1
|
Niu W, Kim Y, Tau G, Heyduk T, Ebright RH. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 1996; 87:1123-34. [PMID: 8978616 PMCID: PMC4430116 DOI: 10.1016/s0092-8674(00)81806-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
At Class II catabolite activator protein (CAP)-dependent promoters, CAP activates transcription from a DNA site overlapping the DNA site for RNA polymerase. We show that transcription activation at Class II CAP-dependent promoters requires not only the previously characterized interaction between an activating region of CAP and the RNA polymerase alpha subunit C-terminal domain, but also an interaction between a second, promoter-class-specific activating region of CAP and the RNA polymerase alpha subunit N-terminal domain. We further show that the two interactions affect different steps in transcription initiation. Transcription activation at Class II CAP-dependent promoters provides a paradigm for understanding how an activator can make multiple interactions with the transcription machinery, each interaction being responsible for a specific mechanistic consequence.
Collapse
|
research-article |
29 |
218 |
2
|
Estrem ST, Ross W, Gaal T, Chen ZW, Niu W, Ebright RH, Gourse RL. Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. Genes Dev 1999; 13:2134-47. [PMID: 10465790 PMCID: PMC316962 DOI: 10.1101/gad.13.16.2134] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We demonstrate here that the previously described bacterial promoter upstream element (UP element) consists of two distinct subsites, each of which, by itself, can bind the RNA polymerase holoenzyme alpha subunit carboxy-terminal domain (RNAP alphaCTD) and stimulate transcription. Using binding-site-selection experiments, we identify the consensus sequence for each subsite. The selected proximal subsites (positions -46 to -38; consensus 5'-AAAAAARNR-3') stimulate transcription up to 170-fold, and the selected distal subsites (positions -57 to -47; consensus 5'-AWWWWWTTTTT-3') stimulate transcription up to 16-fold. RNAP has subunit composition alpha(2)betabeta'sigma and thus contains two copies of alphaCTD. Experiments with RNAP derivatives containing only one copy of alphaCTD indicate, in contrast to a previous report, that the two alphaCTDs function interchangeably with respect to UP element recognition. Furthermore, function of the consensus proximal subsite requires only one copy of alphaCTD, whereas function of the consensus distal subsite requires both copies of alphaCTD. We propose that each subsite constitutes a binding site for a copy of alphaCTD, and that binding of an alphaCTD to the proximal subsite region (through specific interactions with a consensus proximal subsite or through nonspecific interactions with a nonconsensus proximal subsite) is a prerequisite for binding of the other alphaCTD to the distal subsite.
Collapse
|
research-article |
26 |
160 |
3
|
Wang J, Niu W, Nikiforov Y, Naito S, Chernausek S, Witte D, LeRoith D, Strauch A, Fagin JA. Targeted overexpression of IGF-I evokes distinct patterns of organ remodeling in smooth muscle cell tissue beds of transgenic mice. J Clin Invest 1997; 100:1425-39. [PMID: 9294108 PMCID: PMC508321 DOI: 10.1172/jci119663] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Smooth muscle cells (SMC) of the vascular wall, bladder, myometrium, and gastrointestinal and respiratory tracts retain the ability to proliferate postnatally, which enables adaptive responses to injury, hormonal, or mechanical stimulation. SMC growth is regulated by a number of mesenchymal growth factors, including insulin-like growth factor I (IGF-I). To explore the function of IGF-I on SMC in vivo, the mouse SMC alpha-actin promoter fragment SMP8 (-1074 bp, 63 bp of 5'UT and 2.5 kb of intron 1) was cloned upstream of rat IGF-I cDNA, and the fusion gene microinjected to fertilized eggs of the FVB-N mouse strain. Mating of hemizygous mice with controls produced about 50% transgenic offspring, with equal sex distribution. Transgenic IGF-I mRNA expression was confined to SMC-containing tissues, with the following hierarchy: bladder > stomach > aorta = uterus > intestine. There was no transgene expression in skeletal muscle, heart, or liver. Radioimmunoassayable IGF-I content was increased by 3.5- to 4-fold in aorta, and by almost 10-fold in bladder of transgenic mice at 5 and 10 wk, with no change in plasma IGF-I levels. Wet weight of bladder, stomach, intestine, uterus, and aorta was selectively increased, with no change in total body or carcass weight of transgenic animals. In situ hybridization showed that transgene expression was exquisitely targeted to the smooth muscle layers of the arteries, veins, bladder, ureter, stomach, intestine, and uterus. Paracrine overproduction of IGF-I resulted in hyperplasia of the muscular layers of these tissues, manifesting in remarkably different phenotypes in the various SMC beds. Whereas the muscular layer of the bladder and stomach exhibited a concentric thickening, the SMC of the intestine and uterus grew in a longitudinal fashion, resulting in a marked lengthening of the small bowel and of the uterine horns. This report describes the first successful targeting of expression of any functional protein capable of modifying the phenotype of SMC in transgenic mice. IGF-I stimulates SMC hyperplasia, leading to distinct patterns of organ remodeling in the different tissue environments.
