1
|
Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373:123-6. [PMID: 7816094 DOI: 10.1038/373123a0] [Citation(s) in RCA: 2906] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Treatment of infected patients with ABT-538, an inhibitor of the protease of human immunodeficiency virus type 1 (HIV-1), causes plasma HIV-1 levels to decrease exponentially (mean half-life, 2.1 +/- 0.4 days) and CD4 lymphocyte counts to rise substantially. Minimum estimates of HIV-1 production and clearance and of CD4 lymphocyte turnover indicate that replication of HIV-1 in vivo is continuous and highly productive, driving the rapid turnover of CD4 lymphocytes.
Collapse
|
|
30 |
2906 |
2
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs including embryogenesis, proliferation, differentiation and apoptosis based on cues derived from the cell surface and the metabolic state and environment of the cell. In mammals, there are more than a dozen MAPK genes. The best known are the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK(1-3)) and p38(alpha, beta, gamma and delta) families. ERK3, ERK5 and ERK7 are other MAPKs that have distinct regulation and functions. MAPK cascades consist of a core of three protein kinases. Despite the apparently simple architecture of this pathway, these enzymes are capable of responding to a bewildering number of stimuli to produce exquisitely specific cellular outcomes. These responses depend on the kinetics of their activation and inactivation, the subcellular localization of the kinases, the complexes in which they act, and the availability of substrates. Fine-tuning of cascade activity can occur through modulatory inputs to cascade component from the primary kinases to the scaffolding accessory proteins. Here, we describe some of the properties of the three major MAPK pathways and discuss how these properties govern pathway regulation and activity.
Collapse
|
Review |
18 |
1111 |
3
|
Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 2001; 7:1306-12. [PMID: 11726970 DOI: 10.1038/nm1201-1306] [Citation(s) in RCA: 745] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While searching for alternative reading-frame peptides encoded by influenza A virus that are recognized by CD8+ T cells, we found an abundant immunogenic peptide encoded by the +1 reading frame of PB1. This peptide derives from a novel conserved 87-residue protein, PB1-F2, which has several unusual features compared with other influenza gene products in addition to its mode of translation. These include its absence from some animal (particularly swine) influenza virus isolates, variable expression in individual infected cells, rapid proteasome-dependent degradation and mitochondrial localization. Exposure of cells to a synthetic version of PB1-F2 induces apoptosis, and influenza viruses with targeted mutations that interfere with PB1-F2 expression induce less extensive apoptosis in human monocytic cells than those with intact PB1-F2. We propose that PB1-F2 functions to kill host immune cells responding to influenza virus infection.
Collapse
|
|
24 |
745 |
4
|
Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, Luther M, Chen W, Woychik RP, Wilkison WO. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 1994; 371:799-802. [PMID: 7935841 DOI: 10.1038/371799a0] [Citation(s) in RCA: 730] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genetic loci agouti and extension control the relative amounts of eumelanin (brown-black) and phaeomelanin (yellow-red) pigments in mammals: extension encodes the receptor for melanocyte-stimulating hormone (MSH) and agouti encodes a novel 131-amino-acid protein containing a signal sequence. Agouti, which is produced in the hair follicle, acts on follicular melanocytes to inhibit alpha-MSH-induced eumelanin production, resulting in the subterminal band of phaeomelanin often visible in mammalian fur. Here we use partially purified agouti protein to demonstrate that agouti is a high-affinity antagonist of the MSH receptor and blocks alpha-MSH stimulation of adenylyl cyclase, the effector through which alpha-MSH induces eumelanin synthesis. Agouti was also found to be an antagonist of the melanocortin-4 receptor, a related MSH-binding receptor. Consequently, the obesity caused by ectopic expression of agouti in the lethal yellow (Ay) mouse may be due to the inhibition of melanocortin receptor(s) outside the hair follicle.
