi, psi) which take the values (91.8, -153.2), (85.7, -145.3) and 91.8, -151.3); all the primary hydroxyl groups exist in a gauche-gauche conformation. There are no intramolecular hydrogen bonds. Within the double helix, interstrand stabilization is achieved without any steric conflict and through the occurrence of O(2)...O(6) type hydrogen bonds. The present structure is consistent with both physicochemical and biochemical aspects of the crystalline component of the cereal starch granules.
Collapse
|
Comparative Study |
37 |
404 |
3
|
Tran V, Moser LA, Poole DS, Mehle A. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. J Virol 2013; 87:13321-9. [PMID: 24089552 PMCID: PMC3838222 DOI: 10.1128/jvi.02381-13] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022] Open
Abstract
The continual public health threat posed by the emergence of novel influenza viruses necessitates the ability to rapidly monitor infection and spread in experimental systems. To analyze real-time infection dynamics, we have created a replication-competent influenza reporter virus suitable for in vivo imaging. The reporter virus encodes the small and bright NanoLuc luciferase whose activity serves as an extremely sensitive readout of viral infection. This virus stably maintains the reporter construct and replicates in culture and in mice with near-native properties. Bioluminescent imaging of the reporter virus permits serial observations of viral load and dissemination in infected animals, even following clearance of a sublethal challenge. We further show that the reporter virus recapitulates known restrictions due to host range and antiviral treatment, suggesting that this technology can be applied to studying emerging influenza viruses and the impact of antiviral interventions on infections in vivo. These results describe a generalizable method to quickly determine the replication and pathogenicity potential of diverse influenza strains in animals.
Collapse
|
Evaluation Study |
12 |
135 |
4
|
Vymazal J, Brooks RA, Baumgarner C, Tran V, Katz D, Bulte JW, Bauminger R, Di Chiro G. The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 1996; 35:56-61. [PMID: 8771022 DOI: 10.1002/mrm.1910350108] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T1 and T2 relaxation times and iron concentrations were measured in 24 specimens of gray matter from fresh human and monkey brains at magnetic fields from 0.05 to 1.5 Tesla. Three different effects were found that correlate with iron content: a T1-shortening that falls off somewhat at high fields, a T2-shortening that is field-independent and thus important at low fields, and a contribution to 1/T2 that increases linearly with field strength. This linear field dependence has been seen only in ferritin and other ferric oxyhydroxide particles. Our results are in agreement with in vivo MRI studies and are generally consistent with values for ferritin solution, except for differences such as clustering of ferritin in tissue. A cerebral cavernous hemangioma specimen showed similar T2-shortening, but with a 2.7 times larger magnitude, attributed to larger clusters of hemosiderin in macrophages. The dependence on interecho time 2 tau was measured in three brains; 1/T2 increased significantly for tau up to 32 ms, as expected from the size of the ferritin clusters. These findings support the theory that ferritin iron is the primary determinant of MRI contrast in normal gray matter.
Collapse
|
|
29 |
131 |
5
|
Godet MC, Tran V, Delage MM, Buléon A. Molecular modelling of the specific interactions involved in the amylose complexation by fatty acids. Int J Biol Macromol 1993; 15:11-6. [PMID: 8443126 DOI: 10.1016/s0141-8130(05)80082-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Comprehensive modelling of a fatty acid molecule inside a VH amylose helix is described. In a first step, the docking of an acetic acid molecule near the helix entry was performed. The low energy solutions were propagated by an iterative procedure involving the sequential addition of single CH2 groups up to a C12 fatty acid followed by energy minimizations. The main result is the superposition of the aliphatic and the helix axes. For the low-energy complexes, the mean plane of the aliphatic carbons has three potential orientations. In each, the aliphatic hydrogens point towards the less crowded regions near the glycosidic oxygens of the amylose. The close packing is due to the related symmetries of both the helix and aliphatic chain. In a second step, the relative roles of the aliphatic part and the polar group were studied separately. For the aliphatic chain, a map based on the two major internal parameters (translation and rotation) along the helix axis shows that the isolated docking solutions are related by a combination of a 60 degrees (360 degrees/6) rotation and a translation of p/6 (p = 0.804 nm corresponds to the pitch of Vhydrate amylose). The H5 glucopyranose atoms participate in close contacts and are responsible for steric conflicts in structures intermediate to the stable docking solutions. The four possible low-energy arrangements of the carboxylic group were added to the calculated amylose/aliphatic structures. Two stable conformations of the total fatty acid molecule were determined. For both stable solutions, the polar group is located near the entrance of the helix cavity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
