1
|
Wang Y, Zhang S, Ge Y, Miao C, Liu B, Yang T, Qiu X, Ou W. Serum untargeted metabolomics analysis of mice after myocardial infarction affected by qiliqiangxin capsule. J Pharm Biomed Anal 2025; 252:116516. [PMID: 39405786 DOI: 10.1016/j.jpba.2024.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
Qiliqiangxin (QLQX) capsule consists of 11 herbs, namely Huang qi (astragalus membranaceus), Ren shen (ginseng), Fu zi (radix aconiti carmichaeli), Dan shen (salvia miltiorrhiza), Ting li zi (lepidium seed), Ze xie (rhizoma alismatis), Yu zhu (radix polygonati officinalis), Gui zhi (cassia twig), Hong hua (carthamus tinctorious), Xiang jia Pi (cortex periplocae), Chen Pi (pericarpium citri reticulatae), and it is a standardized commercial formula designed to address yang deficiency and to restore the balance of qi in the heart. QLQX is also known to invigorate the blood and promote the circulation of the blood and to promote the use of fluids to relieve water retention and edema, and can be used in cardiovascular diseases such as mild to moderate congestive heart failure resulting from coronary artery disease and hypertension. The further research on the effect of QLQX on cardiac function in mice after myocardial infarction was manipulated. QLQX was given to mice in myocardial infarction model by gavage with appropriate dosage and the samples were analyzed at the end of the animal experiments through the UHPLC-Q-Exactive LC-MS. The liquid mass spectrometry was used to collect and followed by further analysis of the corresponding metabolites and metabolic pathways using metabolomics analysis. As a result, 9 differential metabolites were identified, with 15 being up-regulated and 4 down-regulated following intervention with QLQX. Then the metabolic pathways by KEGG enrichment pathway bubble diagram was analyzed, and 4 metabolic pathways were obtained, and combined with the metabolites that had been screened and analyzed together, finally the two differential metabolites, 2,5-Dihydroxybenzenesulfonic Acid and o-Cresol sulfate were found. The Glycerophospholipid metabolism pathway was closely related to the remaining seven differential metabolites, and the pathway might be an important pathway related to the effects of QLQX on cardiac function in mice.
Collapse
|
2
|
Chen Y, Bin Q, Liu H, Xie Y, Wang S, Lu J, Ou W, Zhang M, Wang L, Yu K. A novel biosensing strategy on the dynamic and on-site detection of Vibrio coralliilyticus eDNA for coral health warnings. Bioelectrochemistry 2024; 158:108697. [PMID: 38554560 DOI: 10.1016/j.bioelechem.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Heat stress and coral diseases are the predominant factors causing the degradation of coral reef ecosystems. Over recent years, Vibrio coralliilyticus was identified as a temperature-dependent pathogen causing tissue lysis in Pocillopora damicornis and one of the primary pathogens causing bleaching and mortality in other corals. Yet current detection techniques for V. coralliilyticus rely primarily on qPCR and ddPCR, which cannot meet the requirements for non-invasive and real-time detection. Herein, we developed an effective electrochemical biosensor modified by an Au-MoS2/rGO (AMG) nanocomposites and a specific capture probe to dynamically detect V. coralliilyticus environment DNA (eDNA) in aquarium experiments, with a lower limit of detection (0.28 fM) for synthetic DNA and a lower limit of quantification (9.8 fg/µL, ∼0.86 copies/µL) for genomic DNA. Its reliability and accuracy were verified by comparison with the ddPCR method (P > 0.05). Notably, coral tissue started to lyse at only 29 °C when the concentration of V. coralliilyticus increased abruptly to 880 copies/µL, indicating the biosensor could reflect the types of pathogen and health risks of corals under heat stress. Overall, the novel and reliable electrochemical biosensing technology provides an efficient strategy for the on-site monitoring and early warning of coral health in the context of global warming.
