1
|
Grissom W, Yip CY, Zhang Z, Stenger VA, Fessler JA, Noll DC. Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med 2006; 56:620-9. [PMID: 16894579 DOI: 10.1002/mrm.20978] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parallel excitation has been introduced as a means of accelerating multidimensional, spatially-selective excitation using multiple transmit coils, each driven by a unique RF pulse. Previous approaches to RF pulse design in parallel excitation were either formulated in the frequency domain or restricted to echo-planar trajectories, or both. This paper presents an approach that is formulated as a quadratic optimization problem in the spatial domain and allows the use of arbitrary k-space trajectories. Compared to frequency domain approaches, the new design method has some important advantages. It allows for the specification of a region of interest (ROI), which improves excitation accuracy at high speedup factors. It allows for magnetic field inhomogeneity compensation during excitation. Regularization may be used to control integrated and peak pulse power. The effects of Bloch equation nonlinearity on the large-tip-angle excitation error of RF pulses designed with the method are investigated, and the utility of Tikhonov regularization in mitigating this error is demonstrated.
Collapse
|
|
19 |
248 |
2
|
Zhang Z, Yip CY, Grissom W, Noll DC, Boada FE, Stenger VA. Reduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulses. Magn Reson Med 2007; 57:842-7. [PMID: 17457863 PMCID: PMC3041897 DOI: 10.1002/mrm.21221] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Parallel transmitter techniques are a promising approach for reducing transmitter B1 inhomogeneity due to the potential for adjusting the spatial excitation profile with independent RF pulses. These techniques may be further improved with transmit sensitivity encoding (SENSE) methods because the sensitivity information in pulse design provides an excitation that is inherently compensated for transmitter B1 inhomogeneity. This paper presents a proof of this concept using transmit SENSE 3D tailored RF pulses designed for small flip angles. An eight-channel receiver coil was used to mimic parallel transmission for brain imaging at 3T. The transmit SENSE pulses were based on the fast-k(z) design and produced 5-mm-thick slices at a flip angle of 30 degrees with only a 4.3-ms pulse length. It was found that the transmit SENSE pulses produced more homogeneous images than those obtained from the complex sum of images from all receivers excited with a standard RF pulse.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
91 |
3
|
Grissom WA, Rieke V, Holbrook AB, Medan Y, Lustig M, Santos J, McConnell MV, Pauly KB. Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs. Med Phys 2010; 37:5014-26. [PMID: 20964221 DOI: 10.1118/1.3475943] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Magnetic resonance thermometry using the proton resonance frequency (PRF) shift is a promising technique for guiding thermal ablation. For temperature monitoring in moving organs, such as the liver and the heart, problems with motion must be addressed. Multi-baseline subtraction techniques have been proposed, which use a library of baseline images covering the respiratory and cardiac cycle. However, main field shifts due to lung and diaphragm motion can cause large inaccuracies in multi-baseline subtraction. Referenceless thermometry methods based on polynomial phase regression are immune to motion and susceptibility shifts. While referenceless methods can accurately estimate temperature within the organ, in general, the background phase at organ/tissue interfaces requires large polynomial orders to fit, leading to increased danger that the heated region itself will be fitted by the polynomial and thermal dose will be underestimated. In this paper, a hybrid method for PRF thermometry in moving organs is presented that combines the strengths of referenceless and multi-baseline thermometry. METHODS The hybrid image model assumes that three sources contribute to image phase during thermal treatment: Background anatomical phase, spatially smooth phase deviations, and focal, heat-induced phase shifts. The new model and temperature estimation algorithm were tested in the heart and liver of normal volunteers, in a moving phantom HIFU heating experiment, and in numerical simulations of thermal ablation. The results were compared to multi-baseline and referenceless methods alone. RESULTS The hybrid method allows for in vivo temperature estimation in the liver and the heart with lower temperature uncertainty compared to multi-baseline and referenceless methods. The moving phantom HIFU experiment showed that the method accurately estimates temperature during motion in the presence of smooth main field shifts. Numerical simulations illustrated the method's sensitivity to algorithm parameters and hot spot features. CONCLUSIONS This new hybrid method for MR thermometry in moving organs combines the strengths of both multi-baseline subtraction and referenceless thermometry and overcomes their fundamental weaknesses.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
79 |
4
|
Grissom WA, Khalighi MM, Sacolick LI, Rutt BK, Vogel MW. Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods. Magn Reson Med 2012; 68:1553-62. [PMID: 22392822 PMCID: PMC3703849 DOI: 10.1002/mrm.24165] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/07/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022]
Abstract
Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods.