Collapse
|
research-article |
28 |
159 |
4
|
Niu W, Yoshioka T, Kobayashi C, Suda H. A scanning electron microscopic study of dentinal erosion by final irrigation with EDTA and NaOCl solutions. Int Endod J 2002; 35:934-9. [PMID: 12453023 DOI: 10.1046/j.1365-2591.2002.00594.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The purpose of this in vitro study was to examine dentinal erosion caused by final irrigation with EDTA and NaOCl. METHODOLOGY Twenty-five single-rooted human teeth were instrumented with rotary nickel-titanium Series 29 Profile Instruments. The teeth were divided into five groups and subjected to final irrigation as follows: group A, irrigated with 6% NaOCl (3 mL) for 2 min; group B, 15% EDTA (3 mL) for 1 min; group C, 15% EDTA (3 mL) for 1 min, followed by 6% NaOCl (3 mL) for 2 min; group D, 15% EDTA (3 mL) for 3 min and group E, 15% EDTA (3 mL) for 3 min, followed by 6% NaOCl (3 mL) for 2 min. Photomicrographs of dentinal walls were produced using a scanning electron microscope (3000 x) at 1, 3 and 6 mm from the apex. The amount of debris and dentinal tubule diameter were evaluated, and values were statistically analysed using one-way ANOVA and Fisher's PLSD test. RESULTS When the root canal was irrigated with 15% EDTA alone, the dentine had a smooth and plane appearance, and dentinal tubule orifices were regular and separated. When the root canal was irrigated with EDTA followed by NaOCL the dentine was eroded and the dentinal tubule orifices were irregular and rough. Dentinal tubule diameter increased to 3.43 +/- 0.23 microm in group C and to 3.93 +/- 0.44 microm in group E. Significant differences were observed between groups B and C, and between groups D and E (P < 0.05). However, more debris was removed by irrigation with EDTA followed by NaOCl than with EDTA alone (P < 0.05). CONCLUSIONS Final irrigation with 6% NaOCl accelerates dentinal erosion following treatment with 15% EDTA.
Collapse
|
|
23 |
148 |
5
|
Rudich A, Konrad D, Török D, Ben-Romano R, Huang C, Niu W, Garg RR, Wijesekara N, Germinario RJ, Bilan PJ, Klip A. Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia 2003; 46:649-58. [PMID: 12712244 DOI: 10.1007/s00125-003-1080-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 01/20/2003] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Insulin-dependent glucose influx in skeletal muscle and adipocytes is believed to rely largely on GLUT4, but this has not been confirmed directly. We assessed the relative functional contribution of GLUT4 in experimental models of skeletal muscle and adipocytes using the HIV-1 protease inhibitor indinavir. METHODS Indinavir (up to 100 micro mol/l) was added to the glucose transport solution after insulin stimulation of wild-type L6 muscle cells, L6 cells over-expressing either GLUT4myc or GLUT1myc, 3T3-L1 adipocytes, isolated mouse brown or white adipocytes, and isolated mouse muscle preparations. RESULTS 100 micro mol/l indinavir inhibited 80% of both basal and insulin-stimulated 2-deoxyglucose uptake in L6GLUT4myc myotubes and myoblasts, but only 25% in L6GLUT1myc cells. Cell-surface density of glucose transporters was not affected. In isolated soleus and extensor digitorum longus muscles, primary white and brown adipocytes, insulin-stimulated glucose uptake was inhibited 70 to 80% by indinavir. The effect of indinavir on glucose uptake was variable in 3T3-L1 adipocytes, averaging 45% and 67% inhibition of basal and maximally insulin-stimulated glucose uptake, respectively. In this cell, fractional inhibition of glucose uptake by indinavir correlated positively with the fold-stimulation of glucose uptake by insulin, and was higher with sub-maximal insulin concentrations. The latter finding coincided with an increase only in GLUT4, but not GLUT1, in plasma membrane lawns. CONCLUSION/INTERPRETATION Indinavir is a useful tool to assess different functional contributions of GLUT4 to glucose uptake in common models of skeletal muscle and adipocytes.
Collapse
|
Comparative Study |
22 |
95 |
6
|
Shonat RD, Wachman ES, Niu W, Koretsky AP, Farkas DL. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope. Biophys J 1997; 73:1223-31. [PMID: 9284290 PMCID: PMC1181022 DOI: 10.1016/s0006-3495(97)78155-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues.