32 |
131 |
6
|
Li L, Ye GJ, Tran V, Fei R, Chen G, Wang H, Wang J, Watanabe K, Taniguchi T, Yang L, Chen XH, Zhang Y. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. NATURE NANOTECHNOLOGY 2015; 10:608-13. [PMID: 25984835 DOI: 10.1038/nnano.2015.91] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/31/2015] [Indexed: 05/14/2023]
Abstract
For decades, two-dimensional electron gases (2DEG) have allowed important experimental discoveries and conceptual developments in condensed-matter physics. When combined with the unique electronic properties of two-dimensional crystals, they allow rich physical phenomena to be probed at the quantum level. Here, we create a 2DEG in black phosphorus--a recently added member of the two-dimensional atomic crystal family--using a gate electric field. The black phosphorus film hosting the 2DEG is placed on a hexagonal boron nitride substrate. The resulting high carrier mobility in the 2DEG allows the observation of quantum oscillations. The temperature and magnetic field dependence of these oscillations yields crucial information about the system, such as cyclotron mass and lifetime of its charge carriers. Our results, coupled with the fact that black phosphorus possesses anisotropic energy bands with a tunable, direct bandgap, distinguish black phosphorus 2DEG as a system with unique electronic and optoelectronic properties.
Collapse
|
|
10 |
119 |
7
|
Uhl GR, Tran V, Snyder SH, Martin JB. Somatostatin receptors: distribution in rat central nervous system and human frontal cortex. J Comp Neurol 1985; 240:288-304. [PMID: 2866202 DOI: 10.1002/cne.902400306] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Somatostatins are a brain peptide family centered on a 14-amino acid cyclic peptide (SS-14) and a 28-amino acid N-terminally extended form (SS-28). Using radioiodinated analogs of SS-14 and SS-28, we have identified specific binding sites in rat and human brain sections that display pharmacological properties anticipated for somatostatin receptors and discrete patterns of anatomical localization. High binding densities are found in many forebrain regions, with special densities in infragranular cerebral cortical laminae in rat and human brain. In the rat, other densities lie in olfactory zones, lateral and triangular septal nuclei, the CA-1 hippocampal region, and claustrum with moderate densities in the striatum. Discrete hypothalamic areas, especially the median preoptic, paraventricular, and periventricular nuclei, display elevated binding levels, while the thalamus shows only scattered areas of modest binding. Midbrain receptor concentrations are found in portions of the periaqueductal gray, interpeduncular nucleus, and the substantia nigra. Notable pontine and medullary densities lie in the locus coeruleus, fourth ventricular floor, parabrachial, solitary, prepositus hypoglossal, dorsal column, and caudal trigeminal zones. Although the cerebellar cortex shows unimpressive densities, each of the deep cerebellar nuclei is heavily labeled. Modest spinal cord receptor densities are concentrated in the substantia gelatinosa and central cord regions. These localizations show many parallels with the distributions of SS-immunoreactive neurons, fibers, and terminals determined previously by immunohistochemistry. They provide plausible loci for several reported physiological or pharmacological activities of the SS-peptides, and may improve understanding of the role of the SS alterations described in several human neurodegenerative disorders.
Collapse
|
|
40 |
118 |
8
|
Buhot N, Douliez JP, Jacquemard A, Marion D, Tran V, Maume BF, Milat ML, Ponchet M, Mikès V, Kader JC, Blein JP. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett 2001; 509:27-30. [PMID: 11734200 DOI: 10.1016/s0014-5793(01)03116-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipid transfer proteins (LTPs) and elicitins are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defence mechanisms, the biological function of LTP is still an enigma. We show that a wheat LTP1 binds with high affinity sites. Binding and in vivo competition experiments point out that these binding sites are common to LTP1 and elicitins and confirm that they are the biological receptors of elicitins. A mathematical analysis suggests that these receptors could be represented by an allosteric model corresponding to an oligomeric structure with four identical subunits.