Collapse
|
3
|
Guo X, Du J, Yang Y, Wu M, Ou W, Han X, Wang Z, Jin J, Zhang P, Zhang Z, Chen G, Long M, Yin G, Liu T, Wang X, Li D, Chen M, Dong Y, Lai C, Zhang X, Yi Y, Xiang J, Chen C, Unverdorben M, Ma C. Edoxaban for stroke prevention in atrial fibrillation and factors associated with dosing: patient characteristics from the prospective observational ETNA-AF-China registry. Sci Rep 2024; 14:2778. [PMID: 38307927 PMCID: PMC10837439 DOI: 10.1038/s41598-024-51776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
Real-world data on effectiveness and safety of a single non-vitamin K antagonist oral anticoagulant in the Chinese population with atrial fibrillation (AF) are limited. This study reports characteristics of patients treated with edoxaban and factors associated with dosing patterns from routine care in China. ETNA-AF-China (NCT04747496) is a multicentre, prospective, observational study enrolling edoxaban-treated patients from four economic regions with a targeted 2-year follow-up. Of the 4930 patients with AF (mean age: 70.2 ± 9.5 years; male, 57.1%), the mean creatinine clearance (CrCl), CHA2DS2-VASc, and HAS-BLED scores were 71.2 mL/min, 2.9, and 1.6. Overall, 6.4% of patients were perceived as frail by investigators. Available label dose reduction criteria (N = 4232) revealed that 3278 (77.5%) patients received recommended doses and 954 (22.5%) non-recommended doses. Northeast (53.0%) and West (43.1%) regions had the highest prescriptions of 60 mg and 30 mg recommended doses, respectively. Non-recommended 30 mg doses were more frequently prescribed in patients with antiplatelet use and history of heart failure than recommended 60 mg. Multivariate analysis identified advanced age as the strongest associated factor with non-recommended doses. Frailty had the strongest association with 30 mg except for age, and history of TIA was the most relevant factor associated with 60 mg. In conclusion, patients in the ETNA-AF-China study were predominantly aged 65 years and older, had mild-to-moderate renal impairment and good label adherence. Advanced age was associated with non-recommended doses, with frailty most common for non-recommended 30 mg and a history of TIA for the non-recommended 60 mg dose.
Collapse
|
4
|
Liu B, Fang L, Mo P, Chen C, Ji Y, Pang L, Chen H, Deng Y, Ou W, Liu SM. Apoe-knockout induces strong vascular oxidative stress and significant changes in the gene expression profile related to the pathways implicated in redox, inflammation, and endothelial function. Cell Signal 2023; 108:110696. [PMID: 37409402 DOI: 10.1016/j.cellsig.2023.110696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/30/2023] [Accepted: 04/28/2023] [Indexed: 07/07/2023]
Abstract
Apolipoprotein E (APOE) was recognized as a key regulator of lipid metabolism, which prompted the Apoe-knockout (Apoe-/-) mouse to be the most widely used atherosclerotic model. However, with more and more important physiological roles of APOE being revealed, it is necessary to reacquaint its comprehensive function in the aorta. In this study, we aimed to reveal how Apoe-knockout impacts the gene pathways and phenotypes in the aorta of mice. We performed transcriptome sequencing to acquire the gene expression profile (GEP) for C57BL/6J and Apoe-/- mouse aorta, and used enrichment analysis to reveal the signal pathways enriched for differentially expressed genes (DEGs). In addition, we used immunofluorescence and ELISA to detect the phenotypic differences of vascular tissues and plasma in the two-group mice. Apoe-knockout resulted in significant changes in the expression of 538 genes, among which about 75% were up-regulated and 134 genes were altered more than twice. In addition to the lipid metabolism pathways, DEGs were also mainly enriched in the pathways implicated in endothelial cell proliferation, migration of epithelial cells, immune regulatory, and redox. GSEA shows that the up-regulated genes are mainly enriched in 'immune regulation pathways' and 'signal regulation' pathways, while the down-regulated genes are enriched in lipid metabolism pathways, 'regulation_of_nitric_oxide_synthase_activity' and the pathways involved in redox homeostasis, including 'monooxygenase regulation', 'peroxisomes' and 'oxygen binding'. A significant increase of reactive oxygen species and a remarkable reduction of GSH/GSSG ratio were respectively observed in the vascular tissues and plasma of Apoe-/- mice. In addition, endothelin-1 significantly increased in the vascular tissue and the plasma of Apoe-/- mice. Taken together, our results suggest that besides functioning in lipid metabolism, APOE may be an important signal regulator that mediates the expression of the genes related to the pathways involved in redox, inflammation, and endothelial function. Apoe-knockout-induced strong vascular oxidative stress is also the key factor contributing to atherosclerosis.