Collapse
|
research-article |
28 |
91 |
7
|
Farkas DL, Du C, Fisher GW, Lau C, Niu W, Wachman ES, Levenson RM. Non-invasive image acquisition and advanced processing in optical bioimaging. Comput Med Imaging Graph 1998; 22:89-102. [PMID: 9719850 DOI: 10.1016/s0895-6111(98)00011-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Light is a most versatile tool for investigating biological systems and phenomena; the range, non-destructiveness, spatial discrimination and speed of optical imaging are all important for investigating structure and function at the cellular, tissue or even whole organism level. In live biological imaging, where the technological requirements are heightened, other features of light, such as coherence and wavelength, are used to generate the additional contrast and resolution needed. We report here recent improvements in our ability to image biological specimens optically, focusing on (a) spectral resolution and the related image processing issues, and (b) tomographic three-dimensional fluorescence imaging in vivo.
Collapse
|
|
27 |
83 |
8
|
Wachman ES, Niu W, Farkas DL. AOTF microscope for imaging with increased speed and spectral versatility. Biophys J 1997; 73:1215-22. [PMID: 9284289 PMCID: PMC1181021 DOI: 10.1016/s0006-3495(97)78154-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse.
Collapse
|
research-article |
28 |
72 |
9
|
Wang J, Niu W, Witte DP, Chernausek SD, Nikiforov YE, Clemens TL, Sharifi B, Strauch AR, Fagin JA. Overexpression of insulin-like growth factor-binding protein-4 (IGFBP-4) in smooth muscle cells of transgenic mice through a smooth muscle alpha-actin-IGFBP-4 fusion gene induces smooth muscle hypoplasia. Endocrinology 1998; 139:2605-14. [PMID: 9564877 DOI: 10.1210/endo.139.5.5986] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor I (IGF-I) has been postulated to function as a smooth muscle cell (SMC) mitogen and to play a role in the pathogenesis of bladder hypertrophy, estrogen-induced uterine growth, and restenosis after arterial angioplasty. IGF-binding protein-4 (IGFBP-4) inhibits IGF-I action in vitro and is the most abundant IGFBP in the rodent arterial wall. To explore the function of this binding protein in vivo, transgenic mouse lines were developed harboring fusion genes consisting of a rat IGFBP-4 complementary DNA cloned downstream of either a -724 bp fragment of the mouse smooth muscle alpha-actin 5'-flanking region (SMP2-BP-4) or -1074 bp, 63 bp of 5'-untranslated region, and 2.5 kb of intron 1 of smooth muscle alpha-actin (SMP8-BP-4). SMP2-BP-4 mice expressed low levels of the exogenous IGFBP-4 messenger RNA (mRNA), which was not specifically targeted to SMC-rich tissue environments, and were therefore not analyzed further. Six SMP8-BP-4 transgenic lines derived from separate founders were characterized. Mating of hemizygous SMP8-BP-4 mice with controls produced about 50% transgenic offspring, with equal sex distribution. Expression of IGFBP-4 mRNA in nontransgenic littermates was maximal in liver and kidney. By contrast, transgenic IGFBP-4 mRNA expression, distinguished because of a smaller transcript size, was confined to SMC-containing tissues, with the following hierarchy: bladder > aorta > stomach = uterus. There was no transgene expression in skeletal muscle, brain, or cardiac myocytes. The abundance of IGFBP-4 measured by Western ligand blotting or by immunoblotting, was 8- to 10-fold higher in aorta and bladder of SMP8-BP-4 mice than in their nontransgenic littermates, with no change in plasma IGFBP-4 levels. Transgenic mice exhibited a significant reduction in wet weight of SMC-rich tissues, including bladder, intestine, aorta, uterus, and stomach, with no change in total body or carcass weight. In situ hybridization showed that transgene expression was targeted exclusively to the muscular layers of the arteries, veins, bladder, ureter, stomach, intestine, and uterus. Overexpression of IGFBP-4 was associated with SMC hypoplasia, a reciprocal phenotype to that of transgenic mice overexpressing IGF-I under control of the same promoter (SMP8-IGF-I). Double transgenic mice derived from mating SMP8-BP-4 with SMP8-IGF-I animals showed a modest decrease in wet weight at selected SMC tissues. Although we cannot exclude that the effects of IGFBP-4 may be IGF independent, these data suggest that IGFBP-4 is a functional antagonist of IGF-I action on SMC in vivo.
Collapse
|
|
27 |
71 |
10
|
Somwar R, Niu W, Kim DY, Sweeney G, Randhawa VK, Huang C, Ramlal T, Klip A. Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport. J Biol Chem 2001; 276:46079-87. [PMID: 11598141 DOI: 10.1074/jbc.m109093200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.