Collapse
|
|
24 |
106 |
9
|
Cortés J, Siméon T, Remaud-Siméon M, Tran V. Geometric algorithms for the conformational analysis of long protein loops. J Comput Chem 2004; 25:956-67. [PMID: 15027107 DOI: 10.1002/jcc.20021] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The efficient filtering of unfeasible conformations would considerably benefit the exploration of the conformational space when searching for minimum energy structures or during molecular simulation. The most important conditions for filtering are the maintenance of molecular chain integrity and the avoidance of steric clashes. These conditions can be seen as geometric constraints on a molecular model. In this article, we discuss how techniques issued from recent research in robotics can be applied to this filtering. Two complementary techniques are presented: one for conformational sampling and another for computing conformational changes satisfying such geometric constraints. The main interest of the proposed techniques is their application to the structural analysis of long protein loops. First experimental results demonstrate the efficacy of the approach for studying the mobility of loop 7 in amylosucrase from Neisseria polysaccharea. The supposed motions of this 17-residue loop would play an important role in the activity of this enzyme.
Collapse
|
|
21 |
75 |
10
|
Victor XV, Nguyen TKN, Ethirajan M, Tran VM, Nguyen KV, Kuberan B. Investigating the elusive mechanism of glycosaminoglycan biosynthesis. J Biol Chem 2009; 284:25842-53. [PMID: 19628873 DOI: 10.1074/jbc.m109.043208] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycan (GAG) biosynthesis requires numerous biosynthetic enzymes and activated sulfate and sugar donors. Although the sequence of biosynthetic events is resolved using reconstituted systems, little is known about the emergence of cell-specific GAG chains (heparan sulfate, chondroitin sulfate, and dermatan sulfate) with distinct sulfation patterns. We have utilized a library of click-xylosides that have various aglycones to decipher the mechanism of GAG biosynthesis in a cellular system. Earlier studies have shown that both the concentration of the primers and the structure of the aglycone moieties can affect the composition of the newly synthesized GAG chains. However, it is largely unknown whether structural features of aglycone affect the extent of sulfation, sulfation pattern, disaccharide composition, and chain length of GAG chains. In this study, we show that aglycones can switch not only the type of GAG chains, but also their fine structures. Our findings provide suggestive evidence for the presence of GAGOSOMES that have different combinations of enzymes and their isoforms regulating the synthesis of cell-specific combinatorial structures. We surmise that click-xylosides are differentially recognized by the GAGOSOMES to generate distinct GAG structures as observed in this study. These novel click-xylosides offer new avenues to profile the cell-specific GAG chains, elucidate the mechanism of GAG biosynthesis, and to decipher the biological actions of GAG chains in model organisms.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
75 |
11
|
Godet MC, Tran V, Colonna P, Buleon A. Inclusion/exclusion of fatty acids in amylose complexes as a function of the fatty acid chain length. Int J Biol Macromol 1995; 17:405-8. [PMID: 8789347 DOI: 10.1016/0141-8130(96)81853-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Structural models are proposed for amylose-fatty acid complexes depending on the respective chain lengths of their constituents. The three studied fatty acids induce the Vh amylose crystalline type. However, in contrast to lauric and palmitic acids, caprylic acid is not present in crystals. On the basis of the relative amounts of amylose and fatty acid determined in complexes and previous results of molecular modelling, inclusion of lauric and palmitic acids inside the amylose helices is proposed; the acyl chains are included in crystalline areas and the carboxylic groups in amorphous areas. The absence of caprylic acid in crystals could be due to the solubility of this compound in the crystallization medium.
Collapse
|
Comparative Study |
30 |
69 |
12
|
Brooks RA, Vymazal J, Bulte JW, Baumgarner CD, Tran V. Comparison of T2 relaxation in blood, brain, and ferritin. J Magn Reson Imaging 1995; 5:446-50. [PMID: 7549209 DOI: 10.1002/jmri.1880050414] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
T2 was measured in samples of human blood and monkey brain over a field range of 0.02-1.5 Tesla, with variable interecho times, and was compared with previous data on ferritin solutions (taken with the same apparatus). 1/T2 in deoxygenated blood increased quadratically with field strength, as noted previously, but in brain gray matter the increase was linear, as also was the case in ferritin solution. In both deoxygenated blood and gray matter, 1/T2 increased with interecho time, but appeared to level off at times around 50 msec, as expected from the theory of diffusion through magnetic gradients. Diffusion times estimated by using the chemical exchange approximation were 3.4 msec for deoxygenated blood and 5.7 msec for the globus pallidus. The quadratic field dependence in blood is consistent with this same theory, but the linear dependence in brain tissue and in ferritin solutions remains unexplained.