Collapse
|
|
31 |
730 |
5
|
Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA 2001; 286:2120-7. [PMID: 11694153 DOI: 10.1001/jama.286.17.2120] [Citation(s) in RCA: 573] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Deficits in cerebral glucose utilization have been identified in patients with cognitive dysfunction attributed to various disease processes, but their prognostic and diagnostic value remains to be defined. OBJECTIVE To assess the sensitivity and specificity with which cerebral metabolic patterns at a single point in time forecast subsequent documentation of progressive dementia. DESIGN, SETTING, AND PATIENTS Positron emission tomography (PET) studies of [(18)F]fluorodeoxyglucose in 146 patients undergoing evaluation for dementia with at least 2 years' follow-up for disease progression at the University of California, Los Angeles, from 1991 to 2000, and PET studies in 138 patients undergoing evaluation for dementia at an international consortium of facilities, with histopathological diagnoses an average of 2.9 years later, conducted from 1984 to 2000. MAIN OUTCOME MEASURES Regional distribution of [(18)F]fluorodeoxyglucose in each patient, classified by criteria established a priori as positive or negative for presence of a progressive neurodegenerative disease in general and of Alzheimer disease (AD) specifically, compared with results of longitudinal or neuropathologic analyses. RESULTS Progressive dementia was detected by PET with a sensitivity of 93% (191/206) and a specificity of 76% (59/78). Among patients with neuropathologically based diagnoses, PET identified patients with AD and patients with any neurodegenerative disease with a sensitivity of 94% and specificities of 73% and 78%, respectively. The negative likelihood ratio of experiencing a progressive vs nonprogressive course over the several years following a single negative brain PET scan was 0.10 (95% confidence interval, 0.06-0.16), and the initial pattern of cerebral metabolism was significantly associated with the subsequent course of progression overall (P<.001). CONCLUSION In patients presenting with cognitive symptoms of dementia, regional brain metabolism was a sensitive indicator of AD and of neurodegenerative disease in general. A negative PET scan indicated that pathologic progression of cognitive impairment during the mean 3-year follow-up was unlikely to occur.
Collapse
|
|
24 |
573 |
6
|
Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP, Meyer T. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 2000; 100:221-8. [PMID: 10660045 DOI: 10.1016/s0092-8674(00)81560-3] [Citation(s) in RCA: 535] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Binding interactions between the plasma membrane and the cytoskeleton define cell functions such as cell shape, formation of cell processes, cell movement, and endocytosis. Here we use optical tweezers tether force measurements and show that plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) acts as a second messenger that regulates the adhesion energy between the cytoskeleton and the plasma membrane. Receptor stimuli that hydrolyze PIP2 lowered adhesion energy, a process that could be mimicked by expressing PH domains that sequester PIP2 or by targeting a 5'-PIP2-phosphatase to the plasma membrane to selectively lower plasma membrane PIP2 concentration. Our study suggests that plasma membrane PIP2 controls dynamic membrane functions and cell shape by locally increasing and decreasing the adhesion between the actin-based cortical cytoskeleton and the plasma membrane.
Collapse
|
|
25 |
535 |
7
|
Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Anney R, Aneey R, Franke B, Gill M, Ebstein R, Buitelaar J, Sham P, Campbell D, Knight J, Andreou P, Altink M, Arnold R, Boer F, Buschgens C, Butler L, Christiansen H, Feldman L, Fleischman K, Fliers E, Howe-Forbes R, Goldfarb A, Heise A, Gabriëls I, Korn-Lubetzki I, Johansson L, Marco R, Medad S, Minderaa R, Mulas F, Müller U, Mulligan A, Rabin K, Rommelse N, Sethna V, Sorohan J, Uebel H, Psychogiou L, Weeks A, Barrett R, Craig I, Banaschewski T, Sonuga-Barke E, Eisenberg J, Kuntsi J, Manor I, McGuffin P, Miranda A, Oades RD, Plomin R, Roeyers H, Rothenberger A, Sergeant J, Steinhausen HC, Taylor E, Thompson M, Faraone SV, Asherson P. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 2006; 11:934-53. [PMID: 16894395 DOI: 10.1038/sj.mp.4001869] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, starting in early childhood and persisting into adulthood in the majority of cases. Family and twin studies have demonstrated the importance of genetic factors and candidate gene association studies have identified several loci that exert small but significant effects on ADHD. To provide further clarification of reported associations and identify novel associated genes, we examined 1,038 single-nucleotide polymorphisms (SNPs) spanning 51 candidate genes involved in the regulation of neurotransmitter pathways, particularly dopamine, norepinephrine and serotonin pathways, in addition to circadian rhythm genes. Analysis used within family tests of association in a sample of 776 DSM-IV ADHD combined type cases ascertained for the International Multi-centre ADHD Gene project. We found nominal significance with one or more SNPs in 18 genes, including the two most replicated findings in the literature: DRD4 and DAT1. Gene-wide tests, adjusted for the number of SNPs analysed in each gene, identified associations with TPH2, ARRB2, SYP, DAT1, ADRB2, HES1, MAOA and PNMT. Further studies will be needed to confirm or refute the observed associations and their generalisability to other samples.