Collapse
|
|
24 |
71 |
11
|
Somwar R, Kim DY, Sweeney G, Huang C, Niu W, Lador C, Ramlal T, Klip A. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem J 2001; 359:639-49. [PMID: 11672439 PMCID: PMC1222186 DOI: 10.1042/0264-6021:3590639] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We previously reported that SB203580, an inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), attenuates insulin-stimulated glucose uptake without altering GLUT4 translocation. These results suggested that insulin might activate GLUT4 via a p38 MAPK-dependent pathway. Here we explore this hypothesis by temporal and kinetic analyses of the stimulation of GLUT4 translocation, glucose uptake and activation of p38 MAPK isoforms by insulin. In L6 myotubes stably expressing GLUT4 with an exofacial Myc epitope, we found that GLUT4 translocation (t(1/2)=2.5 min) preceded the stimulation of 2-deoxyglucose uptake (t(1/2)=6 min). This segregation of glucose uptake from GLUT4 translocation became more apparent when the two parameters were measured at 22 degrees C. Preincubation with the p38 MAPK inhibitors SB202190 and SB203580 reduced insulin-stimulated transport of either 2-deoxyglucose or 3-O-methylglucose by 40-60%. Pretreatment with SB203580 lowered the apparent transport V(max) of insulin-mediated 2-deoxyglucose and 3-O-methylglucose without any significant change in the apparent K(m) for either hexose. The IC(50) values for the partial inhibition of 2-deoxyglucose uptake by SB202190 and SB203580 were 1 and 2 microM respectively, and correlated with the IC(50) for full inhibition of p38 MAPK by the two inhibitors in myotubes (2 and 1.4 microM, respectively). Insulin caused a dose- (EC(50)=15 nM) and time- (t(1/2)=3 min) dependent increase in p38 MAPK phosphorylation, which peaked at 10 min (2.3+/-0.3-fold). In vitro kinase assay of immunoprecipitates from insulin-stimulated myotubes showed activation of p38 alpha (2.6+/-0.3-fold) and p38 beta (2.3+/-0.2-fold) MAPK. These results suggest that activation of GLUT4 follows GLUT4 translocation and that both mechanisms contribute to the full stimulation of glucose uptake by insulin. Furthermore, activation of GLUT4 may occur via an SB203580-sensitive pathway, possibly involving p38 MAPK.
Collapse
|
research-article |
24 |
63 |
12
|
Niu W, Zhou Y, Dong Q, Ebright YW, Ebright RH. Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). I. Saturation and alanine-scanning mutagenesis. J Mol Biol 1994; 243:595-602. [PMID: 7966284 DOI: 10.1016/0022-2836(94)90034-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been proposed that the surface loop consisting of amino acid residues 152 to 166 of the catabolite gene activator protein (CAP) of Escherichia coli makes direct protein-protein contact with RNA polymerase at the lac promoter. In this work, we have used targeted saturation mutagenesis of codons 152 to 166 of the gene encoding CAP, followed by a screen, to isolate more than 200 independent mutants of CAP defective in transcription activation but not defective in DNA binding. All isolated single-substitution mutants map to just eight amino acid residues; 156, 157, 158, 159, 160, 162, 163 and 164. We propose that these residues define the full extent of the epitope on CAP for the proposed CAP-RNA polymerase interaction. In addition, we have constructed alanine substitutions at each position from residue 152 to 166 of CAP, and we have analyzed the effects on transcription activation at the lac promoter and on DNA binding. Alanine substitution of Thr158 results in an approximately eightfold specific defect in transcription activation. In contrast, alanine substitution of no other residue tested results in a more than twofold specific defect in transcription activation. We conclude that, for Thr158, side-chain atoms beyond C beta are essential for transcription activation at the lac promoter, and we propose that Thr158 OH7 gamma makes direct contact with RNA polymerase in the ternary complex of lac promoter, CAP and RNA polymerase. We conclude further that for no residue other than Thr158 are side-chain atoms beyond C beta essential for transcription activation at the lac promoter.
Collapse
|
|
31 |
58 |
13
|
Antonescu CN, Huang C, Niu W, Liu Z, Eyers PA, Heidenreich KA, Bilan PJ, Klip A. Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity. Endocrinology 2005; 146:3773-81. [PMID: 15947002 DOI: 10.1210/en.2005-0404] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin increases glucose uptake through translocation of the glucose transporter GLUT4 to the plasma membrane. We previously showed that insulin activates p38MAPK, and inhibitors of p38MAPKalpha and p38MAPKbeta (e.g. SB203580) reduce insulin-stimulated glucose uptake without affecting GLUT4 translocation. This observation suggested that insulin may increase GLUT4 activity via p38alpha and/or p38beta. Here we further explore the possible participation of p38MAPK through a combination of molecular strategies. SB203580 reduced insulin stimulation of glucose uptake in L6 myotubes overexpressing an SB203580-resistant p38alpha (drug-resistant p38alpha) but barely affected phosphorylation of the p38 substrate MAPK-activated protein kinase-2. Expression of dominant-negative p38alpha or p38beta reduced p38MAPK phosphorylation by 70% but had no effect on insulin-stimulated glucose uptake. Gene silencing via isoform-specific small interfering RNAs reduced expression of p38alpha or p38beta by 60-70% without diminishing insulin-stimulated glucose uptake. SB203580 reduced photoaffinity labeling of GLUT4 by bio-LC-ATB-BMPA only in the insulin-stimulated state. Unless low levels of p38MAPK suffice to regulate glucose uptake, these results suggest that the inhibition of insulin-stimulated glucose transport by SB203580 is likely not mediated by p38MAPK. Instead, changes experienced by insulin-stimulated GLUT4 make it susceptible to inhibition by SB203580.