Collapse
|
research-article |
13 |
62 |
5
|
Yang PF, Phipps MA, Jonathan S, Newton AT, Byun N, Gore JC, Grissom WA, Caskey CF, Chen LM. Bidirectional and state-dependent modulation of brain activity by transcranial focused ultrasound in non-human primates. Brain Stimul 2021; 14:261-272. [PMID: 33460838 PMCID: PMC7988301 DOI: 10.1016/j.brs.2021.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/19/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Transcranial focused ultrasound (FUS) stimulation under MRI guidance, coupled with functional MRI (fMRI) monitoring of effects, offers a precise, noninvasive technology to dissect functional brain circuits and to modulate altered brain functional networks in neurological and psychiatric disorders. Here we show that ultrasound at moderate intensities modulated neural activity bi-directionally. Concurrent sonication of somatosensory areas 3a/3b with 250 kHz FUS suppressed the fMRI signals produced there by peripheral tactile stimulation, while at the same time eliciting fMRI activation at inter-connected, off-target brain regions. Direct FUS stimulation of the cortex resulted in different degrees of BOLD signal changes across all five off-target regions, indicating that its modulatory effects on active and resting neurons differed. This is the first demonstration of the dual suppressive and excitative modulations of FUS on a specific functional circuit and of ability of concurrent FUS and MRI to evaluate causal interactions between functional circuits with neuron-class selectivity.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
52 |
6
|
Yan X, Gore JC, Grissom WA. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat Commun 2018; 9:3481. [PMID: 30154408 PMCID: PMC6113296 DOI: 10.1038/s41467-018-05585-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Arrays of radiofrequency coils are widely used in magnetic resonance imaging to achieve high signal-to-noise ratios and flexible volume coverage, to accelerate scans using parallel reception, and to mitigate field non-uniformity using parallel transmission. However, conventional coil arrays require complex decoupling technologies to reduce electromagnetic coupling between coil elements, which would otherwise amplify noise and limit transmitted power. Here we report a novel self-decoupled RF coil design with a simple structure that requires only an intentional redistribution of electrical impedances around the length of the coil loop. We show that self-decoupled coils achieve high inter-coil isolation between adjacent and non-adjacent elements of loop arrays and mixed arrays of loops and dipoles. Self-decoupled coils are also robust to coil separation, making them attractive for size-adjustable and flexible coil arrays.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
45 |
7
|
Grissom WA, Yip CY, Wright SM, Fessler JA, Noll DC. Additive angle method for fast large-tip-angle RF pulse design in parallel excitation. Magn Reson Med 2008; 59:779-87. [PMID: 18383288 DOI: 10.1002/mrm.21510] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current methods for parallel excitation RF pulse design are based on the small-tip-angle approximation, which provides a computationally efficient means of pulse calculation. In general, pulses designed with those methods are inaccurate when scaled to produce large-tip angles, and methods for large-tip-angle pulse design are more computationally demanding. This paper introduces a fast iterative method for large-tip-angle parallel pulse design that is formulated as a small number of Bloch equation simulations and fast small-tip-angle pulse designs, the results of which add to produce large-tip-angle pulses. Simulations and a phantom experiment demonstrate that the method is effective in designing multidimensional large-tip-angle pulses of high excitation accuracy, compared to pulses designed with small-tip-angle methods.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
40 |
8
|