Collapse
|
Comparative Study |
19 |
431 |
8
|
Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ. A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate. J Immunol Methods 1992; 156:39-45. [PMID: 1431161 DOI: 10.1016/0022-1759(92)90008-h] [Citation(s) in RCA: 430] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fluorometric microplate assay was established for the detection of respiratory burst activity in phagocytic cells by assessing oxidation of 2',7'-dichlorofluorescin-diacetate (DCFH-DA). This method is based on flow cytometric studies by Bass et al. (J. Immunol. 130 (1983) p. 1910) describing intracellular detection of DCFH oxidation due to the presence of hydrogen peroxides. In the present study we have adapted the assay for use in microtiter plates to determine the amount of extracellular reactive oxidative products. DCFH-DA, granulocytes and stimuli (phorbol myristate acetate, n-formyl-methionyl-leucylphenylalanine, concanavalin A) were added to microtiter plates and after incubation at 37 degrees C, the development of fluorescence intensity was read in a fluorescence concentration analyzer (FCA, Baxter). Calibration of fluorescence units recorded by the FCA was achieved by comparison with defined amounts of fluorescent DCF. The change in measured fluorescence was linear with cell density over the range of 2 x 10(5)-1 x 10(6) cells/well. Cumulative DCF generation in individual wells could be recorded non-destructively at frequent intervals for time course measurements. Results from FCA measurements correlated perfectly with the FACS analysis of the same samples (r = 0.99). In conclusion, this assay can be useful for screening monoclonal antibodies recognizing cell surface structures possibly involved in signal transduction as well as for testing phagocytes for their capacity to release reactive oxidative intermediates.
Collapse
|
|
33 |
430 |
9
|
Box NF, Duffy DL, Irving RE, Russell A, Chen W, Griffyths LR, Parsons PG, Green AC, Sturm RA. Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J Invest Dermatol 2001; 116:224-9. [PMID: 11179997 DOI: 10.1046/j.1523-1747.2001.01224.x] [Citation(s) in RCA: 391] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MC1R gene variants have previously been associated with red hair and fair skin color, moreover skin ultraviolet sensitivity and a strong association with melanoma has been demonstrated for three variant alleles that are active in influencing pigmentation: Arg151Cys, Arg160Trp, and Asp294His. This study has confirmed these pigmentary associations with MC1R genotype in a collection of 220 individuals drawn from the Nambour community in Queensland, Australia, 111 of whom were at high risk and 109 at low risk of basal cell carcinoma and squamous cell carcinoma. Comparative allele frequencies for nine MC1R variants that have been reported in the Caucasian population were determined for these two groups, and an association between prevalence of basal cell carcinoma, squamous cell carcinoma, solar keratosis and the same three active MC1R variant alleles was demonstrated [odds ratio = 3.15 95% CI (1.7, 5.82)]. Three other commonly occurring variant alleles: Val60Leu, Val92Met, and Arg163Gln were identified as having a minimal impact on pigmentation phenotype as well as basal cell carcinoma and squamous cell carcinoma risk. A significant heterozygote effect was demonstrated where individuals carrying a single MC1R variant allele were more likely to have fair and sun sensitive skin as well as carriage of a solar lesion when compared with those individuals with a consensus MC1R genotype. After adjusting for the effects of pigmentation on the association between MC1R variant alleles and basal cell carcinoma and squamous cell carcinoma risk, the association persisted, confirming that presence of at least one variant allele remains informative in terms of predicting risk for developing a solar-induced skin lesion beyond that information wained through observation of pigmentation phenotype.