Collapse
|
|
20 |
56 |
14
|
Niu W, Eto JN, Kimura Y, Takeda FH, Matsumoto K. A study on microleakage after resin filling of Class V cavities prepared by Er:YAG laser. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 1998; 16:227-31. [PMID: 9796492 DOI: 10.1089/clm.1998.16.227] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aims of this study were to investigate microleakage after composite resin filling to class V cavities prepared by Er:YAG laser and to compare the results with those obtained by a conventional method using an air turbine in vitro. SUMMARY BACKGROUND DATA There has been no report of the microleakage study on class V cavities prepared by Er:YAG laser. METHODS Forty-eight human extracted single root teeth were used in this study. Teeth were divided into three groups of sixteen each and class V cavities of the same size were prepared by Er:YAG laser for two groups and by air turbine for one group (control). For one group prepared by Er:YAG laser and the control group, the teeth were treated with 30% phosphoric acid. After the cavities were filled with the composite resin, the teeth except the areas of cavities and margins were covered by nail varnish and dye penetration was performed under the 0.6% Rhodamine B at 36 degrees C for 48 hrs. The teeth were sectioned at a thickness of 2 mm transversally and the slices were evaluated by stereoscopy and scanning electron microscopy (SEM). RESULTS Microleakage at the cavity margins was observed in all three groups using the dye penetration method, but there was no significant difference among the three groups. SEM results showed similar results with the dye penetration method. CONCLUSION These results suggest that microleakage at the cavities prepared by Er:YAG laser is at the same level as for prepared by air turbine using dye penetration and SEM methods.
Collapse
|
Comparative Study |
27 |
53 |
15
|
Sullivan SM, Horn PJ, Olson VA, Koop AH, Niu W, Ebright RH, Triezenberg SJ. Mutational analysis of a transcriptional activation region of the VP16 protein of herpes simplex virus. Nucleic Acids Res 1998; 26:4487-96. [PMID: 9742254 PMCID: PMC147869 DOI: 10.1093/nar/26.19.4487] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The VP16 protein of herpes simplex virus is a potent transcriptional activator of the viral immediate early genes. The transcriptional activation region of VP16 can be divided into two functional subregions, here designated VP16N (comprising amino acids 413-456) and VP16C (amino acids 450-490). Assays of VP16C mutants resulting from both random and alanine-scanning mutagenesis indicated that the sidechains of three phenylalanines (at positions 473, 475 and 479) and one acidic residue (glutamate 476) are important for transcriptional activation. Aromatic and bulky hydrophobic amino acids were effective substitutes for each of the three Phe residues, whereas replacement with smaller or polar amino acids resulted in loss of transcriptional function. In contrast, many changes were tolerated for Glu476, including bulky hydrophobic and basic amino acids, indicating that the negative charge at this position contributes little to the function of this subregion. Similar relative activities for most of the mutants were observed in yeast and in mammalian cells, indicating that the structural requirements for this activation region are comparable in these two species. These results reinforce the hypothesis that bulky hydrophobic residues, not acidic residues, are most critical for the activity of this 'acidic' transcriptional activation region.
Collapse
|
research-article |
27 |
51 |
16
|
Liu Y, Zhao R, Wang H, Luo Y, Wang X, Niu W, Zhou Y, Wen Q, Fan S, Li X, Xiong W, Ma J, Li X, Tan M, Li G, Zhou M. miR-141 is involved in BRD7-mediated cell proliferation and tumor formation through suppression of the PTEN/AKT pathway in nasopharyngeal carcinoma. Cell Death Dis 2016; 7:e2156. [PMID: 27010857 PMCID: PMC4823963 DOI: 10.1038/cddis.2016.64] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Bromodomain containing 7 (BRD7) was identified as a nuclear transcriptional regulatory factor. BRD7 functions as a tumor suppressor in multiple cancers, including nasopharyngeal carcinoma (NPC). In this study, we reported a novel mechanism of BRD7 in NPC progression. We demonstrated that the expression of miR-141 was remarkably increased in NPC tissues and was negatively correlated with the expression of BRD7 and the survival rate of NPC patients. Decreased expression levels of miR-141, including the primary, the precursor and the mature forms of miR-141, were found in BRD7-overexpressing HEK293, 5-8F and HNE1 cells compared the control cells, while there was no obvious effect on the expression levels of the two critical enzymes Drosha and Dicer. BRD7 can negatively regulate the promoter activity of miR-141, while no obvious binding site of BRD7 