1
|
McGuffey C, Thomas AGR, Schumaker W, Matsuoka T, Chvykov V, Dollar FJ, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K, Bychenkov VY, Glazyrin IV, Karpeev AV. Ionization induced trapping in a laser wakefield accelerator. PHYSICAL REVIEW LETTERS 2010; 104:025004. [PMID: 20366605 DOI: 10.1103/physrevlett.104.025004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Indexed: 05/29/2023]
Abstract
Experimental studies of electrons produced in a laser wakefield accelerator indicate trapping initiated by ionization of target gas atoms. Targets composed of helium and controlled amounts of various gases were found to increase the beam charge by as much as an order of magnitude compared to pure helium at the same electron density and decrease the beam divergence from 5.1+/-1.0 to 2.9+/-0.8 mrad. The measurements are supported by particle-in-cell modeling including ionization. This mechanism should allow generation of electron beams with lower emittance and higher charge than in preionized gas.
Collapse
|
|
15 |
73 |
2
|
Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann ME, Chvykov V, Maksimchuk A, Yanovsky V, He ZH, Hou BX, Nees JA, Thomas AGR, Keitel CH, Zepf M, Krushelnick K. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams. PHYSICAL REVIEW LETTERS 2013; 110:255002. [PMID: 23829742 DOI: 10.1103/physrevlett.110.255002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 06/02/2023]
Abstract
The generation of ultrarelativistic positron beams with short duration (τ(e+) ≃ 30 fs), small divergence (θ(e+) ≃ 3 mrad), and high density (n(e+) ≃ 10(14)-10(15) cm(-3)) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.
Collapse
|
|
12 |
27 |
3
|
Göde S, Rödel C, Zeil K, Mishra R, Gauthier M, Brack FE, Kluge T, MacDonald MJ, Metzkes J, Obst L, Rehwald M, Ruyer C, Schlenvoigt HP, Schumaker W, Sommer P, Cowan TE, Schramm U, Glenzer S, Fiuza F. Relativistic Electron Streaming Instabilities Modulate Proton Beams Accelerated in Laser-Plasma Interactions. PHYSICAL REVIEW LETTERS 2017; 118:194801. [PMID: 28548516 DOI: 10.1103/physrevlett.118.194801] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 06/07/2023]
Abstract
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a μm-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of B>10 MG and E>0.1 MV/μm fields with a μm-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length ≳0.13λ_{0}sqrt[a_{0}]. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multipurpose applications.
Collapse
|
|
8 |
23 |
4
|
Sarri G, Corvan DJ, Schumaker W, Cole JM, Di Piazza A, Ahmed H, Harvey C, Keitel CH, Krushelnick K, Mangles SPD, Najmudin Z, Symes D, Thomas AGR, Yeung M, Zhao Z, Zepf M. Ultrahigh Brilliance Multi-MeV γ-Ray Beams from Nonlinear Relativistic Thomson Scattering. PHYSICAL REVIEW LETTERS 2014; 113:224801. [PMID: 25494074 DOI: 10.1103/physrevlett.113.224801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 06/04/2023]
Abstract
We report on the generation of a narrow divergence (θ_{γ}<2.5 mrad), multi-MeV (E_{max}≈18 MeV) and ultrahigh peak brilliance (>1.8×10^{20} photons s^{-1} mm^{-2} mrad^{-2} 0.1% BW) γ-ray beam from the scattering of an ultrarelativistic laser-wakefield accelerated electron beam in the field of a relativistically intense laser (dimensionless amplitude a_{0}≈2). The spectrum of the generated γ-ray beam is measured, with MeV resolution, seamlessly from 6 to 18 MeV, giving clear evidence of the onset of nonlinear relativistic Thomson scattering. To the best of our knowledge, this photon source has the highest peak brilliance in the multi-MeV regime ever reported in the literature.
Collapse
|
|
11 |
18 |
5
|
Schumaker W, Nakanii N, McGuffey C, Zulick C, Chyvkov V, Dollar F, Habara H, Kalintchenko G, Maksimchuk A, Tanaka KA, Thomas AGR, Yanovsky V, Krushelnick K. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions. PHYSICAL REVIEW LETTERS 2013; 110:015003. [PMID: 23383801 DOI: 10.1103/physrevlett.110.015003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Indexed: 06/01/2023]
Abstract
Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-μm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.
Collapse
|
|
12 |
11 |
6
|
Albert F, Lemos N, Shaw JL, Pollock BB, Goyon C, Schumaker W, Saunders AM, Marsh KA, Pak A, Ralph JE, Martins JL, Amorim LD, Falcone RW, Glenzer SH, Moody JD, Joshi C. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses. PHYSICAL REVIEW LETTERS 2017; 118:134801. [PMID: 28409970 DOI: 10.1103/physrevlett.118.134801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 06/07/2023]
Abstract
We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ∼5×10^{18} W/cm^{2} are focused into plasmas with electron densities of ∼1×10^{19} cm^{-3}, they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10-20 keV, and 2D particle-in-cell simulations were used to model the acceleration and radiation of the electrons in our experimental conditions.
Collapse
|
|
8 |
11 |
7
|
Warwick J, Dzelzainis T, Dieckmann ME, Schumaker W, Doria D, Romagnani L, Poder K, Cole JM, Alejo A, Yeung M, Krushelnick K, Mangles SPD, Najmudin Z, Reville B, Samarin GM, Symes DD, Thomas AGR, Borghesi M, Sarri G. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam. PHYSICAL REVIEW LETTERS 2017; 119:185002. [PMID: 29219555 DOI: 10.1103/physrevlett.119.185002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 06/07/2023]
Abstract
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
Collapse
|
|
8 |
9 |
8
|
Jolly SW, He Z, McGuffey C, Schumaker W, Krushelnick K, Thomas AGR. Stereolithography based method of creating custom gas density profile targets for high intensity laser-plasma experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:073503. [PMID: 22852691 DOI: 10.1063/1.4731782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Laser based stereolithography methods are shown to be useful for production of gas targets for high intensity laser-plasma interaction experiments. A cylindrically symmetric nozzle with an opening of approximately 100 μm and a periodic attachment of variable periodicity are outlined in detail with associated density profile characterization. Both components are durable within the limits of relevant experiments.
Collapse
|
|
13 |
1 |
9
|
Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann ME, Chvykov V, Maksimchuk A, Yanovsky V, He ZH, Hou BX, Nees JA, Thomas AGR, Keitel CH, Zepf M, Krushelnick K. Sarri et al. Reply. PHYSICAL REVIEW LETTERS 2020; 124:179502. [PMID: 32412293 DOI: 10.1103/physrevlett.124.179502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
|
Letter |
5 |
1 |
10
|
Fletcher LB, Zastrau U, Galtier E, Gamboa EJ, Goede S, Schumaker W, Ravasio A, Gauthier M, MacDonald MJ, Chen Z, Granados E, Lee HJ, Fry A, Kim JB, Roedel C, Mishra R, Pelka A, Kraus D, Barbrel B, Döppner T, Glenzer SH. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:11E524. [PMID: 27910564 DOI: 10.1063/1.4959792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].
Collapse
|
|
9 |
1 |