Collapse
|
5
|
Wang L, Xu J, Liu H, Wang S, Ou W, Zhang M, Wei F, Luo S, Chen B, Zhang S, Yu K. Ultrasensitive and on-site eDNA detection for the monitoring of crown-of-thorns starfish densities at the pre-outbreak stage using an electrochemical biosensor. Biosens Bioelectron 2023; 230:115265. [PMID: 36996547 DOI: 10.1016/j.bios.2023.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The coral reef crisis has significantly intensified over the last decades, mainly due to severe outbreaks of crown-of-thorns starfish (COTS). Current ecological monitoring has failed to detect COTS densities at the pre-outbreak stage, thus preventing early intervention. In this work, we developed an effective electrochemical biosensor modified by a MoO2/C nanomaterial, as well as a specific DNA probe that could detect trace COTS environmental DNA (eDNA) at a lower detection limit (LOD = 0.147 ng/μL) with excellent specificity. The reliability and accuracy of the biosensor were validated against the standard methods by an ultramicro spectrophotometer and droplet digital PCR (p > 0.05). The biosensor was then utilized for the on-site analysis of seawater samples from SYM-LD and SY sites in the South China Sea. For the SYM-LD site suffering an outbreak, the COTS eDNA concentrations were 0.33 ng/μL (1 m, depth) and 0.26 ng/μL (10 m, depth), respectively. According to the ecological survey, the COTS density was 500 ind/hm2 at the SYM-LD site, verifying the accuracy of our measurements. At the SY site, COTS eDNA was also detected at 0.19 ng/μL, but COTS was not found by the traditional survey. Hence, larvae were possibly present in this region. Therefore, this electrochemical biosensor could be used to monitor COTS populations at the pre-outbreak stages, and potentially serve as a revolutionary early warning method. We will continue to improve this method for picomolar or even femtomolar detection of COTS eDNA.
Collapse
|
6
|
Xu Q, Liu M, Gu J, Ling S, Liu X, Luo Z, Jin Y, Chai R, Ou W, Liu S, Liu N. Ubiquitin-specific protease 7 regulates myocardial ischemia/reperfusion injury by stabilizing Keap1. Cell Death Dis 2022; 8:291. [PMID: 35710902 PMCID: PMC9203583 DOI: 10.1038/s41420-022-01086-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/03/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a complex pathological process that is still not fully understood. The oxidative stress response has a critical role in the occurrence and progression of myocardial ischemia/reperfusion injury. This study investigated the specific mechanism of ubiquitin-specific protease 7 (USP7) regulation of myocardial ischemia/reperfusion injury from the perspective of proteasome degradation and its relation with the Keap1 pathway, a vital regulator of cytoprotective responses to endogenous and exogenous stress induced by reactive oxygen species (ROS) and electrophiles. Our data indicated that USP7 expression is increased during myocardial ischemia/reperfusion injury in mice, while its inhibiting suppressed the generation of oxygen free radicals and myocardial cell apoptosis, reduced myocardial tissue damage, and improved heart function. Mechanistically, USP7 stabilizes Keap1 by regulating its ubiquitination. Taken together, these findings demonstrate the potential therapeutic effect of USP7 on myocardial ischemia/reperfusion injury.