Grissom WA, Lustig M, Holbrook AB, Rieke V, Pauly JM, Butts-Pauly K. Reweighted ℓ1 referenceless PRF shift thermometry. Magn Reson Med 2011; 64:1068-77. [PMID: 20564600 DOI: 10.1002/mrm.22502] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Temperature estimation in proton resonance frequency (PRF) shift MR thermometry requires a reference, or pretreatment, phase image that is subtracted from image phase during thermal treatment to yield a phase difference image proportional to temperature change. Referenceless thermometry methods derive a reference phase image from the treatment image itself by assuming that in the absence of a hot spot, the image phase can be accurately represented in a smooth (usually low order polynomial) basis. By masking the hot spot out of a least squares (ℓ(2)) regression, the reference phase image's coefficients on the polynomial basis are estimated and a reference image is derived by evaluating the polynomial inside the hot spot area. Referenceless methods are therefore insensitive to motion and bulk main field shifts, however, currently these methods require user interaction or sophisticated tracking to ensure that the hot spot is masked out of the polynomial regression. This article introduces an approach to reference PRF shift thermometry that uses reweighted ℓ(1) regression, a form of robust regression, to obtain background phase coefficients without hot spot tracking and masking. The method is compared to conventional referenceless thermometry, and demonstrated experimentally in monitoring HIFU heating in a phantom and canine prostate, as well as in a healthy human liver.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
37 |
9
|
Grissom WA, Xu D, Kerr AB, Fessler JA, Noll DC. Fast large-tip-angle multidimensional and parallel RF pulse design in MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:1548-59. [PMID: 19447704 PMCID: PMC2763429 DOI: 10.1109/tmi.2009.2020064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Large-tip-angle multidimensional radio-frequency (RF) pulse design is a difficult problem, due to the nonlinear response of magnetization to applied RF at large tip-angles. In parallel excitation, multidimensional RF pulse design is further complicated by the possibility for transmit field patterns to change between subjects, requiring pulses to be designed rapidly while a subject lies in the scanner. To accelerate pulse design, we introduce a fast version of the optimal control method for large-tip-angle parallel excitation. The new method is based on a novel approach to analytically linearizing the Bloch equation about a large-tip-angle RF pulse, which results in an approximate linear model for the perturbations created by adding a small-tip-angle pulse to a large-tip-angle pulse. The linear model can be evaluated rapidly using nonuniform fast Fourier transforms, and we apply it iteratively to produce a sequence of pulse updates that improve excitation accuracy. We achieve drastic reductions in design time and memory requirements compared to conventional optimal control, while producing pulses of similar accuracy. The new method can also compensate for nonidealities such as main field inhomogeneties.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
35 |
10
|
Gaur P, Grissom WA. Accelerated MRI thermometry by direct estimation of temperature from undersampled k-space data. Magn Reson Med 2014; 73:1914-25. [PMID: 24935053 DOI: 10.1002/mrm.25327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 11/11/2022]
Abstract
PURPOSE Acceleration of magnetic resonance (MR) thermometry is desirable for several applications of MR-guided focused ultrasound, such as those requiring greater volume coverage, higher spatial resolution, or higher frame rates. METHODS We propose and validate a constrained reconstruction method that estimates focal temperature changes directly from k-space without spatial or temporal regularization. A model comprising fully-sampled baseline images is fit to undersampled k-space data, which removes aliased temperature maps from the solution space. Reconstructed temperature maps are compared to maps reconstructed using parallel imaging (iterative self-consistent parallel imaging reconstruction [SPIRiT]) and conventional hybrid thermometry, and temporally constrained reconstruction thermometry. RESULTS Temporal step response simulations demonstrate finer temporal resolution and lower error in 4×-undersampled radial k-space reconstructions compared to temporally constrained reconstruction. Simulations show that the k-space method can achieve higher accelerations with multiple receive coils. Phantom heating experiments further demonstrate the algorithm's advantage over reconstructions relying on parallel imaging alone to overcome undersampling artifacts. In vivo model error comparisons show the algorithm achieves low temperature error at higher acceleration factors (up to 32× with a radial trajectory) than compared reconstructions. CONCLUSION High acceleration factors can be achieved using the proposed temperature reconstruction algorithm, without sacrificing temporal resolution or accuracy.