Collapse
|
Comparative Study |
30 |
68 |
13
|
Cortés J, Siméon T, Ruiz de Angulo V, Guieysse D, Remaud-Siméon M, Tran V. A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics 2006; 21 Suppl 1:i116-25. [PMID: 15961448 DOI: 10.1093/bioinformatics/bti1017] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Motion is inherent in molecular interactions. Molecular flexibility must be taken into account in order to develop accurate computational techniques for predicting interactions. Energy-based methods currently used in molecular modeling (i.e. molecular dynamics, Monte Carlo algorithms) are, in practice, only able to compute local motions while accounting for molecular flexibility. However, large-amplitude motions often occur in biological processes. We investigate the application of geometric path planning algorithms to compute such large motions in flexible molecular models. Our purpose is to exploit the efficacy of a geometric conformational search as a filtering stage before subsequent energy refinements. RESULTS In this paper two kinds of large-amplitude motion are treated: protein loop conformational changes (involving protein backbone flexibility) and ligand trajectories to deep active sites in proteins (involving ligand and protein side-chain flexibility). First studies performed using our two-stage approach (geometric search followed by energy refinements) show that, compared to classical molecular modeling methods, quite similar results can be obtained with a performance gain of several orders of magnitude. Furthermore, our results also indicate that the geometric stage can provide highly valuable information to biologists. AVAILABILITY The algorithms have been implemented in the general-purpose motion planning software Move3D, developed at LAAS-CNRS. We are currently working on an optimized stand-alone library that will be available to the scientific community.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
66 |
14
|
Vymazal J, Hajek M, Patronas N, Giedd JN, Bulte JW, Baumgarner C, Tran V, Brooks RA. The quantitative relation between T1-weighted and T2-weighted MRI of normal gray matter and iron concentration. J Magn Reson Imaging 1995; 5:554-60. [PMID: 8574041 DOI: 10.1002/jmri.1880050514] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A retrospective analysis of 158 T1-weighted and T2-weighted MRI scans of normal brains at 0.5 and 1.5 Tesla was performed. Signal intensities in the frontal cortex, caudate nucleus, putamen, and globus pallidus were divided by those of frontal white matter; and these gray/white ratios were correlated with iron concentration, estimated from the anatomical region and age of the patient. Intraregional plots were also made of gray/white ratio versus age for the 1.5 Tesla scans. The changes in both T1-weighted and T2-weighted ratios were consistent with the hypothesis that 1/T1 and 1/T2 vary linearly with iron concentration, and the corresponding coefficients, determined separately from the interregional and intraregional plots, were generally in agreement. Furthermore, the variability of the MRI ratios at 1.5 Tesla was consistent with expected iron variability except for the cortex, in which partial volume errors due to sulci and white matter caused increased variations. The MRI results agreed well with in vitro data on T1 and T2 in tissue specimens and with other MRI studies. When compared with T1 and T2 in ferritin solution, a significant "tissue relaxation enhancement" was found, attributable to slower diffusion and clustering of ferritin in tissue.
Collapse
|
|
30 |
66 |
15
|
Holland N, Huen K, Tran V, Street K, Nguyen B, Bradman A, Eskenazi B. Urinary Phthalate Metabolites and Biomarkers of Oxidative Stress in a Mexican-American Cohort: Variability in Early and Late Pregnancy. TOXICS 2016; 4. [PMID: 28008399 PMCID: PMC5171220 DOI: 10.3390/toxics4010007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
People are exposed to phthalates through their wide use as plasticizers and in personal care products. Many phthalates are endocrine disruptors and have been associated with adverse health outcomes. However, knowledge gaps exist in understanding the molecular mechanisms associated with the effects of exposure in early and late pregnancy. In this study, we examined the relationship of eleven urinary phthalate metabolites with isoprostane, an established marker of oxidative stress, among pregnant Mexican-American women from an agricultural cohort. Isoprostane levels were on average 20% higher at 26 weeks than at 13 weeks of pregnancy. Urinary phthalate metabolite concentrations suggested relatively consistent phthalate exposures over pregnancy. The relationship between phthalate metabolite concentrations and isoprostane levels was significant for the sum of di-2-ethylhexyl phthalate and the sum of high molecular weight metabolites with the exception of monobenzyl phthalate, which was not associated with oxidative stress at either time point. In contrast, low molecular weight metabolite concentrations were not associated with isoprostane at 13 weeks, but this relationship became stronger later in pregnancy (p-value = 0.009 for the sum of low molecular weight metabolites). Our findings suggest that prenatal exposure to phthalates may influence oxidative stress, which is consistent with their relationship with obesity and other adverse health outcomes.