Collapse
|
7
|
Xia K, Wang F, Lai X, Luo P, Chen H, Ma Y, Huang W, Ou W, Li Y, Feng X, Lei Z, Tu X, Ke Q, Mao F, Deng C, Xiang A. Gene Editing/Gene Therapies: AAV-MEDIATED GENE THERAPY PRODUCES FERTILE OFFSPRING IN THE LHCGR-DEFICIENT MOUSE MODEL OF LEYDIG CELL FAILURE. Cytotherapy 2022. [DOI: 10.1016/s1465-3249(22)00156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Xia X, Liu X, Chai R, Xu Q, Luo Z, Gu J, Jin Y, Hu T, Yu C, Du B, Huang H, Ou W, Liu S, Liu N. USP10 exacerbates neointima formation by stabilizing Skp2 protein in vascular smooth muscle cells. J Biol Chem 2021; 297:101258. [PMID: 34599966 PMCID: PMC8524199 DOI: 10.1016/j.jbc.2021.101258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanism of neointima formation remains unclear. Ubiquitin-specific peptidase 10 (USP10) is a deubiquitinase that plays a major role in cancer development and progression. However, the function of USP10 in arterial restenosis is unknown. Herein, USP10 expression was detected in mouse arteries and increased after carotid ligation. The inhibition of USP10 exhibited thinner neointima in the model of mouse carotid ligation. In vitro data showed that USP10 deficiency reduced proliferation and migration of rat thoracic aorta smooth muscle cells (A7r5) and human aortic smooth muscle cells (HASMCs). Mechanically, USP10 can bind to Skp2 and stabilize its protein level by removing polyubiquitin on Skp2 in the cytoplasm. The overexpression of Skp2 abrogated cell cycle arrest induced by USP10 inhibition. Overall, the current study demonstrated that USP10 is involved in vascular remodeling by directly promoting VSMC proliferation and migration via stabilization of Skp2 protein expression.
Collapse
|
9
|
Wang S, Ou W, Li N, Wang S, Wu H, Pu Y, Xiao S, Fu Y, Wang T. P22.05 Dynamic Monitoring of Blood Samples by PEAC Technology for Early-Stage Lung Cancer Patients After Surgery. J Thorac Oncol 2021. [DOI: 10.1016/j.jtho.2021.08.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Ling S, Jin L, Li S, Zhang F, Xu Q, Liu M, Chen X, Liu X, Gu J, Liu S, Liu N, Ou W. Allium macrostemon Saponin Inhibits Activation of Platelet via the CD40 Signaling Pathway. Front Pharmacol 2021; 11:570603. [PMID: 33584257 PMCID: PMC7874237 DOI: 10.3389/fphar.2020.570603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Allium macrostemon saponin is a traditional Chinese medicine that exhibits anti-atherosclerosis effects. However, the mechanism of its action has not been fully clarified. Platelet activation induced by CD40L plays an important role in the process of atherosis. In the present study, we demonstrate for the first time that A. macrostemon saponin inhibits platelet activation induced by CD40L. Moreover, the effects of saponin on platelet activation were achieved by activation of the classical CD40L-associated pathway, including the PI3K/Akt, MAPK and NF-κB proteins. In addition, the present study further demonstrated that saponin exhibited an effect on the TRAF2-mediated ubiquitination degradation, which contributed to the inhibition of the CD40 pathway and its downstream members. The findings determine that A. macrostemon saponin inhibits activation of platelets via activation of downstream proteins of the CD40 pathway. This in turn affected TRAF2-associated ubiquitination degradation and caused an anti-thrombotic effect.
Collapse
|
11
|
Xu Q, Liu M, Zhang F, Liu X, Ling S, Chen X, Gu J, Ou W, Liu S, Liu N. Ubiquitin-specific protease 2 regulates Ang Ⅱ-induced cardiac fibroblasts activation by up-regulating cyclin D1 and stabilizing β-catenin in vitro. J Cell Mol Med 2021; 25:1001-1011. [PMID: 33314748 PMCID: PMC7812274 DOI: 10.1111/jcmm.16162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis, featuring abnormally elevated extracellular matrix accumulation, decreases tissue compliance, impairs cardiac function and accelerates heart failure. Mounting evidence suggests that the ubiquitin proteasome pathway is involved in cardiac fibrosis. In the present study, ubiquitin-specific protease 2 (USP2) was identified as a novel therapeutic target in cardiac fibrosis. Indeed, USP2 expression was increased in angiotensin II-induced primary cardiac fibroblasts (CFs) from neonatal rats. In addition, USP2 inhibition suppressed CFs proliferation, collagen synthesis and cell cycle progression. Furthermore, USP2 interacted with β-catenin, thereby regulating its deubiquitination and stabilization in CFs. To sum up, these findings revealed that USP2 has a therapeutic potential for the treatment of cardiac fibrosis.