Collapse
|
Validation Study |
11 |
31 |
11
|
Rieke V, Instrella R, Rosenberg J, Grissom W, Werner B, Martin E, Pauly KB. Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain. J Magn Reson Imaging 2013; 38:1462-71. [PMID: 23559437 DOI: 10.1002/jmri.24117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/15/2013] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To investigate the performance of different reconstruction methods for monitoring temperature changes during transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS). MATERIALS AND METHODS Four different temperature reconstruction methods were compared in volunteers (without heating) and patients undergoing transcranial MRgFUS: single baseline subtraction, multibaseline subtraction, hybrid single baseline/referenceless reconstruction, and hybrid multibaseline/referenceless reconstruction. Absolute temperature error and temporal temperature uncertainty of the different reconstruction methods were analyzed and compared. RESULTS Absolute temperature errors and temporal temperature uncertainty were highest with single baseline subtraction and lowest with hybrid multibaseline/referenceless reconstruction in all areas of the brain. Pulsation of the brain and susceptibility changes from tongue motion or swallowing caused substantial temperature errors when single or multibaseline subtraction was used, which were much reduced when the referenceless component was added to the reconstruction. CONCLUSION Hybrid multibaseline/referenceless thermometry accurately measures temperature changes in the brain with fewer artifacts and errors due to motion than pure baseline subtraction methods.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
30 |
12
|
Lee D, Lustig M, Grissom WA, Pauly JM. Time-optimal design for multidimensional and parallel transmit variable-rate selective excitation. Magn Reson Med 2009; 61:1471-9. [PMID: 19365849 PMCID: PMC2764012 DOI: 10.1002/mrm.21950] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 12/09/2008] [Indexed: 11/12/2022]
Abstract
Variable-rate selective excitation (VERSE) is a radio frequency (RF) pulse reshaping technique. It is most commonly used to reduce the peak magnitude and specific absorption rate (SAR) of RF pulses by reshaping pulses and gradient waveforms to reduce RF magnitude while preserving excitation profiles. In this work, a general time-optimal VERSE algorithm for multidimensional and parallel transmit pulses is presented. Time optimality is achieved by translating peak RF limits to gradient upper bounds in excitation k-space. The limits are fed into a time-optimal gradient waveform design technique. Effective SAR reduction is achieved by reducing peak RF subject to a fixed pulse length. The presented method is different from other VERSE techniques in that it provides a noniterative time-optimal multidimensional solution, which drastically simplifies VERSE designs. Examples are given for 1D and 2D single channel and 2D parallel transmit pulses.
Collapse
|
Evaluation Study |
16 |
30 |
13
|
Sharma A, Bammer R, Stenger VA, Grissom WA. Low peak power multiband spokes pulses for B1 (+) inhomogeneity-compensated simultaneous multislice excitation in high field MRI. Magn Reson Med 2014; 74:747-55. [PMID: 25203620 DOI: 10.1002/mrm.25455] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/11/2022]
Abstract
PURPOSE To design low peak and integrated power simultaneous multislice excitation radiofrequency pulses with transmit field inhomogeneity compensation in high field MRI. THEORY AND METHODS The "interleaved greedy and local optimization" algorithm for small-tip-angle spokes pulses is extended to design multiband (MB) spokes pulses that simultaneously excite multiple slices, with independent spokes weight optimization for each slice. The peak power of the pulses is controlled using a slice phase optimization technique. Simulations were performed at 7T to compare the peak power of optimized MB spokes pulses to unoptimized pulses, and to compare the proposed slice-independent spokes weight optimization to a joint approach. In vivo experiments were performed at 7T to validate the pulse's function and compare them to conventional MB pulses. RESULTS Simulations showed that the peak power-minimized pulses had lower peak power than unregularized and integrated power-regularized pulses, and that the slice-independent spokes weight optimization consistently produced lower flip angle inhomogeneity and lower peak and integrated power pulses. In the brain imaging experiments, the MB spokes pulses showed significant improvement in excitation flip angle and subsequently signal homogeneity compared to conventional MB pulses. CONCLUSION The proposed MB spokes pulses improve flip angle homogeneity in simultaneous multislice acquisitions at ultrahigh field, with minimal increase in integrated and peak radiofrequency power.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
28 |
14
|