Collapse
|
Journal Article |
9 |
59 |
16
|
Tran V, Ledwith MP, Thamamongood T, Higgins CA, Tripathi S, Chang MW, Benner C, García-Sastre A, Schwemmle M, Boon ACM, Diamond MS, Mehle A. Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nat Microbiol 2020; 5:1490-1503. [PMID: 32839537 PMCID: PMC7677226 DOI: 10.1038/s41564-020-0778-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Cells infected by influenza virus mount a large-scale antiviral response and most cells ultimately initiate cell-death pathways in an attempt to suppress viral replication. We performed a CRISPR-Cas9-knockout selection designed to identify host factors required for replication after viral entry. We identified a large class of presumptive antiviral factors that unexpectedly act as important proviral enhancers during influenza virus infection. One of these, IFIT2, is an interferon-stimulated gene with well-established antiviral activity but limited mechanistic understanding. As opposed to suppressing infection, we show in the present study that IFIT2 is instead repurposed by influenza virus to promote viral gene expression. CLIP-seq demonstrated that IFIT2 binds directly to viral and cellular messenger RNAs in AU-rich regions, with bound cellular transcripts enriched in interferon-stimulated mRNAs. Polysome and ribosome profiling revealed that IFIT2 prevents ribosome pausing on bound mRNAs. Together, the data link IFIT2 binding to enhanced translational efficiency for viral and cellular mRNAs and ultimately viral replication. Our findings establish a model for the normal function of IFIT2 as a protein that increases translation of cellular mRNAs to support antiviral responses and explain how influenza virus uses this same activity to redirect a classically antiviral protein into a proviral effector.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
58 |
17
|
Burova TV, Choiset Y, Tran V, Haertlé T. Role of free Cys121 in stabilization of bovine beta-lactoglobulin B. PROTEIN ENGINEERING 1998; 11:1065-73. [PMID: 9876928 DOI: 10.1093/protein/11.11.1065] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mixed disulfide derivatives of bovine beta-lactoglobulin (BLG) were studied by circular dichroism (CD), gel-permeation HPLC and high-sensitivity differential scanning calorimetry (HS-DSC). It was shown that modification of Cys121 with mercaptopropionic acid and mercaptoethanol does not affect the secondary structure of BLG, but results instead in tertiary and quaternary structure changes. At neutral pH, the equilibrium dimer<==>monomer of modified beta-lactoglobulin is shifted towards monomeric form. In contrast to native BLG, thermal denaturation of modified beta-lactoglobulin is fully reversible in neutral and acidic pH as demonstrated by CD and HS-DSC measurements. Modification of Cys121 results in a significant decrease of transition temperature (-6 degrees C) and enthalpy (-106 kJ/mol) at pH 2.05 while unfolding heat capacity increment remains unchanged. Thermal unfolding transitions of native and modified beta-lactoglobulin at pH 2.05 are well approximated by a two-state model suggesting that no intermediate states appear after modification. The difference in Gibbs energy of denaturation between native and modified beta-lactoglobulin, 8.5 kJ/mol at 37 degrees C and pH 2.05, does not depend on the nature of the introduced group (charged or neutral). Computer analysis of possible interactions involving Cys121 in a three-dimensional structure of beta-lactoglobulin revealed that the thiol group is too far away from neighboring residues to form side-chain hydrogen bonds. This suggests that the sulfhydryl group of Cys121 may contribute to the maintenance of BLG tertiary structure via water mediated H-bonding.
