1
|
Gwynne WD, Suk Y, Custers S, Mikolajewicz N, Chan JK, Zador Z, Chafe SC, Zhai K, Escudero L, Zhang C, Zaslaver O, Chokshi C, Shaikh MV, Bakhshinyan D, Burns I, Chaudhry I, Nachmani O, Mobilio D, Maich WT, Mero P, Brown KR, Quaile AT, Venugopal C, Moffat J, Montenegro-Burke JR, Singh SK. Cancer-selective metabolic vulnerabilities in MYC-amplified medulloblastoma. Cancer Cell 2022; 40:1488-1502.e7. [PMID: 36368321 DOI: 10.1016/j.ccell.2022.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022]
Abstract
MYC-driven medulloblastoma (MB) is an aggressive pediatric brain tumor characterized by therapy resistance and disease recurrence. Here, we integrated data from unbiased genetic screening and metabolomic profiling to identify multiple cancer-selective metabolic vulnerabilities in MYC-driven MB tumor cells, which are amenable to therapeutic targeting. Among these targets, dihydroorotate dehydrogenase (DHODH), an enzyme that catalyzes de novo pyrimidine biosynthesis, emerged as a favorable candidate for therapeutic targeting. Mechanistically, DHODH inhibition acts on target, leading to uridine metabolite scarcity and hyperlipidemia, accompanied by reduced protein O-GlcNAcylation and c-Myc degradation. Pyrimidine starvation evokes a metabolic stress response that leads to cell-cycle arrest and apoptosis. We further show that an orally available small-molecule DHODH inhibitor demonstrates potent mono-therapeutic efficacy against patient-derived MB xenografts in vivo. The reprogramming of pyrimidine metabolism in MYC-driven medulloblastoma represents an unappreciated therapeutic strategy and a potential new class of treatments with stronger cancer selectivity and fewer neurotoxic sequelae.
Collapse
|
|
3 |
36 |
2
|
Gwynne WD, Hallett RM, Girgis-Gabardo A, Bojovic B, Dvorkin-Gheva A, Aarts C, Dias K, Bane A, Hassell JA. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts. Oncotarget 2018; 8:32101-32116. [PMID: 28404880 PMCID: PMC5458271 DOI: 10.18632/oncotarget.16646] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/01/2017] [Indexed: 12/24/2022] Open
Abstract
Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials.
Collapse
|
Journal Article |
7 |
28 |
3
|
Tatari N, Khan S, Livingstone J, Zhai K, Mckenna D, Ignatchenko V, Chokshi C, Gwynne WD, Singh M, Revill S, Mikolajewicz N, Zhu C, Chan J, Hawkins C, Lu JQ, Provias JP, Ask K, Morrissy S, Brown S, Weiss T, Weller M, Han H, Greenspoon JN, Moffat J, Venugopal C, Boutros PC, Singh SK, Kislinger T. The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol 2022; 144:1127-1142. [PMID: 36178522 PMCID: PMC10187978 DOI: 10.1007/s00401-022-02506-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/26/2023]
Abstract
Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is refractory to most treatments used for pGBM, are poorly known. We, therefore, quantified the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 40 matched pGBM-rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and in particular 2-5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. Our data identify a new class of therapeutic targets that emerge from the adaptive response of pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic opportunities absent at pGBM diagnosis.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
17 |
4
|
Gwynne WD, Shakeel MS, Girgis-Gabardo A, Hassell JA. The Role of Serotonin in Breast Cancer Stem Cells. Molecules 2021; 26:molecules26113171. [PMID: 34073226 PMCID: PMC8198186 DOI: 10.3390/molecules26113171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Breast tumors were the first tumors of epithelial origin shown to follow the cancer stem cell model. The model proposes that cancer stem cells are uniquely endowed with tumorigenic capacity and that their aberrant differentiation yields non-tumorigenic progeny, which constitute the bulk of the tumor cell population. Breast cancer stem cells resist therapies and seed metastases; thus, they account for breast cancer recurrence. Hence, targeting these cells is essential to achieve durable breast cancer remissions. We identified compounds including selective antagonists of multiple serotonergic system pathway components required for serotonin biosynthesis, transport, activity via multiple 5-HT receptors (5-HTRs), and catabolism that reduce the viability of breast cancer stem cells of both mouse and human origin using multiple orthologous assays. The molecular targets of the selective antagonists are expressed in breast tumors and breast cancer cell lines, which also produce serotonin, implying that it plays a required functional role in these cells. The selective antagonists act synergistically with chemotherapy to shrink mouse mammary tumors and human breast tumor xenografts primarily by inducing programmed tumor cell death. We hypothesize those serotonergic proteins of diverse activity function by common signaling pathways to maintain cancer stem cell viability. Here, we summarize our recent findings and the relevant literature regarding the role of serotonin in breast cancer.