Collapse
|
|
24 |
391 |
10
|
Chen W, Kelly MA, Opitz-Araya X, Thomas RE, Low MJ, Cone RD. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 1997; 91:789-98. [PMID: 9413988 DOI: 10.1016/s0092-8674(00)80467-5] [Citation(s) in RCA: 372] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of pituitary-derived melanocortin peptides are primarily attributed to ACTH-mediated adrenocortical glucocorticoid production. Identification of a widely distributed receptor for ACTH/MSH peptides, the melanocortin-5 receptor (MC5-R), suggested non-steroidally mediated systemic effects of these peptides. Targeted disruption of the MC5-R produced mice with a severe defect in water repulsion and thermoregulation due to decreased production of sebaceous lipids. High levels of MC5-R was found in multiple exocrine tissues, including Harderian, preputial, lacrimal, and sebaceous glands, and was also shown to be required for production and stress-regulated synthesis of porphyrins by the Harderian gland and ACTH/MSH-regulated protein secretion by the lacrimal gland. These data show a requirement for the MC5-R in multiple exocrine glands for the production of numerous products, indicative of a coordinated system for regulation of exocrine gland function by melanocortin peptides.
Collapse
|
|
28 |
372 |
11
|
Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 1999; 13:2713-24. [PMID: 10541557 PMCID: PMC317115 DOI: 10.1101/gad.13.20.2713] [Citation(s) in RCA: 364] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1999] [Accepted: 08/30/1999] [Indexed: 11/24/2022]
Abstract
It is estimated that approximately 2500 genes are essential for the normal development of a zebrafish embryo. A mutation in any one of these genes can result in a visible developmental defect, usually followed by the death of the embryo or larva by days 5-7 of age. We are performing a large-scale insertional mutagenesis screen in the zebrafish with the goal of isolating approximately 1000 embryonic mutations. We plan to clone a significant fraction of the mutated genes, as these are the genes important for normal embryogenesis of a vertebrate. To achieve this goal, we prepared approximately 36, 000 founder fish by injecting blastula-stage embryos with one of two pseudotyped retroviruses. We estimate that together these fish harbor between 500,000-1,000,000 proviral insertions in their germ lines. The protocol we have devised and the size of our facility allow us to breed approximately 80,000-150,000 of these insertions to homozygosity within 2 years. Because a pilot screen conducted earlier in our laboratory revealed that the frequency of mutations obtained with this type of insertional mutagen is 1 embryonic lethal mutation per 70-100 proviral insertions, screening 100,000 insertions should yield at least 1000 mutants. Here we describe the protocol for the screen and initial results with the first of the two retroviral vectors used, a virus designated F(5). We screened an estimated 760 insertions among F(3) progeny from 92 F(2) families and obtained 9 recessive embryonic lethal mutations. Thus, the efficiency of mutagenesis with this viral vector is approximately one-ninth that observed with the chemical mutagen ENU in zebrafish. We have also obtained two dominant mutations, one of which is described here. As expected, mutated genes can be readily identified. So far, genes mutated in four of the nine recessive mutants and one of the two dominant mutants have been cloned. Further improvements to this technology could make large-scale insertional mutagenesis screening and rapid gene cloning accessible to relatively small zebrafish laboratories.
Collapse
|
research-article |
26 |
364 |
12
|
Li YP, Chen W, Liang Y, Li E, Stashenko P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 1999; 23:447-51. [PMID: 10581033 DOI: 10.1038/70563] [Citation(s) in RCA: 343] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Solubilization of bone mineral by osteoclasts depends on the formation of an acidic extracellular compartment through the action of a V-proton pump that has not yet been characterized at the molecular level. We previously cloned a gene (Atp6i, for V-proton pump, H+ transporting (vacuolar proton pump) member I) encoding a putative osteoclast-specific proton pump subunit, termed OC-116kD (ref. 4). Here we show that targeted disruption of Atp6i in mice results in severe osteopetrosis. Atp6i-/- osteoclast-like cells (OCLs) lose the function of extracellular acidification, but retain intracellular lysosomal proton pump activity. The pH in Atp6i-/- liver lysosomes and proton transport in microsomes of Atp6i-/- kidney are identical to that in wild-type mice. Atp6i-/- mice exhibit a normal acid-base balance in blood and urine. Our results demonstrate that Atp6i is unique and necessary for osteoclast-mediated extracellular acidification.