was found in the potential promoter region of miR-141. Moreover, ectopic expression of miR-141 can significantly promote cell proliferation and inhibit apoptosis in NPC, and rescuing the expression of miR-141 in BRD7-overexpressing NPC cells could partially reverse the tumor suppressive effect of BRD7 on cell proliferation and tumor growth in vitro and in vivo. Furthermore, the activation of the PTEN/AKT pathway mediated by the overexpression of BRD7 could be inhibited by rescuing the expression of miR-141, which accordingly results in the partial restoration of cell proliferation and tumor growth. Our findings demonstrate that the BRD7/miR-141/PTEN/AKT axis has critical roles in the progression of NPC and provide some promising targets for the diagnosis and treatment of NPC.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
49 |
17
|
Su Z, Zang T, Liu ML, Wang LL, Niu W, Zhang CL. Reprogramming the fate of human glioma cells to impede brain tumor development. Cell Death Dis 2014; 5:e1463. [PMID: 25321470 PMCID: PMC4649522 DOI: 10.1038/cddis.2014.425] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
Abstract
Malignant gliomas, the most common solid tumors in the central nervous system, are essentially incurable due to their rapid growth and very invasive nature. One potential approach to eradicating glioma cells is to force these cells to undergo terminal differentiation and, in the process, to irreversible postmitotic arrest. Here, we show that neurogenin 2 (NGN2, also known as NEUROG2) synergizes with sex-determining region Y-box 11 (SOX11) to very efficiently convert human glioma cells to terminally differentiated neuron-like cells in both cell culture and adult mouse brains. These cells exhibit neuronal morphology, marker expression, and electrophysiological properties. The conversion process is accompanied by cell cycle exit, which dramatically inhibits glioma cell proliferation and tumor development after orthotopic transplantation. Most importantly, intracranial injection of NGN2- and SOX11-expressing virus into the tumor mass also curtails glioma growth and significantly improves survival of tumor-bearing mice. Taken together, this study shows a simple and highly efficient strategy for reprogramming malignant glioma cells into postmitotic cells, which might be a promising therapeutic approach for brain tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
40 |
18
|
Shang X, Song X, Faller C, Lai R, Li H, Cerny R, Niu W, Guo J. Fluorogenic protein labeling using a genetically encoded unstrained alkene. Chem Sci 2016; 8:1141-1145. [PMID: 28451254 PMCID: PMC5369545 DOI: 10.1039/c6sc03635j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022] Open
Abstract
A new fluorogenic bioorthogonal reaction between styrene (an unstrained alkene) and a tetrazine was developed.
We developed a new fluorogenic bioorthogonal reaction that is based on the inverse electron-demand Diels–Alder reaction between styrene (an unstrained alkene) and a simple tetrazine. The reaction forms a new fluorophore with no literature precedent. We have identified an aminoacyl-tRNA synthetase/tRNA pair for the efficient and site-specific incorporation of a styrene-containing amino acid into proteins in response to amber nonsense codon. Fluorogenic labeling of purified proteins and intact proteins in live cells were demonstrated. The fluorogenicity of the styrene–tetrazine reaction can be potentially applied to the study of protein folding and function under physiological conditions with low background fluorescence interference.
Collapse
|
Journal Article |
9 |
36 |
19
|
Niu W, Wu Y, Li B, Chen N, Song S. Effects of long-term acclimatization in lowlanders migrating to high altitude: comparison with high altitude residents. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1995; 71:543-8. [PMID: 8983923 DOI: 10.1007/bf00238558] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The physiological response to submaximal and maximal exercise was assessed in lowlanders and Tibetans at low (500 m above sea level) and high altitude (HA, 3,680 m). The times spent at HA by the lowland migrators was 8 days (n = 60), 7 months (n = 60, same group), 15 months (n = 29) and 27 months (n = 29). After the 15-month stay at HA, the maximal oxygen uptake (VO2max) and maximal heart rate of the lowland migrators almost reached those of the HA native residents (Tibetans, n = 57), but their total work capacity and the gross efficiency (eta) of mechanical work remained lower than those of the Tibetans. The rate of VO2max achieved at 90 W by the Tibetans was lower than that of the lowland migrators. It was concluded that, at HA, the lowlanders regained much of the aerobic capacity which they had lost initially. However, they did not attain the same gross mechanical efficiency as the Tibetans, who seemed to be at an advantage in respect of work at HA.