Collapse
|
Review |
4 |
9 |
5
|
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor, representing 60% of childhood intracranial embryonal tumors. Despite multimodal advances in therapies over the last 20 years that have yielded a 5-year survival rate of 75%, high-risk patients (younger than 3 years, subtotal resection, metastatic lesions at diagnosis) still experience a 5-year overall survival of less than 70%. In this introductory chapter on pediatric MB, we describe the initial discrimination of MB based on histopathological examination and the more recent progress made in global gene expression profiling methods that have allowed scientists to more accurately subclassify and prognosticate on MB based on molecular characteristics. The identification of subtype-specific molecular drivers and pathways presents novel therapeutic targets that could lead to MB subtype-specific treatment modalities. Additionally, we detail how the cancer stem cell (CSC) hypothesis provides an explanation for tumor recurrence, and the potential for CSC-targeted therapies to address treatment-refractory MB. These personalized therapies can potentially increase MB survivorship and negate some of the long-term neurotoxicity associated with the current standard of care for MB patients.
Collapse
|
Review |
3 |
8 |
6
|
Gwynne WD, Shakeel MS, Girgis-Gabardo A, Kim KH, Ford E, Dvorkin-Gheva A, Aarts C, Isaac M, Al-Awar R, Hassell JA. Antagonists of the serotonin receptor 5A target human breast tumor initiating cells. BMC Cancer 2020; 20:724. [PMID: 32758183 PMCID: PMC7404930 DOI: 10.1186/s12885-020-07193-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Breast tumor initiating cells (BTIC) are stem-like cells that initiate and sustain tumor growth, and drive disease recurrence. Identifying therapies targeting BTIC has been hindered due primarily to their scarcity in tumors. We previously reported that BTIC frequency ranges between 15% and 50% in multiple mammary tumors of 3 different transgenic mouse models of breast cancer and that this frequency is maintained in tumor cell populations cultured in serum-free, chemically defined media as non-adherent tumorspheres. The latter enabled high-throughput screening of small molecules for their capacity to affect BTIC survival. Antagonists of several serotonin receptors (5-HTRs) were among the hit compounds. The most potent compound we identified, SB-699551, selectively binds to 5-HT5A, a Gαi/o protein coupled receptor (GPCR). Methods We evaluated the activity of structurally unrelated selective 5-HT5A antagonists using multiple orthogonal assays of BTIC frequency. Thereafter we used a phosphoproteomic approach to uncover the mechanism of action of SB-699551. To validate the molecular target of the antagonists, we used the CRISPR-Cas9 gene editing technology to conditionally knockout HTR5A in a breast tumor cell line. Results We found that selective antagonists of 5-HT5A reduced the frequency of tumorsphere initiating cells residing in breast tumor cell lines and those of patient-derived xenografts (PDXs) that we established. The most potent compound among those tested, SB-699551, reduced the frequency of BTIC in ex vivo assays and acted in concert with chemotherapy to shrink human breast tumor xenografts in vivo. Our phosphoproteomic experiments established that exposure of breast tumor cells to SB-699551 elicited signaling changes in the canonical Gαi/o-coupled pathway and the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) axis. Moreover, conditional mutation of the HTR5A gene resulted in the loss of tumorsphere initiating cells and BTIC thus mimicking the effect of SB-699551. Conclusions Our data provide genetic, pharmacological and phosphoproteomic evidence consistent with the on-target activity of SB-699551. The use of such agents in combination with cytotoxic chemotherapy provides a novel therapeutic approach to treat breast cancer.