Collapse
|
|
26 |
343 |
13
|
Meng K, Rodriguez-Peña A, Dimitrov T, Chen W, Yamin M, Noda M, Deuel TF. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A 2000; 97:2603-8. [PMID: 10706604 PMCID: PMC15975 DOI: 10.1073/pnas.020487997] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pleiotrophin (PTN) is a platelet-derived growth factor-inducible, 18-kDa heparin-binding cytokine that signals diverse phenotypes in normal and deregulated cellular growth and differentiation. To seek the mechanisms of PTN signaling, we studied the interactions of PTN with the receptor protein tyrosine phosphatase (RPTP) beta/zeta in U373-MG cells. Our results suggest that PTN is a natural ligand for RPTP beta/zeta. PTN signals through "ligand-dependent receptor inactivation" of RPTP beta/zeta and disrupts its normal roles in the regulation of steady-state tyrosine phosphorylation of downstream signaling molecules. We have found that PTN binds to and functionally inactivates the catalytic activity of RPTP beta/zeta. We also have found that an active site-containing domain of RPTP beta/zeta both binds beta-catenin and functionally reduces its levels of tyrosine phosphorylation when added to lysates of pervanidate-treated cells. In contrast, an (inactivating) active-site mutant of RPTP beta/zeta also binds beta-catenin but fails to reduce tyrosine phosphorylation of beta-catenin. Finally, in parallel to its ability to inactivate endogenous RPTP beta/zeta, PTN sharply increases tyrosine phosphorylation of beta-catenin in PTN-treated cells. The results suggest that in unstimulated cells, RPTP beta/zeta is intrinsically active and functions as an important regulator in the reciprocal control of the steady-state tyrosine phosphorylation levels of beta-catenin by tyrosine kinases and phosphatases. The results also suggest that RPTP beta/zeta is a functional receptor for PTN; PTN signals through ligand-dependent receptor inactivation of RPTP beta/zeta to increase levels of tyrosine phosphorylation of beta-catenin to initiate downstream signaling. PTN is the first natural ligand identified for any of the RPTP family; its identification provides a unique tool to pursue the novel signaling pathway activated by PTN and the relationship of PTN signaling with other pathways regulating beta-catenin.
Collapse
|
research-article |
25 |
334 |
14
|
Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski S, Davies PJ, Taegtmeyer H. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 1998; 4:1269-75. [PMID: 9809550 DOI: 10.1038/3253] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cardiac response to increased work includes a reactivation of fetal genes. The response to a decrease in cardiac work is not known. Such information is of clinical interest, because mechanical unloading can improve the functional capacity of the failing heart. We compared here the patterns of gene expression in unloaded rat heart with those in hypertrophied rat heart. Both conditions induced a re-expression of growth factors and proto-oncogenes, and a downregulation of the 'adult' isoforms, but not of the 'fetal' isoforms, of proteins regulating myocardial energetics. Therefore, opposite changes in cardiac workload in vivo induce similar patterns of gene response. Reactivation of fetal genes may underlie the functional improvement of an unloaded failing heart.
Collapse
|
|
27 |
333 |
15
|
Chen W, Frank ME, Jin W, Wahl SM. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 2001; 14:715-25. [PMID: 11420042 DOI: 10.1016/s1074-7613(01)00147-9] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T cell apoptosis is critical to development and homeostasis of the immune system. The most salient feature of apoptosis is the lack of an attendant inflammatory response or tissue damage. Here, we present evidence that apoptotic T cells release TGF-beta, thereby contributing to an immunosuppressive milieu. Apoptotic T cells released not only latent but also bio-active TGF-beta. Nonetheless, TGF-beta transcription was not upregulated, suggesting release of existing rather than synthesis of new TGF-beta. Localized within the intracellular membrane-bound compartment, which includes mitochondria, TGF-beta was redistributed into the cytosol following loss of mitochondrial membrane potential. TGF-beta secreted from apoptotic T cells inhibited proinflammatory cytokine production by activated macrophages to foster immune suppression. These findings broaden the potential mechanisms whereby induction of immune tolerance or deficiency occurs through T cell deletion.