Collapse
|
12
|
Xiong Y, Wang L, Jiang W, Pang L, Liu W, Li A, Zhong Y, Ou W, Liu B, Liu SM. MEF2A alters the proliferation, inflammation-related gene expression profiles and its silencing induces cellular senescence in human coronary endothelial cells. BMC Mol Biol 2019; 20:8. [PMID: 30885136 PMCID: PMC6423757 DOI: 10.1186/s12867-019-0125-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/06/2019] [Indexed: 01/16/2023] Open
Abstract
Background Myocyte enhancer factor 2A (MEF2A) plays an important role in cell proliferation, differentiation and survival. Functional deletion or mutation in MEF2A predisposes individuals to cardiovascular disease mainly caused by vascular endothelial dysfunction. However, the effect of the inhibition of MEF2A expression on human coronary artery endothelial cells (HCAECs) is unclear. In this study, expression of MEF2A was inhibited by specific small interference RNA (siRNA), and changes in mRNA profiles in response to MEF2A knockdown were analyzed using an Agilent human mRNA array. Results Silencing of MEF2A in HCAECs accelerated cell senescence and suppressed cell proliferation. Microarray analysis identified 962 differentially expressed genes (DEGs) between the MEF2A knockdown group and the negative control group. Annotation clustering analysis showed that the DEGs were preferentially enriched in gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to proliferation, development, survival, and inflammation. Furthermore, 61 of the 578 downregulated DEGs have at least one potential MEF2A binding site in the proximal promoter and were mostly enriched in the GO terms “reproduction” and “cardiovascular.” The protein–protein interaction network analyzed for the downregulated DEGs and the DEGs in the GO terms “cardiovascular” and “aging” revealed that PIK3CG, IL1B, IL8, and PRKCB were included in hot nodes, and the regulation of the longevity-associated gene PIK3CG by MEF2A has been verified at the protein level, suggesting that PIK3CG might play a key role in MEF2A knockdown induced HCAEC senescence. Conclusions MEF2A knockdown accelerates HCAEC senescence, and the underlying molecular mechanism may be involved in down-regulation of the genes related with cell proliferation, development, inflammation and survival, in which PIK3CG may play a key role. Electronic supplementary material The online version of this article (10.1186/s12867-019-0125-z) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Liu F, Ou W, Diede S, Whitman E. Real-world experience of pembrolizumab in patients with advanced melanoma: A large retrospective observational study. Ann Oncol 2018. [DOI: 10.1093/annonc/mdy288.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Lin X, Cheng C, Zhong J, Liu B, Luo C, Ou W, Mo P, Huang Q, Liu S. Resveratrol inhibits angiotensin II‑induced proliferation of A7r5 cells and decreases neointimal hyperplasia by inhibiting the CaMKII‑HDAC4 signaling pathway. Mol Med Rep 2018; 18:1007-1014. [PMID: 29845301 DOI: 10.3892/mmr.2018.9056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/26/2018] [Indexed: 11/06/2022] Open
Abstract
Resveratrol has been reported to inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia following arterial injury; however, the underlying mechanisms remain unclear. The present study was designed to investigate the effects of resveratrol on angiotensin II (AngII)‑induced proliferation of A7r5 cells and explore the molecular mechanisms responsible for the observed effects. Resveratrol inhibited cell proliferation and migration, and decreased the AngII‑induced protein expression of α‑smooth muscle actin (α‑SMA), proliferating cell nuclear antigen (PCNA) and cyclin‑dependent kinase 4 (CDK4). Resveratrol inhibited AngII‑induced activation of intracellular Ca2+/calmodulin‑dependent protein kinase II (CaMKII) and histone deacetylases 4 (HDAC4), as well as blocking AngII‑induced cell cycle progression from the G0/G1 to S‑phase. In vivo, 4‑weeks of resveratrol treatment decreased the neointima area and the neointima/media area ratio in rats following carotid balloon injury. Resveratrol also inhibited the protein expression of total and phosphorylated CaMKII and HDAC4 in the injured arteries. In conclusion, the present study demonstrated that resveratrol attenuated AngII‑induced cell proliferation and neointimal hyperplasia by inhibiting the CaMKII‑HDAC4 signaling pathway. These findings suggest that resveratrol may potentially prevent arterial restenosis.