Collapse
|
Journal Article |
5 |
7 |
7
|
Gwynne WD, Shakeel MS, Wu J, Hallett RM, Girgis-Gabardo A, Dvorkin-Gheva A, Hassell JA. Monoamine oxidase-A activity is required for clonal tumorsphere formation by human breast tumor cells. Cell Mol Biol Lett 2019; 24:59. [PMID: 31754354 PMCID: PMC6852929 DOI: 10.1186/s11658-019-0183-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
Background Breast tumor growth and recurrence are driven by an infrequent population of breast tumor-initiating cells (BTIC). We and others have reported that the frequency of BTIC is orders of magnitude higher when breast tumor cells are propagated in vitro as clonal spheres, termed tumorspheres, by comparison to adherent cells. We exploited the latter to screen > 35,000 small molecules to identify agents capable of targeting BTIC. We unexpectedly discovered that selective antagonists of serotonin signaling were among the hit compounds. To better understand the relationship between serotonin and BTIC we expanded our analysis to include monoamine oxidase-A (MAO-A), an enzyme that metabolizes serotonin. Methods We used the Nanostring technology and Western blotting to determine whether MAO-A is expressed in human breast tumor cell lines cultured as tumorspheres by comparison to those grown as adherent cells. We then determined whether MAO-A activity is required for tumorsphere formation, a surrogate in vitro assay for BTIC, by assessing whether selective MAO-A inhibitors affect the frequency of tumorsphere-forming cells. To learn whether MAO-A expression in breast tumor cells is associated with other reported properties of BTIC such as anticancer drug resistance or breast tumor recurrence, we performed differential gene expression analyses using publicly available transcriptomic datasets. Results Tumorspheres derived from human breast tumor cell lines representative of every breast cancer clinical subtype displayed increased expression of MAO-A transcripts and protein by comparison to adherent cells. Surprisingly, inhibition of MAO-A activity with selective inhibitors reduced the frequency of tumorsphere-forming cells. We also found that increased MAO-A expression is a common feature of human breast tumor cell lines that have acquired anticancer drug resistance and is associated with poor recurrence-free survival (RFS) in patients that experienced high-grade, ER-negative (ER−) breast tumors. Conclusions Our data suggests that MAO-A activity is required for tumorsphere formation and that its expression in breast tumor cells is associated with BTIC-related properties. The discovery that a selective MAO-A inhibitor targets tumorsphere-forming cells with potencies in the nanomolar range provides the first evidence of this agent’s anticancer property. These data warrant further investigation of the link between MAO-A and BTIC.
Collapse
|
Journal Article |
6 |
6 |
8
|
Bakhshinyan D, Adile AA, Liu J, Gwynne WD, Suk Y, Custers S, Burns I, Singh M, McFarlane N, Subapanditha MK, Qazi MA, Vora P, Kameda-Smith MM, Savage N, Desmond KL, Tatari N, Tran D, Seyfrid M, Hope K, Bock NA, Venugopal C, Bader GD, Singh SK. Temporal profiling of therapy resistance in human medulloblastoma identifies novel targetable drivers of recurrence. SCIENCE ADVANCES 2021; 7:eabi5568. [PMID: 34878832 PMCID: PMC8654291 DOI: 10.1126/sciadv.abi5568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/16/2021] [Indexed: 05/20/2023]
Abstract
Medulloblastoma (MB) remains a leading cause of cancer-related mortality among children. The paucity of MB samples collected at relapse has hindered the functional understanding of molecular mechanisms driving therapy failure. New models capable of accurately recapitulating tumor progression in response to conventional therapeutic interventions are urgently needed. In this study, we developed a therapy-adapted PDX MB model that has a distinct advantage of generating human MB recurrence. The comparative gene expression analysis of MB cells collected throughout therapy led to identification of genes specifically up-regulated after therapy, including one previously undescribed in the setting of brain tumors, bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4). Subsequent functional validation resulted in a markedly diminished in vitro proliferation, self-renewal, and longevity of MB cells, translating into extended survival and reduced tumor burden in vivo. Targeting endothelial nitric oxide synthase, a downstream substrate of BPIFB4, impeded growth of several patient-derived MB lines at low nanomolar concentrations.