Collapse
|
|
24 |
332 |
16
|
Madhavan V, Chen W, Jamneala T, Crommie MF, Wingreen NS. Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance. Science 1998; 280:567-9. [PMID: 9554843 DOI: 10.1126/science.280.5363.567] [Citation(s) in RCA: 328] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Kondo effect arises from the quantum mechanical interplay between the electrons of a host metal and a magnetic impurity and is predicted to result in local charge and spin variations around the magnetic impurity. A cryogenic scanning tunneling microscope was used to spatially resolve the electronic properties of individual magnetic atoms displaying the Kondo effect. Spectroscopic measurements performed on individual cobalt atoms on the surface of gold show an energetically narrow feature that is identified as the Kondo resonance-the predicted response of a Kondo impurity. Unexpected structure in the Kondo resonance is shown to arise from quantum mechanical interference between the d orbital and conduction electron channels for an electron tunneling into a magnetic atom in a metallic host.
Collapse
|
|
27 |
328 |
17
|
Jabs EW, Li X, Scott AF, Meyers G, Chen W, Eccles M, Mao JI, Charnas LR, Jackson CE, Jaye M. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 1994; 8:275-9. [PMID: 7874170 DOI: 10.1038/ng1194-275] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Jackson-Weiss syndrome is an autosomal dominant condition characterized by craniosynostosis, foot anomalies and great phenotypic variability. Recently mutations in fibroblast growth factor receptor 2 (FGFR2) have been found in patients with another craniosynostotic syndrome, Crouzon syndrome. FGFR2 is a member of the tyrosine kinase receptor superfamily, having a high affinity for peptides that signal the transduction pathways for mitogenesis, cellular differentiation and embryogenesis. We now report an FGFR2 mutation in the conserved region of the immunoglobulin IIIc domain in the Jackson-Weiss syndrome family in which the syndrome was originally described. In addition, in four of 12 Crouzon syndrome cases, we identified two new mutations and found two previously described mutations in the same region.
Collapse
|
Comparative Study |
31 |
313 |
18
|
Chen W, Feng Y, Chen D, Wandinger-Ness A. Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 1998; 9:3241-57. [PMID: 9802909 PMCID: PMC25617 DOI: 10.1091/mbc.9.11.3241] [Citation(s) in RCA: 313] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1998] [Accepted: 09/10/1998] [Indexed: 01/10/2023] Open
Abstract
The rab11 GTPase has been localized to both the Golgi and recycling endosomes; however, its Golgi-associated function has remained obscure. In this study, rab11 function in exocytic transport was analyzed by using two independent means to perturb its activity. First, expression of the dominant interfering rab11S25N mutant protein led to a significant inhibition of the cell surface transport of vesicular stomatitis virus (VSV) G protein and caused VSV G protein to accumulate in the Golgi. On the other hand, the expression of wild-type rab11 or the activating rab11Q70L mutant had no adverse effect on VSV G transport. Next, the membrane association of rab11, which is crucial for its function, was perturbed by modest increases in GDP dissociation inhibitor (GDI) levels. This led to selective inhibition of the trans-Golgi network to cell surface delivery, whereas endoplasmic reticulum-to-Golgi and intra-Golgi transport were largely unaffected. The transport inhibition was reversed specifically by coexpression of wild-type rab11 with GDI. Under the same conditions two other exocytic rab proteins, rab2 and rab8, remained membrane bound, and the transport steps regulated by these rab proteins were unaffected. Neither mutant rab11S25N nor GDI overexpression had any impact on the cell surface delivery of influenza hemagglutinin. These data show that functional rab11 is critical for the export of a basolateral marker but not an apical marker from the trans-Golgi network and pinpoint rab11 as a sensitive target for inhibition by excess GDI.