Liao C, Stockmann J, Tian Q, Bilgic B, Arango NS, Manhard MK, Huang SY, Grissom WA, Wald LL, Setsompop K. High-fidelity, high-isotropic-resolution diffusion imaging through gSlider acquisition with B1+ and T 1 corrections and integrated ΔB 0 /Rx shim array. Magn Reson Med 2020; 83:56-67. [PMID: 31373048 PMCID: PMC6778699 DOI: 10.1002/mrm.27899] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE B 1 + and T1 corrections and dynamic multicoil shimming approaches were proposed to improve the fidelity of high-isotropic-resolution generalized slice-dithered enhanced resolution (gSlider) diffusion imaging. METHODS An extended reconstruction incorporating B 1 + inhomogeneity and T1 recovery information was developed to mitigate slab-boundary artifacts in short-repetition time (TR) gSlider acquisitions. Slab-by-slab dynamic B0 shimming using a multicoil integrated ΔB0 /Rx shim array and high in-plane acceleration (Rinplane = 4) achieved with virtual-coil GRAPPA were also incorporated into a 1-mm isotropic resolution gSlider acquisition/reconstruction framework to achieve a significant reduction in geometric distortion compared to single-shot echo planar imaging (EPI). RESULTS The slab-boundary artifacts were alleviated by the proposed B 1 + and T1 corrections compared to the standard gSlider reconstruction pipeline for short-TR acquisitions. Dynamic shimming provided >50% reduction in geometric distortion compared to conventional global second-order shimming. One-millimeter isotropic resolution diffusion data show that the typically problematic temporal and frontal lobes of the brain can be imaged with high geometric fidelity using dynamic shimming. CONCLUSIONS The proposed B 1 + and T1 corrections and local-field control substantially improved the fidelity of high-isotropic-resolution diffusion imaging, with reduced slab-boundary artifacts and geometric distortion compared to conventional gSlider acquisition and reconstruction. This enabled high-fidelity whole-brain 1-mm isotropic diffusion imaging with 64 diffusion directions in 20 min using a 3T clinical scanner.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
27 |
15
|
Sharma A, Lustig M, Grissom WA. Root-flipped multiband refocusing pulses. Magn Reson Med 2015; 75:227-37. [PMID: 25704154 DOI: 10.1002/mrm.25629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/11/2014] [Accepted: 01/03/2015] [Indexed: 12/24/2022]
Abstract
PURPOSE To design low peak power multiband refocusing radiofrequency pulses, with application to simultaneous multislice spin echo MRI. THEORY AND METHODS Multiband Shinnar-Le Roux β polynomials were designed using convex optimization. A Monte Carlo algorithm was used to determine patterns of β polynomial root flips that minimized the peak power of the resulting refocusing pulses. Phase-matched multiband excitation pulses were also designed to obtain linear-phase spin echoes. Simulations compared the performance of the root-flipped pulses with time-shifted and phase-optimized pulses. Phantom and in vivo experiments at 7T validated the function of the root-flipped pulses and compared them to time-shifted spin echo signal profiles. RESULTS Averaged across number of slices, time-bandwidth product, and slice separation, the root-flipped pulses have 46% shorter durations than time-shifted pulses with the same peak radiofrequency amplitude. Unlike time-shifted and phase-optimized pulses, the root-flipped pulses' excitation errors do not increase with decreasing band separation. Experiments showed that the root-flipped pulses excited the desired slices at the target locations, and that for equivalent slice characteristics, the shorter root-flipped pulses allowed shorter echo times, resulting in higher signal than time-shifted pulses. CONCLUSION The proposed root-flipped multiband radiofrequency pulse design method produces low peak power pulses for simultaneous multislice spin echo MRI.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
26 |
16
|
Yip CY, Grissom WA, Fessler JA, Noll DC. Joint design of trajectory and RF pulses for parallel excitation. Magn Reson Med 2007; 58:598-604. [PMID: 17763362 DOI: 10.1002/mrm.21262] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose an alternating optimization framework for the joint design of excitation k-space trajectory and RF pulses for small-tip-angle parallel excitation. Using Bloch simulations, we show that compared with conventional designs with predetermined trajectories, joint designs can often excite target patterns with improved accuracy and reduced total integrated pulse power, particularly at high reduction factors. These benefits come at a modest increase in computational time.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
24 |
17
|
Hasselwander CJ, Cao Z, Grissom WA. gr-MRI: A software package for magnetic resonance imaging using software defined radios. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:47-55. [PMID: 27394165 PMCID: PMC4996692 DOI: 10.1016/j.jmr.2016.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/03/2016] [Accepted: 06/30/2016] [Indexed: 05/25/2023]
Abstract
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
23 |
18
|
Cao Z, Donahue MJ, Ma J, Grissom WA. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories. Magn Reson Med 2016; 75:1198-208. [PMID: 25916408 PMCID: PMC4624053 DOI: 10.1002/mrm.25739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. THEORY AND METHODS An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. RESULTS The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. CONCLUSION A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
23 |
19
|
Poorman ME, Chaplin VL, Wilkens K, Dockery MD, Giorgio TD, Grissom WA, Caskey CF. Open-source, small-animal magnetic resonance-guided focused ultrasound system. J Ther Ultrasound 2016; 4:22. [PMID: 27597889 PMCID: PMC5011339 DOI: 10.1186/s40349-016-0066-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/16/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. METHODS A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. RESULTS The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus visualization was achieved with acoustic radiation force imaging. CONCLUSIONS We developed an MRgFUS platform for small-animal treatments that robustly delivers accurate, precise, and controllable sonications over extended time periods. This system is an open source and could increase the availability of low-cost small-animal systems to interdisciplinary researchers seeking to develop new MRgFUS applications and technology.