Collapse
|
research-article |
4 |
4 |
9
|
Bakhshinyan D, Suk Y, Kuhlmann L, Adile AA, Ignatchenko V, Custers S, Gwynne WD, Macklin A, Venugopal C, Kislinger T, Singh SK. Dynamic profiling of medulloblastoma surfaceome. Acta Neuropathol Commun 2023; 11:111. [PMID: 37430373 PMCID: PMC10331972 DOI: 10.1186/s40478-023-01609-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Medulloblastoma (MB) is the most common type of malignant pediatric brain cancer. The current standard of care (SOC) involves maximal safe resection and chemoradiotherapy in individuals older than 3 years, often leading to devastating neurocognitive and developmental deficits. Out of the four distinct molecular subgroups, Group 3 and 4 have the poorest patient outcomes due to the aggressive nature of the tumor and propensity to metastasize and recur post therapy. The toxicity of the SOC and lack of response in specific subtypes to the SOC underscores the urgent need for developing and translating novel treatment options including immunotherapies. To identify differentially enriched surface proteins that could be evaluated for potential future immunotherapeutic interventions, we leveraged N-glycocapture surfaceome profiling on Group 3 MB cells from primary tumor, through therapy, to recurrence using our established therapy-adapted patient derived xenograft model. Integrin 𝛼5 (ITGA5) was one of the most differentially enriched targets found at recurrence when compared to engraftment and untreated timepoints. In addition to being enriched at recurrence, shRNA-mediated knockdown and small molecule inhibition of ITGA5 have resulted in marked decrease in proliferation and self-renewal in vitro and demonstrated a survival advantage in vivo. Together, our data highlights the value of dynamic profiling of cells as they evolve through therapy and the identification of ITGA5 as a promising therapeutic target for recurrent Group 3 MB.
Collapse
|
research-article |
2 |
2 |
10
|
Chan JK, Gwynne WD, Lieng BY, Quaile AT, Venugopal C, Singh SK, Montenegro-Burke JR. Protocol for mapping the metabolome and lipidome of medulloblastoma cells using liquid chromatography-mass spectrometry. STAR Protoc 2023; 4:102736. [PMID: 37999971 PMCID: PMC10709382 DOI: 10.1016/j.xpro.2023.102736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics and lipidomics have recently been used to show that MYC-amplified group 3 medulloblastoma tumors are driven by metabolic reprogramming. Here, we present a protocol to extract metabolites and lipids from human medulloblastoma brain tumor-initiating cells and normal neural stem cells. We describe untargeted LC-MS methods that can be used to achieve extensive coverage of the polar metabolome and lipidome. Finally, we detail strategies for metabolite identification and data analysis. For complete details on the use and execution of this protocol, please refer to Gwynne et al.1.
Collapse
|
research-article |
2 |
2 |
11
|
Kameda-Smith MM, Zhu H, Luo EC, Suk Y, Xella A, Yee B, Chokshi C, Xing S, Tan F, Fox RG, Adile AA, Bakhshinyan D, Brown K, Gwynne WD, Subapanditha M, Miletic P, Picard D, Burns I, Moffat J, Paruch K, Fleming A, Hope K, Provias JP, Remke M, Lu Y, Reya T, Venugopal C, Reimand J, Wechsler-Reya RJ, Yeo GW, Singh SK. Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat Commun 2022; 13:7506. [PMID: 36473869 PMCID: PMC9726987 DOI: 10.1038/s41467-022-35118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pediatric medulloblastoma (MB) is the most common solid malignant brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB, however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that the RNA-binding protein, Musashi-1 (MSI1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. MSI1 inhibition abrogates tumor initiation and significantly prolongs survival in both models. We identify binding targets of MSI1 in normal neural and G3 MB stem cells and then cross referenced these data with unbiased large-scale screens at the transcriptomic, translatomic and proteomic levels to systematically dissect its functional role. Comparative integrative multi-omic analyses of these large datasets reveal cancer-selective MSI1-bound targets sharing multiple MYC associated pathways, providing a valuable resource for context-specific therapeutic targeting of G3 MB.