Collapse
|
Comparative Study |
30 |
35 |
20
|
Zhang J, Li Y, Wang Y, Niu W, Zhang Y, Gao P, Zhang L, Lin H, Chen K, Zhu D. Arterial stiffness and asymptomatic intracranial large arterial stenosis and calcification in hypertensive chinese. Am J Hypertens 2011; 24:304-9. [PMID: 21164493 DOI: 10.1038/ajh.2010.246] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intracranial large artery disease (ICLAD), such as stenosis and calcification, is common in Chinese patients with stroke. However, little is known about ICLAD and its association with large arterial stiffness in hypertensive patients. METHODS We recruited 270 (mean age 61.0 years, 45.6% male) untreated hypertensive patients without stroke from a community in Shanghai, China. ICLAD was detected by computerized tomographic angiography (CTA). Carotid-femoral pulse wave velocity (cf-PWV), office, and 24-h ambulatory pulse pressure (PP) as well as ambulatory arterial stiffness index (AASI) were determined as the measures of arterial stiffness. RESULTS Among all participants, 26 (9.6%) had concurrent intracranial arterial stenosis and calcification, 11 (4.1%) stenosis only, and 71 (26.3%) calcifications only. After adjustment for age, mean arterial pressure, and other covariables, there was significant difference in cf-PWV (13.1 vs. 13.7 vs. 15.0 m/s; P = 0.0015) and 24-h PP (46.7 vs. 48.8 vs. 55.7 mm Hg; P = 0.0007) between patients with normal vessels (n = 162), with stenosis or calcification (n = 82), and with both lesions (n = 26). Multiple ordinal logistic regression analyses showed that both cf-PWV and 24-h PP were independently associated with ICLAD. Odds ratios (95% confidence interval (CI)) of ICLAD after multivariable and mutually adjustment were 1.51 (1.09-2.10) and 1.46 (1.06-2.01) for 1-s.d. increase in cf-PWV and 24-h PP, respectively. No significant association (P ≥ 0.10) with AASI or office PP was observed in multivariable analysis. CONCLUSION Increased arterial stiffness was independently associated with ICLAD. cf-PWV and 24-h PP might be useful in identifying those more likely to have ICLAD among hypertensive patients.
Collapse
|
|
14 |
35 |
21
|
Li Q, Zhu X, Ishikura S, Zhang D, Gao J, Sun Y, Contreras-Ferrat A, Foley KP, Lavandero S, Yao Z, Bilan PJ, Klip A, Niu W. Ca²⁺ signals promote GLUT4 exocytosis and reduce its endocytosis in muscle cells. Am J Physiol Endocrinol Metab 2014; 307:E209-24. [PMID: 24895284 DOI: 10.1152/ajpendo.00045.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevating cytosolic Ca(2+) stimulates glucose uptake in skeletal muscle, but how Ca(2+) affects intracellular traffic of GLUT4 is unknown. In tissue, changes in Ca(2+) leading to contraction preclude analysis of the impact of individual, Ca(2+)-derived signals. In L6 muscle cells stably expressing GLUT4myc, the Ca(2+) ionophore ionomycin raised cytosolic Ca(2+) and caused a gain in cell surface GLUT4myc. Extra- and intracellular Ca(2+) chelators (EGTA, BAPTA-AM) reversed this response. Ionomycin activated calcium calmodulin kinase II (CaMKII), AMPK, and PKCs, but not Akt. Silencing CaMKIIδ or AMPKα1/α2 partly reduced the ionomycin-induced gain in surface GLUT4myc, as did peptidic or small molecule inhibitors of CaMKII (CN21) and AMPK (Compound C). Compared with the conventional isoenzyme PKC inhibitor Gö6976, the conventional plus novel PKC inhibitor Gö6983 lowered the ionomycin-induced gain in cell surface GLUT4myc. Ionomycin stimulated GLUT4myc exocytosis and inhibited its endocytosis in live cells. siRNA-mediated knockdown of CaMKIIδ or AMPKα1/α2 partly reversed ionomycin-induced GLUT4myc exocytosis but did not prevent its reduced endocytosis. Compared with Gö6976, Gö6983 markedly reversed the slowing of GLUT4myc endocytosis triggered by ionomycin. In summary, rapid Ca(2+) influx into muscle cells accelerates GLUT4myc exocytosis while slowing GLUT4myc endocytosis. CaMKIIδ and AMPK stimulate GLUT4myc exocytosis, whereas novel PKCs reduce endocytosis. These results identify how Ca(2+)-activated signals selectively regulate GLUT4 exocytosis and endocytosis in muscle cells.