Collapse
|
research-article |
9 |
21 |
20
|
Grissom WA, Kerr AB, Holbrook AB, Pauly JM, Butts-Pauly K. Maximum linear-phase spectral-spatial radiofrequency pulses for fat-suppressed proton resonance frequency-shift MR Thermometry. Magn Reson Med 2009; 62:1242-50. [PMID: 19780177 PMCID: PMC2795148 DOI: 10.1002/mrm.22118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 05/28/2009] [Indexed: 12/31/2022]
Abstract
Conventional spectral-spatial pulses used for water-selective excitation in proton resonance frequency-shift MR thermometry require increased sequence length compared to shorter wideband pulses. This is because spectral-spatial pulses are longer than wideband pulses, and the echo time period starts midway through them. Therefore, for a fixed echo time, one must increase sequence length to accommodate conventional spectral-spatial pulses in proton resonance frequency-shift thermometry. We introduce improved water-selective spectral-spatial pulses for which the echo time period starts near the beginning of excitation. Instead of requiring increased sequence length, these pulses extend into the long echo time periods common to PRF sequences. The new pulses therefore alleviate the traditional tradeoff between sequence length and fat suppression. We experimentally demonstrate an 11% improvement in frame rate in a proton resonance frequency imaging sequence compared to conventional spectral-spatial excitation. We also introduce a novel spectral-spatial pulse design technique that is a hybrid of previous model- and filter-based techniques and that inherits advantages from both. We experimentally validate the pulses' performance in suppressing lipid signal and in reducing sequence length compared to conventional spectral-spatial pulses.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
21 |
21
|
Yip CY, Yoon D, Olafsson V, Lee S, Grissom WA, Fessler JA, Noll DC. Spectral-spatial pulse design for through-plane phase precompensatory slice selection in T2*-weighted functional MRI. Magn Reson Med 2009; 61:1137-47. [PMID: 19267346 PMCID: PMC2856348 DOI: 10.1002/mrm.21938] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 12/03/2008] [Indexed: 11/09/2022]
Abstract
T(2)*-weighted functional MR images suffer from signal loss artifacts caused by the magnetic susceptibility differences between air cavities and brain tissues. We propose a novel spectral-spatial pulse design that is slice-selective and capable of mitigating the signal loss. The two-dimensional spectral-spatial pulses create precompensatory phase variations that counteract through-plane dephasing, relying on the assumption that resonance frequency offset and through-plane field gradient are spatially correlated. The pulses can be precomputed before functional MRI experiments and used repeatedly for different slices in different subjects. Experiments with human subjects showed that the pulses were effective in slice selection and loss mitigation at different brain regions.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
20 |
22
|
Ianni JD, Cao Z, Grissom WA. Machine learning RF shimming: Prediction by iteratively projected ridge regression. Magn Reson Med 2018; 80:1871-1881. [PMID: 29572990 DOI: 10.1002/mrm.27192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE To obviate online slice-by-slice RF shim optimization and reduce B1+ mapping requirements for patient-specific RF shimming in high-field magnetic resonance imaging. THEORY AND METHODS RF Shim Prediction by Iteratively Projected Ridge Regression (PIPRR) predicts patient-specific, SAR-efficient RF shims with a machine learning approach that merges learning with training shim design. To evaluate it, a set of B1+ maps was simulated for 100 human heads for a 24-element coil at 7T. Features were derived from tissue masks and the DC Fourier coefficients of the coils' B1+ maps in each slice, which were used for kernelized ridge regression prediction of SAR-efficient RF shim weights. Predicted shims were compared to directly designed shims, circularly polarized mode, and nearest-neighbor shims predicted using the same features. RESULTS PIPRR predictions had 87% and 13% lower B1+ coefficients of variation compared to circularly polarized mode and nearest-neighbor shims, respectively, and achieved homogeneity and SAR similar to that of directly designed shims. Predictions were calculated in 4.92 ms on average. CONCLUSION PIPRR predicted uniform, SAR-efficient RF shims, and could save a large amount of B1+ mapping and computation time in RF-shimmed ultra-high field magnetic resonance imaging.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
20 |
23
|