Collapse
|
research-article |
3 |
2 |
12
|
Kieliszek AM, Mobilio D, Bassey-Archibong BI, Johnson JW, Piotrowski ML, de Araujo ED, Sedighi A, Aghaei N, Escudero L, Ang P, Gwynne WD, Zhang C, Quaile A, McKenna D, Subapanditha M, Tokar T, Vaseem Shaikh M, Zhai K, Chafe SC, Gunning PT, Montenegro-Burke JR, Venugopal C, Magolan J, Singh SK. De novo GTP synthesis is a metabolic vulnerability for the interception of brain metastases. Cell Rep Med 2024; 5:101755. [PMID: 39366383 PMCID: PMC11513854 DOI: 10.1016/j.xcrm.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Patients with brain metastases (BM) face a 90% mortality rate within one year of diagnosis and the current standard of care is palliative. Targeting BM-initiating cells (BMICs) is a feasible strategy to treat BM, but druggable targets are limited. Here, we apply Connectivity Map analysis to lung-, breast-, and melanoma-pre-metastatic BMIC gene expression signatures and identify inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in the de novo GTP synthesis pathway, as a target for BM. We show that pharmacological and genetic perturbation of IMPDH attenuates BMIC proliferation in vitro and the formation of BM in vivo. Metabolomic analyses and CRISPR knockout studies confirm that de novo GTP synthesis is a potent metabolic vulnerability in BM. Overall, our work employs a phenotype-guided therapeutic strategy to uncover IMPDH as a relevant target for attenuating BM outgrowth, which may provide an alternative treatment strategy for patients who are otherwise limited to palliation.
Collapse
|
research-article |
1 |
|
13
|
Bakhshinyan D, Suk Y, Kuhlmann L, Adile AA, Ignatchenko V, Custers S, Gwynne WD, Macklin A, Venugopal C, Kislinger T, Singh SK. Correction to: Dynamic profiling of medulloblastoma surfaceome. Acta Neuropathol Commun 2023; 11:169. [PMID: 37872586 PMCID: PMC10594668 DOI: 10.1186/s40478-023-01666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
|
Published Erratum |
2 |
|
14
|
Kameda-Smith MM, Zhu H, Luo EC, Suk Y, Xella A, Yee B, Chokshi C, Xing S, Tan F, Fox RG, Adile AA, Bakhshinyan D, Brown K, Gwynne WD, Subapanditha M, Miletic P, Picard D, Burns I, Moffat J, Paruch K, Fleming A, Hope K, Provias JP, Remke M, Lu Y, Reya T, Venugopal C, Reimand J, Wechsler-Reya RJ, Yeo GW, Singh SK. Author Correction: Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat Commun 2023; 14:136. [PMID: 36627300 PMCID: PMC9832149 DOI: 10.1038/s41467-023-35816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
correction |
2 |
|
15
|
Morgenstern Y, Lee J, Na Y, Lieng BY, Ly NS, Gwynne WD, Hurren R, Ma L, Ling D, Gronda M, Arruda A, Frisch A, Zuckerman T, Ofran Y, Minden MD, Zhang L, O'Brien C, Quaile AT, Montenegro-Burke JR, Schimmer AD. Acute myeloid leukemia drug-tolerant persister cells survive chemotherapy by transiently increasing plasma membrane rigidity, that also increases their sensitivity to immune cell killing. Haematologica 2025; 110:893-903. [PMID: 39568440 PMCID: PMC11962361 DOI: 10.3324/haematol.2024.286018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Resistance to chemotherapy remains a major hurdle to the cure of patients with acute myeloid leukemia (AML). Recent studies indicate that a minority of malignant cells, termed drug-tolerant persisters (DTP), stochastically upregulate stress pathways to evade cell death upon acute exposure to chemotherapy without acquiring new genetic mutations. This chemoresistant state is transient and the cells return to the baseline state after removal of chemotherapy. Nevertheless, the mechanisms employed by DTP to resist chemotherapy are not well understood and it is largely unknown whether these mechanisms are also seen in patients receiving chemotherapy. Here, we used leukemia cell lines, primary AML patients' samples and samples from patients with AML receiving systemic chemotherapy to study the DTP state. We demonstrated that a subset of AML cells transiently increases membrane rigidity to resist killing due to acute exposure to daunorubicin and Ara-C. Upon removal of the chemotherapy, membrane rigidity returned to baseline and the cells regained chemosensitivity. Although resistant to chemotherapy, the increased membrane rigidity rendered AML cells more susceptible to T-cell-mediated killing. Thus, we identified a novel mechanism by which DTP leukemic cells evade chemotherapy and a strategy to eradicate these persistent cells.