Collapse
|
|
27 |
54 |
18
|
Nespoulous C, Briand L, Delage MM, Tran V, Pernollet JC. Odorant binding and conformational changes of a rat odorant-binding protein. Chem Senses 2004; 29:189-98. [PMID: 15047593 DOI: 10.1093/chemse/bjh017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Odorant-binding proteins (OBPs) are lipocalins secreted in the nasal mucus of vertebrates, which convey odorants to their neuronal receptors. We compared the binding properties of a recombinant rat OBP (OBP-1F) using a set of six odorants of various chemical structures. We examined the binding properties by both fluorescent probe competition and isothermal titration calorimetry. OBP-1F affinity constants, in the micromolar range, varied by more than one order of magnitude and were roughly correlated to the odorant size. The observed binding stoichiometry was found to be around one odorant per dimer. Using tyrosine differential spectroscopy, the binding of ligand was shown to induce local conformational changes. A three-dimensional structure of OBP-1F, modelled using the known structure of aphrodisin as template, allowed us to suggest the location of the observed structural changes outside of the binding pocket. These results are consistent with one binding site located in one of the two beta-barrels of the OBP-1F dimer and a subtle conformational change correlated with binding of an odorant molecule, which hampers uptake of a second odorant by the other hydrophobic pocket.
Collapse
|
Journal Article |
21 |
54 |
19
|
Zhang H, Alramini H, Tran V, Singh U. Nucleus-localized antisense small RNAs with 5'-polyphosphate termini regulate long term transcriptional gene silencing in Entamoeba histolytica G3 strain. J Biol Chem 2011; 286:44467-79. [PMID: 22049083 PMCID: PMC3247957 DOI: 10.1074/jbc.m111.278184] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/01/2011] [Indexed: 11/06/2022] Open
Abstract
In the deep-branching eukaryotic parasite Entamoeba histolytica, transcriptional gene silencing (TGS) of the Amoebapore A gene (ap-a) in the G3 strain has been reported with subsequent development of this parasite strain for gene silencing. However, the mechanisms underlying this gene silencing approach are poorly understood. Here we report that antisense small RNAs (sRNAs) specific to the silenced ap-a gene can be identified in G3 parasites. Furthermore, when additional genes are silenced in the G3 strain, antisense sRNAs to the newly silenced genes can also be detected. Characterization of these sRNAs demonstrates that they are ~27 nucleotides in size, have 5'-polyphosphate termini, and persist even after removal of the silencing plasmid. Immunofluorescence analysis (IFA) and fluorescence in situ hybridization (FISH) show that both the Argonaute protein EhAGO2-2 and antisense sRNAs to the silenced genes are localized to the parasite nucleus. Furthermore, α-EhAGO2-2 immunoprecipitation confirmed the direct association of the antisense sRNAs with EhAGO2-2. Finally, chromatin immunoprecipitation (ChIP) assays demonstrate that the loci of the silenced genes are enriched for histone H3 and EhAGO2-2, indicating that both chromatin modification and the RNA-induced transcriptional silencing complex are involved in permanent gene silencing in G3 parasites. In conclusion, our data demonstrate that G3-based gene silencing in E. histolytica is mediated by an siRNA pathway, which utilizes antisense 5'-polyphosphate sRNAs. To our knowledge, this is the first study to show that 5'- polyphosphate antisense sRNAs can mediate TGS, and it is the first example of RNAi-mediated TGS in protozoan parasites.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
46 |
20
|
Douliez JP, Jégou S, Pato C, Mollé D, Tran V, Marion D. Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:384-8. [PMID: 11168373 DOI: 10.1046/j.1432-1033.2001.01889.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The binding of two mono-acylated lipid monomers by plant lipid transfer proteins (LTP1s) presents an attractive field of research that could help our understanding of the functional role of this protein family. This task has been investigated in the case of barley LTP1 because it is known to exhibit a small cavity in its free state. The titration with lipids could not be followed by fluorescence with the native protein. Indeed, this LTP1 possesses a tyrosine residue on its C-terminus, Tyr91, which is not sensitive to lipid binding but mainly contributes to the fluorescence signal intensity. However, the binding of 1-myristoylglycerophosphatidylcholine (MyrGro-PCho) could be monitored by fluorescence after removal of Tyr91 by a carboxypeptidase. These experiments returned a dissociation constant of about 1 microM and showed that the protein can indeed bind two monomers. This result was corroborated by molecular modelling where the structure of the complex between barley LTP1 and MyrGro-PCho was derived from that determined in the case of wheat [Charvolin, D., Douliez, J.P., Marion, D., Cohen-addad, C. & Pebay-Peyroula, E. (1999) Eur. J. Biochem. 264, 562-568.]. Results from isothermal titration calorimetry experiments indicated non-classic titration behaviour but also suggested that two lipids could be bound by the protein. Finally, barley LTP1 binds two omega-hydroxypalmitic acid, a compound found in the family of cutin monomers. The fact that the binding of two lipids could be related to the physiological role of this protein family is discussed.