Collapse
|
research-article |
27 |
313 |
19
|
Horn F, Weare J, Beukers MW, Hörsch S, Bairoch A, Chen W, Edvardsen O, Campagne F, Vriend G. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res 1998; 26:275-9. [PMID: 9399852 PMCID: PMC147194 DOI: 10.1093/nar/26.1.275] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The GPCRDB is a G protein-coupled receptor (GPCR) database system aimed at the collection and dissemination of GPCR related data. It holds sequences, mutant data and ligand binding constants as primary (experimental) data. Computationally derived data such as multiple sequence alignments, three dimensional models, phylogenetic trees and two dimensional visualization tools are added to enhance the database's usefulness. The GPCRDB is an EU sponsored project aimed at building a generic molecular class specific database capable of dealing with highly heterogeneous data. GPCRs were chosen as test molecules because of their enormous importance for medical sciences and due to the availability of so much highly heterogeneous data. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm
Collapse
|
research-article |
27 |
308 |
20
|
Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 1999; 19:6195-206. [PMID: 10454566 PMCID: PMC84561 DOI: 10.1128/mcb.19.9.6195] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3) signaling pathways and plays an important role in the viability response of these cytokines. In this study, we demonstrated that cytokine stimulation of mcl-1 mRNA and protein expression were attenuated by pretreatment of cells with phosphatidylinositol 3-kinase (PI3-K) inhibitors. Reporter gene assays further showed that the PI3-K/Akt signaling pathway was involved in IL-3 activation of mcl-1 gene transcription. Analysis of the mcl-1 promoter revealed that both promoter elements, SIE at position -87 and CRE-2 at -70, contribute to IL-3 stimulation of mcl-1 gene expression. Although either the SIE site or the CRE-2 site alone was sufficient to confer IL-3 inducibility on a heterologous promoter, only IL-3 activation of the CRE-2 reporter was mediated via the PI3-K/Akt pathway. The SIE binding activity was constitutively high in cells deprived of or stimulated by IL-3. In contrast, the CRE-2 binding activity was low in cytokine-starved cells and was strongly induced within 1 h following cytokine treatment of cells. In addition, cytokine induction of the CRE-2 but not of the SIE binding activity was dependent on activation of the PI3-K/Akt signaling pathway. Lastly, we showed that CREB was one component of the CRE-2 binding complex and played a role in IL-3 activation of the mcl-1 reporter gene. Taken together, our results suggest that both PI3-K/Akt-dependent and -independent pathways contribute to the IL-3 activation of mcl-1 gene expression. Activation of mcl-1 by the PI3-K/Akt-dependent pathway is through a transcription factor complex containing CREB.
Collapse
|
research-article |
26 |
300 |
21
|
Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006; 27:5512-7. [PMID: 16872671 DOI: 10.1016/j.biomaterials.2006.07.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/06/2006] [Indexed: 01/30/2023]
Abstract
Bacterial infection after implant placement is a significant rising complication. In order to reduce the incidence of implant-associated infections, several biomaterial surface treatments have been proposed. In this study, the effect of in vitro antibacterial activity and in vitro cytotoxicity of co-sputtered silver (Ag)-containing hydroxyapatite (HA) coating was evaluated. Deposition was achieved by a concurrent supply of 10 W to the Ag target and 300 W to the HA target. Heat treatment at 400 degrees C for 4 h was performed after 3 h deposition. X-ray diffraction, contact angles measurements, and surface roughness were used to characterize the coating surfaces. The RP12 strain of Staphylococcus epidermidis (ATCC 35984) and the Cowan I strain of Staphylococcus aureus were used to evaluate the antibacterial activity of the Ag-HA coatings, whereas human embryonic palatal mesenchyme cells, an osteoblast precursor cell line, were used to evaluate the in vitro cytotoxicity of the coatings. X-ray diffraction analysis performed in this study indicated peaks corresponding to Ag and HA on the co-sputtered Ag-HA surfaces. The contact angles for HA and Ag-HA surfaces were observed to be significantly lower when compared to Ti surfaces, whereas no significant difference in surface roughness was observed for all groups. In vitro bacterial adhesion study indicated a significantly reduced number of S. epidermidis and S. aureus on Ag-HA surface when compared to titanium (Ti) and HA surfaces. In addition, no significant difference in the in vitro cytotoxicty was observed between HA and Ag-HA surfaces. Overall, it was concluded that the creation of a multifunctional surface can be achieved by co-sputtering the osteoconductive HA with antibacterial Ag.
Collapse
|
|
19 |
287 |
22
|
Smith LE, Kopchick JJ, Chen W, Knapp J, Kinose F, Daley D, Foley E, Smith RG, Schaeffer JM. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 1997; 276:1706-9. [PMID: 9180082 DOI: 10.1126/science.276.5319.1706] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Retinal neovascularization is the major cause of untreatable blindness. The role of growth hormone (GH) in ischemia-associated retinal neovascularization was studied in transgenic mice expressing a GH antagonist gene and in normal mice given an inhibitor of GH secretion (MK678). Retinal neovascularization was inhibited in these mice in inverse proportion to serum levels of GH and a downstream effector, insulin-like growth factor-I (IGF-I). Inhibition was reversed with exogenous IGF-I administration. GH inhibition did not diminish hypoxia-stimulated retinal vascular endothelial growth factor (VEGF) or VEGF receptor expression. These data suggest that systemic inhibition of GH or IGF-I, or both, may have therapeutic potential in preventing some forms of retinopathy.