Collapse
|
research-article |
1 |
|
16
|
Burns I, Gwynne WD, Suk Y, Custers S, Chaudhry I, Venugopal C, Singh SK. The Road to CAR T-Cell Therapies for Pediatric CNS Tumors: Obstacles and New Avenues. Front Oncol 2022; 12:815726. [PMID: 35155252 PMCID: PMC8829546 DOI: 10.3389/fonc.2022.815726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pediatric central nervous system (CNS) tumors are the most common solid tumors diagnosed in children and are the leading cause of pediatric cancer-related death. Those who do survive are faced with the long-term adverse effects of the current standard of care treatments of chemotherapy, radiation, and surgery. There is a pressing need for novel therapeutic strategies to treat pediatric CNS tumors more effectively while reducing toxicity - one of these novel modalities is chimeric antigen receptor (CAR) T-cell therapy. Currently approved for use in several hematological malignancies, there are promising pre-clinical and early clinical data that suggest CAR-T cells could transform the treatment of pediatric CNS tumors. There are, however, several challenges that must be overcome to develop safe and effective CAR T-cell therapies for CNS tumors. Herein, we detail these challenges, focusing on those unique to pediatric patients including antigen selection, tumor immunogenicity and toxicity. We also discuss our perspective on future avenues for CAR T-cell therapies and potential combinatorial treatment approaches.
Collapse
|
|
3 |
|
17
|
Ali M, Wollenhaupt-Aguiar B, Wang Y, Abu-Hijleh F, Rigg N, de Azevedo Cardoso T, Ahmed I, Gopalakrishnan R, Jansen K, de Mattos Souza LD, Azevedo da Silva R, Mondin TC, Kapczinski F, Moreira FP, Lofts A, Gwynne WD, Hoare T, Mishra R, Frey BN. Investigation of the mesencephalic astrocyte-derived neurotrophic factor-endoplasmic reticulum stress pathway in mood disorders. Int J Neuropsychopharmacol 2025; 28:pyaf004. [PMID: 39803900 PMCID: PMC11808195 DOI: 10.1093/ijnp/pyaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Bipolar disorder (BD) has been associated with impaired cellular resilience. Recent studies have shown abnormalities in the unfolded protein response (UPR) in BD. The UPR is the cellular response to endoplasmic reticulum (ER) stress. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a trophic factor, decreases ER stress by modulating the UPR. The objective of this study is to investigate the MANF-ER stress pathway in BD and major depressive disorder (MDD) compared to healthy controls (HC). METHODS MANF protein concentration and MANF and GRP78 gene expression were assessed in peripheral blood from individuals with BD, MDD, and HC (protein: 40 BD, 55 MDD, 55 HC; gene expression: 52 BD, 61 MDD, 69 HC). MANF protein and gene expression along with GRP78 gene expression were also analyzed in postmortem brain tissue (20 BD, 20 MDD, 19 HC). MANF protein was quantified using an ELISA assay while quantitative polymerase chain reaction was used for MANF and GRP78 gene expression. RESULTS Peripheral MANF protein levels were reduced in individuals with BD in a depressive state compared to controls (P = .031) and euthymic BD participants (P = .013). No significant differences in MANF or GRP78 gene expression were observed in BD irrespective of mood state, or MDD compared to HC (all P > .05). No differences were observed regarding MANF/GRP78 protein or gene expression levels in postmortem tissue (P > .05). CONCLUSIONS Individuals with BD who were in an acute depressive phase were found to have reduced peripheral MANF levels potentially signifying abnormal UPR and supporting the notion that BD is associated with increased ER stress.
Collapse
|
research-article |
1 |
|