Collapse
|
|
24 |
43 |
21
|
Garud DR, Tran VM, Victor XV, Koketsu M, Kuberan B. Inhibition of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis. J Biol Chem 2008; 283:28881-7. [PMID: 18708345 DOI: 10.1074/jbc.m805939200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
39 |
22
|
Tran V, Poole DS, Jeffery JJ, Sheahan TP, Creech D, Yevtodiyenko A, Peat AJ, Francis KP, You S, Mehle A. Multi-Modal Imaging with a Toolbox of Influenza A Reporter Viruses. Viruses 2015; 7:5319-27. [PMID: 26473913 PMCID: PMC4632381 DOI: 10.3390/v7102873] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
Reporter viruses are useful probes for studying multiple stages of the viral life cycle. Here we describe an expanded toolbox of fluorescent and bioluminescent influenza A reporter viruses. The enhanced utility of these tools enabled kinetic studies of viral attachment, infection, and co-infection. Multi-modal bioluminescence and positron emission tomography–computed tomography (PET/CT) imaging of infected animals revealed that antiviral treatment reduced viral load, dissemination, and inflammation. These new technologies and applications will dramatically accelerate in vitro and in vivo influenza virus studies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
36 |
23
|
Lemjabbar-Alaoui H, McKinney A, Yang YW, Tran VM, Phillips JJ. Glycosylation alterations in lung and brain cancer. Adv Cancer Res 2015; 126:305-44. [PMID: 25727152 DOI: 10.1016/bs.acr.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in glycosylation are common in cancer and are thought to contribute to disease. Lung cancer and primary malignant brain cancer, most commonly glioblastoma, are genetically heterogeneous diseases with extremely poor prognoses. In this review, we summarize the data demonstrating that glycosylation is altered in lung and brain cancer. We then use specific examples to highlight the diverse roles of glycosylation in these two deadly diseases and illustrate shared mechanisms of oncogenesis. In addition to alterations in glycoconjugate biosynthesis, we also discuss mechanisms of postsynthetic glycan modification in cancer. We suggest that alterations in glycosylation in lung and brain cancer provide novel tumor biomarkers and therapeutic targets.
Collapse
|
Review |
10 |
35 |
24
|
Lin S, Tran V, Talbot P. Comparison of toxicity of smoke from traditional and harm-reduction cigarettes using mouse embryonic stem cells as a novel model for preimplantation development. Hum Reprod 2009; 24:386-97. [PMID: 19043081 DOI: 10.1093/humrep/den419] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Embryonic stem cells (ESC), which originate from the inner cell mass of blastocysts, are valuable models for testing the effects of toxicants on preimplantation development. In this study, mouse ESC (mESC) were used to compare the toxicity of mainstream (MS) and sidestream (SS) cigarette smoke on cell attachment, survival and proliferation. In addition, smoke from a traditional commercial cigarette was compared with smoke from three harm-reduction brands. METHODS MS and SS smoke solutions were made using an analytical smoking machine and tested at three doses using D3 mESC plated on 0.2% gelatin. At 6 and 24 h, images were taken and the number of attached cells was evaluated. RESULTS Both MS and SS smoke from traditional and harm-reduction cigarettes inhibited cell attachment, survival and proliferation dose dependently. For all brands, SS smoke was more potent than MS smoke. However, removal of the cigarette filter increased the toxicity of MS smoke to that of SS smoke. Both MS and SS smoke from harm-reduction cigarettes were as inhibitory, or more inhibitory, than their counterparts from the traditional brand. When preimplantation mouse embryos were cultured for 1 h in MS or SS smoke solutions from a harm-reduction brand, blastomeres became apoptotic, in agreement with the data obtained using mESC. CONCLUSIONS mESC provide a valuable model for toxicological studies on the preimplantation stage of development and were used to show that MS and SS smoke from traditional and harm-reduction cigarettes are detrimental to embryonic cells prior to implantation.
Collapse
|
Comparative Study |
16 |
32 |
25
|
Kuberan B, Ethirajan M, Victor XV, Tran V, Nguyen K, Do A. "Click" xylosides initiate glycosaminoglycan biosynthesis in a mammalian cell line. Chembiochem 2008; 9:198-200. [PMID: 18085541 DOI: 10.1002/cbic.200700494] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
Research Support, Non-U.S. Gov't |
17 |
32 |