Cao Z, Yan X, Grissom WA. Array-compressed parallel transmit pulse design. Magn Reson Med 2016; 76:1158-69. [PMID: 26510117 PMCID: PMC4848238 DOI: 10.1002/mrm.26020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE To design array-compressed parallel transmit radiofrequency (RF) pulses and compare them to pulses designed with existing transmit array compression strategies. THEORY AND METHODS Array-compressed parallel RF pulse design is proposed as the joint optimization of a matrix of complex-valued compression weights that relate a full-channel physical array to a reduced-channel virtual array, along with a set of RF pulses for the virtual array. In this way, the physics of the RF pulse application determine the coil combination weights. Array-compressed pulse design algorithms are described for four parallel transmit applications: accelerated two-dimensional spiral excitation, multislice RF shimming, small-tip-angle kT -points excitation, and slice-selective spokes refocusing. Array-compressed designs are compared in simulations and an experiment to pulses designed using four existing array compression strategies. RESULTS In all cases, array-compressed pulses achieved the lowest root-mean-square excitation error among the array compression approaches. Low errors were generally achieved without increasing root-mean-square RF amplitudes or maximum local 10-gram specific absorption rate. Leave-one-out multisubject shimming simulations demonstrated that array-compressed RF shimming can identify useful fixed coil combination weights that perform well across a population. CONCLUSION Array-compressed pulse design jointly identifies the transmit coil array compression weights and RF pulses that perform best for a specific parallel excitation application. Magn Reson Med 76:1158-1169, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
|
Evaluation Study |
9 |
20 |
24
|
Harkins KD, Does MD, Grissom WA. Iterative method for predistortion of MRI gradient waveforms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1641-7. [PMID: 24801945 PMCID: PMC4128553 DOI: 10.1109/tmi.2014.2320987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The purpose of this work is to correct for transient gradient waveform errors in magnetic resonance imaging (MRI), whether from eddy currents, group delay, or gradient amplifier nonlinearities, which are known to affect image quality. An iterative method is proposed to minimize error between desired and measured gradient waveforms, whose success does not depend on accurate knowledge of the gradient system impulse response. The method was applied to half-pulse excitation for 2-D ultra-short echo time (UTE) imaging on a small animal MRI system and to spiral 2-D excitation on a human 7T MRI system. Predistorted gradient waveforms reduced temporal signal variation caused by excitation gradient trajectory errors in 2-D UTE, and improved the quality of excitation patterns produced by spiral excitation pulses. Iterative gradient predistortion is useful for minimizing transient gradient errors without requiring accurate characterization of the gradient system impulse response.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
19 |
25
|
Srinivas SA, Cauley SF, Stockmann JP, Sappo CR, Vaughn CE, Wald LL, Grissom WA, Cooley CZ. External Dynamic InTerference Estimation and Removal (EDITER) for low field MRI. Magn Reson Med 2022; 87:614-628. [PMID: 34480778 PMCID: PMC8920578 DOI: 10.1002/mrm.28992] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Point-of-care MRI requires operation outside of Faraday shielded rooms normally used to block image-degrading electromagnetic interference (EMI). To address this, we introduce the EDITER method (External Dynamic InTerference Estimation and Removal), an external sensor-based method to retrospectively remove image artifacts from time-varying external interference sources. THEORY AND METHODS The method acquires data from multiple EMI detectors (tuned receive coils as well as untuned electrodes placed on the body) simultaneously with the primary MR coil during and between image data acquisition. We calculate impulse response functions dynamically that map the data from the detectors to the time varying artifacts then remove the transformed detected EMI from the MR data. Performance of the EDITER algorithm was assessed in phantom and in vivo imaging experiments in an 80 mT portable brain MRI in a controlled EMI environment and with an open 47.5 mT MRI scanner in an uncontrolled EMI setting. RESULTS In the controlled setting, the effectiveness of the EDITER technique was demonstrated for specific types of introduced EMI sources with up to a 97% reduction of structured EMI and up to 76% reduction of broadband EMI in phantom experiments. In the uncontrolled EMI experiments, we demonstrate EMI reductions of up to 99% using an electrode and pick-up coil in vivo. We demonstrate up to a nine-fold improvement in image SNR with the method. CONCLUSION The EDITER technique is a flexible and robust method to improve image quality in portable MRI systems with minimal passive shielding and could reduce the reliance of MRI on shielded rooms and allow for truly portable MRI.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
19 |