Collapse
|
|
11 |
32 |
22
|
Zhao Y, Huang H, Jiang Y, Wei H, Liu P, Wang W, Niu W. Unusual localization and translocation of TRPV4 protein in cultured ventricular myocytes of the neonatal rat. Eur J Histochem 2012; 56:e32. [PMID: 23027348 PMCID: PMC3493978 DOI: 10.4081/ejh.2012.e32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/25/2012] [Accepted: 05/30/2012] [Indexed: 12/02/2022] Open
Abstract
TRPV4 protein forms a Ca2+-permeable channel that is sensitive to osmotic and mechanical stimuli and responds to warm temperatures, and expresses widely in various kinds of tissues. As for cardiac myocytes, TRPV4 has been detected only at the mRNA level and there were few reports about subcel-lular localization of the protein. The purpose of the present study was to investigate the expression profile of TRPV4 protein in cultured neonatal rat ventricular myocytes. Using Western blots, immunofluorescence, confocal microscopy and immuno-electron microscopy, we have shown that TRPV4 protein was predominantly located in the nucleus of cultured neonatal myocytes. Furthermore, cardiac myocytes responded to hypotonic stimulation by translocating TRPV4 protein out of the nucleus. The significance and mechanism concerning the unusual distribution and translocation of TRPV4 protein in cardiac myocytes remain to be clarified.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
30 |
23
|
Jiang Y, Li X, Xu J, Pan C, Zhang J, Niu W. Multiresidue method for the determination of 77 pesticides in wine using QuEChERS sample preparation and gas chromatography with mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2009; 26:859-66. [DOI: 10.1080/02652030902822794] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
16 |
27 |
24
|
Sweeney G, Niu W, Canfield VA, Levenson R, Klip A. Insulin increases plasma membrane content and reduces phosphorylation of Na(+)-K(+) pump alpha(1)-subunit in HEK-293 cells. Am J Physiol Cell Physiol 2001; 281:C1797-803. [PMID: 11698237 DOI: 10.1152/ajpcell.2001.281.6.c1797] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin stimulates K(+) uptake and Na(+) efflux via the Na(+)-K(+) pump in kidney, skeletal muscle, and brain. The mechanism of insulin action in these tissues differs, in part, because of differences in the isoform complement of the catalytic alpha-subunit of the Na(+)-K(+) pump. To analyze specifically the effect of insulin on the alpha(1)-isoform of the pump, we have studied human embryonic kidney (HEK)-293 cells stably transfected with the rat Na(+)-K(+) pump alpha(1)-isoform tagged on its first exofacial loop with a hemagglutinin (HA) epitope. The plasma membrane content of alpha(1)-subunits was quantitated by binding a specific HA antibody to intact cells. Insulin rapidly increased the number of alpha(1)-subunits at the cell surface. This gain was sensitive to the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin and to the protein kinase C (PKC) inhibitor bisindolylmaleimide. Furthermore, the insulin-stimulated gain in surface alpha-subunits correlated with an increase in the binding of an antibody that recognizes only the nonphosphorylated form of alpha(1) (at serine-18). These results suggest that insulin regulates the Na(+)-K(+) pump in HEK-293 cells, at least in part, by decreasing serine phosphorylation and increasing plasma membrane content of alpha(1)-subunits via a signaling pathway involving PI 3-kinase and PKC.
Collapse
|
|
24 |
26 |
25
|
Ehringer WD, Niu W, Chiang B, Wang OL, Gordon L, Chien S. Membrane permeability of fructose-1,6-diphosphate in lipid vesicles and endothelial cells. Mol Cell Biochem 2000; 210:35-45. [PMID: 10976756 DOI: 10.1023/a:1007059214754] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fructose-1,6-diphosphate (FDP) is a glycolytic intermediate which has been used an intervention in various ischemic conditions for two decades. Yet whether FDP can enter the cell is under constant debate. In this study we examined membrane permeability of FDP in artificial membrane bilayers and in endothelial cells. To examine passive diffusion of FDP through the membrane bilayer, L-alpha-phosphatidylcholine from egg yolk (Egg PC) (10 mM) multi-lamellar vesicles were created containing different external concentrations of FDP (0, 0.5, 5 and 50 mM). The passive diffusion of FDP into the vesicles was followed spectrophotometrically. The results indicate that FDP diffuses through the membrane bilayer in a dose-dependent fashion. The movement of FDP through Egg PC membrane bilayers was confirmed by measuring the conversion of FDP to dihydroxyacetone-phosphate and the formation of hydrozone. FDP (0, 0.5, 5 or 50 mM) was encapsulated in Egg PC multilamellar vesicles and placed in a solution containing aldolase. In the 5 and 50 mM FDP groups there was a significant increase in dihydroxyacetone/hydrazone indicating that FDP crossed the membrane bilayer intact. We theorized that the passive diffusion of FDP might be due to disruption of the membrane bilayer. To examine this hypothesis, small unilamellar vesicles composed of Egg PC were created in the presence of 60 mM carboxyfluorescein, and the leakage of the sequestered dye was followed upon addition of various concentrations of FDP, fructose, fructose-6-phosphate, or fructose-1-phosphate (0, 5 or 50 mM). These results indicate that increasing concentrations of FDP increase the leakage rate of carboxyfluorescein. In contrast, no concentration of fructose, fructose-6-phosphate, or fructose-1-phosphate resulted in any significant increase in membrane permeability to carboxyfluorescein. To examine whether FDP could pass through cellular membranes, we examined the uptake of 14C-FDP by endothelial cells cultured under hypoxia or normoxia for 4 or 16 h. The uptake of FDP was dose-dependent in both the normoxia and hypoxia treated cells, and was accompanied by no significant loss in endothelial cell viability. Our results demonstrate that FDP can diffuse through membrane bilayers in a dose-dependent manner.
Collapse
|
|
25 |
26 |