Collapse
|
15
|
Liu W, Liu Y, Yang Y, Ou W, Chen X, Huang B, Wang H, Liu M. Metabolic Biomarkers of Aging and Aging-related Diseases in Chinese Middle-Aged and Elderly Men. J Nutr Health Aging 2018; 22:1189-1197. [PMID: 30498825 DOI: 10.1007/s12603-018-1062-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Aging is an acknowledged risk factor for most chronic diseases and functional impairments. The practicability of potential biomarkers of aging remains unsure. Moreover, biomarkers related to certain geriatric diseases, such as carotid atherosclerosis and multiple co-morbidities are less understood. The purpose of this study was to investigate the definite relationship between metabolic biomarkers and aging-related diseases. METHODS Eighty-five male adults aged fifty years or older from the general population were enrolled. Plasma metabolic biomarkers, including fourteen amino acids and thirty-six acylcarnitines, were measured by liquid chromatography mass spectrometry. Bivariate correlation analysis was employed to estimate the correlations between variables and age, and also to evaluate the relationship between metabolic biomarkers and aging-related diseases. Receiver operating characteristic (ROC) curve was conducted to judge the diagnostic efficiency of potential metabolic biomarkers for co-morbidities. RESULTS Certain metabolic biomarkers were strongly positively correlated with age, such as tetradecenoylcarnitine (C14:1), microalbumin-urine creatinine ratio (UACR), dodecenoylcarnitine (C12:1) and citrulline (p < 0.001). Carotid atherosclerosis and co-morbidities were positively correlated with aging (p < 0.001). After adjustment for age, hydroxytetradecanoylcarnitine (C14OH) remained positively correlated with carotid plague area. Besides, citrulline had diagnostic power for co-morbidities. CONCLUSIONS Citrulline may be a promising metabolic biomarker in the middle-aged and elderly men. Larger-scale and long-term studies are needed to confirm our findings.
Collapse
|
16
|
Xiong Y, Wang L, Mo P, Huang G, Li A, Chai R, Lin X, Zhong Y, Liu B, Ou W, Liu B, Liu SM. Association between HLA-DQB1 alleles and susceptibility to coronary artery disease in Southern Han Chinese. Hum Immunol 2017. [DOI: 10.1016/j.humimm.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Ou W, He Y, Li A, Liu B, Jin L. Genotype Frequencies of CYP2C19, P2Y 12 and GPIIIa Polymorphisms in Coronary Heart Disease Patients of Han Ethnicity, and Their Impact on Clopidogrel Responsiveness. Int Heart J 2016; 57:586-92. [DOI: 10.1536/ihj.16-006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Li N, Zeng ZF, Wang SY, Ou W, Ye X, Li J, He XH, Zhang BB, Yang H, Sun HB, Fang Q, Wang BX. Randomized phase III trial of prophylactic cranial irradiation versus observation in patients with fully resected stage IIIA–N2 nonsmall-cell lung cancer and high risk of cerebral metastases after adjuvant chemotherapy. Ann Oncol 2015; 26:504-9. [DOI: 10.1093/annonc/mdu567] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Marino MP, Panigaj M, Ou W, Manirarora J, Wei CH, Reiser J. A scalable method to concentrate lentiviral vectors pseudotyped with measles virus glycoproteins. Gene Ther 2015; 22:280-5. [DOI: 10.1038/gt.2014.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023]
|
20
|