Collapse
|
|
28 |
286 |
23
|
Chen W, Jin W, Wahl SM. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. J Exp Med 1998; 188:1849-57. [PMID: 9815262 PMCID: PMC2212416 DOI: 10.1084/jem.188.10.1849] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Evidence indicates that cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) may negatively regulate T cell activation, but the basis for the inhibitory effect remains unknown. We report here that cross-linking of CTLA-4 induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. CD4(+) T helper type 1 (Th1), Th2, and Th0 clones all secrete TGF-beta after antibody cross-linking of CTLA-4, indicating that induction of TGF-beta by CTLA-4 signaling represents a ubiquitous feature of murine CD4(+) T cells. Stimulation of the CD3-T cell antigen receptor complex does not independently induce TGF-beta, but is required for optimal CTLA-4-mediated TGF-beta production. The consequences of cross-linking of CTLA-4, together with CD3 and CD28, include inhibition of T cell proliferation and interleukin (IL)-2 secretion, as well as suppression of both interferon gamma (Th1) and IL-4 (Th2). Moreover, addition of anti-TGF-beta partially reverses this T cell suppression. When CTLA-4 was cross-linked in T cell populations from TGF-beta1 gene-deleted (TGF-beta1(-/-)) mice, the T cell responses were only suppressed 38% compared with 95% in wild-type mice. Our data demonstrate that engagement of CTLA-4 leads to CD4(+) T cell production of TGF-beta, which, in part, contributes to the downregulation of T cell activation. CTLA-4, through TGF-beta, may serve as a counterbalance for CD28 costimulation of IL-2 and CD4(+) T cell activation.
Collapse
|
research-article |
27 |
283 |
24
|
Migliazza A, Martinotti S, Chen W, Fusco C, Ye BH, Knowles DM, Offit K, Chaganti RS, Dalla-Favera R. Frequent somatic hypermutation of the 5' noncoding region of the BCL6 gene in B-cell lymphoma. Proc Natl Acad Sci U S A 1995; 92:12520-4. [PMID: 8618933 PMCID: PMC40389 DOI: 10.1073/pnas.92.26.12520] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The BCL6 gene encodes a zinc-finger transcription factor and is altered by chromosomal arrangements in its 5' noncoding region in approximately 30% of diffuse large-cell lymphoma (DLCL). We report here that, in 22/30 (73%) DLCL and 7/15 (47%) follicular lymphoma (FL), but not in other tumor types, the BCL6 gene is also altered by multiple (1.4 x 10(-3) -1.6 x 10(-2) per bp), often biallelic, mutations clustering in its 5' noncoding region. These mutations are of somatic origin and are found in cases displaying either normal or rearranged BLC6 alleles indicating their independence from chromosomal rearrangements and linkage to immunoglobulin genes. These alterations identify a mechanism of genetic instability in malignant B cells and may have been selected during lymphomagenesis for their role in altering BCL6 expression.
Collapse
|
research-article |
30 |
276 |
25
|
Moser HW, Moser AB, Frayer KK, Chen W, Schulman JD, O'Neill BP, Kishimoto Y. Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids. Neurology 1981; 31:1241-9. [PMID: 7202134 DOI: 10.1212/wnl.31.10.1241] [Citation(s) in RCA: 269] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
With a new method we measured the saturated very long chain fatty acids in the plasma of adrenoleukodystrophy (ALD) hemizygotes, ALD heterozygotes, and controls. ALD hemizygotes showed increased levels of hexacosanoate (C26 fatty acid) which represented 0.081 +/- 0.0066% (SEM) of total fatty acids, compared to 0.015 +/- 0.0032% in the controls. C25, C24, and C23 fatty acids were also increased, but the C22 and C20 fatty acids were normal. C26 levels were also increased in most ALD heterozygotes, with a mean level 0.057 +/- 0.0063% of total fatty acids. The technique can be used for diagnosis and carrier identification, and in the evaluation of therapy.
Collapse
|
|
44 |
269 |