Cao X, Ou W, Tian S, Wang C, Zhu Z, Wang J, Gou F, Yang D, Chen S. A new facility for studying plasma interacting with flowing liquid lithium surface. FUSION ENGINEERING AND DESIGN 2014. [DOI: 10.1016/j.fusengdes.2014.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Xinzhou H, Ning Y, Ou W, Xiaodan L, Fumin Y, Huitu L, Wei Z. RKIP inhibits the migration and invasion of human prostate cancer PC-3M cells through regulation of extracellular matrix. Mol Biol 2011. [DOI: 10.1134/s0026893311060197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Xinzhou H, Ning Y, Ou W, Xiaodan L, Fumin Y, Huitu L, Wei Z. RKIp inhibits the migration and invasion of human prostate cancer PC-3M cells through regulation of extracellular matrix. Mol Biol (Mosk) 2011; 45:1004-1011. [PMID: 22295570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Raf kinase inhibitor protein (RKIP) plays a pivotal role in several intracellular signaling cascades and has been implicated as a metastasis suppressor in multiple cancer cells including prostate cancer cells, but the mechanism is not very clear. In this study, we investigated the effect of RKIP on cell proliferation, migration and invasion using human prostate cancer PC-3M cells as a model system. Our results indicate that RKIP does not effect cell proliferation in PC-3M cells, but inhibits both cell migration and cell invasion. In association with this inhibitory effect, RKIP down-regulates matrix metalloproteinases (MMP-2 and MMP-9), cathepsin B and urinary plasminogen activator (uPA). Also RKIP has the ability to regulate the expression of E-cadherin. But ectopic expression of RKIP does not affect the level of the Snail protein. As it has been indicated here, RKIP inhibits the migration and invasion ability of human prostate cancer cells through regulation of the extracellular matrix. These findings provide new mechanistic insight how RKIP suppresses metastasis in vitro.
Collapse
|
23
|
Fang Q, Wang S, Ou W, Yang H. Differential expression of EGFR mutations between primary and corresponding mediastinal nodal metastases in postoperative stage N2 non-small cell lung cancer. J Clin Oncol 2011. [DOI: 10.1200/jco.2011.29.15_suppl.e21034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Wang S, Yang H, Ou W, Fang Q. Front-line treatment for advanced pulmonary adenocarcinoma based on EGFR mutation status. J Clin Oncol 2011. [DOI: 10.1200/jco.2011.29.15_suppl.e18043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Chen H, Ou W, Wang G, Wang N, Zhang L, Yao X. New steroidal glycosides isolated as CDL inhibitors of activated platelets. Molecules 2010; 15:4589-98. [PMID: 20657379 PMCID: PMC6257584 DOI: 10.3390/molecules15074589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 05/25/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022] Open
Abstract
Three new compounds were isolated from the dried bulbs of Allium macrostemon Bunge. Their structures were elucidated from their spectral data as (25R)-26-O-β-D-glucopyranosyl-5α-furostane-3β,12β,22,26-tetraol-3-O-β-D-glucopyranos-yl (1→2) [β-D-glucopyranosyl (1→3)]-β-D-glucopyranosyl (1→4)-β-D-galactopyranoside (1), (25R)-26-O-β-D-glucopyranosyl-5α-furostane-3β,12α,22,26-tetraol-3-O-β-D-gluco- pyranosyl (1→2) [β-D-glucopyranosyl (1→3)]-β-D-glucopyranosyl (1→4)-β-D-galacto- pyranoside (2) and (25R)-26-O-β-D-glucopyranosyl-5β-furostane-3β,12α,22,26-tetraol-3-O-β-D-glucopyranosyl (1→2)-β-D-galactopyranoside (3), respectively. The inhibition effect of all compounds on CD40 ligand (CD40L) expression on the membrane of activated platelets stimulated by ADP was tested. Compounds 1 and 2 exhibited significant inhibitory activities in a dose dependent manner (P < 0.05), suggesting their potential application as CD40L inhibitors.
Collapse
|