1
|
Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM. Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 2008; 98:267-70. [PMID: 18442830 DOI: 10.1016/j.jip.2008.01.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
Seed application of Beauveria bassiana 11-98 resulted in endophytic colonization of tomato and cotton seedlings and protection against plant pathogenic Rhizoctonia solani and Pythium myriotylum. Both pathogens cause damping off of seedlings and root rot of older plants. The degree of disease control achieved depended upon the population density of B. bassiana conidia on seed. Using standard plating techniques onto selective medium, endophytic 11-98 was recovered from surface-sterilized roots, stems, and leaves of tomato, cotton, and snap bean seedlings grown from seed treated with B. bassiana 11-98. As the rate of conidia applied to seed increased, the proportion of plant tissues from which B. bassiana 11-98 was recovered increased. For rapid detection of B. bassiana 11-98 in cotton tissues, we developed new ITS primers that produce a PCR product for B. bassiana 11-98, but not for cotton. In cotton samples containing DNA from B. bassiana11-98, the fungus was detected at DNA ratios of 1:1000; B. bassiana 11-98 was detected also in seedlings grown from seed treated with B. bassiana 11-98. Using SEM, hyphae of B. bassiana11-98 were observed penetrating epithelial cells of cotton and ramifying through palisade parenchyma and mesophyll leaf tissues. B. bassiana11-98 induced systemic resistance in cotton against Xanthomonas axonopodis pv. malvacearum (bacterial blight). In parasitism assays, hyphae of B. bassiana 11-98 were observed coiling around hyphae of Pythium myriotylum.
Collapse
|
Journal Article |
17 |
143 |
2
|
Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE, Jurat-Fuentes JL, Johnson BR. The origin of the odorant receptor gene family in insects. eLife 2018; 7:e38340. [PMID: 30063003 PMCID: PMC6080948 DOI: 10.7554/elife.38340] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023] Open
Abstract
The origin of the insect odorant receptor (OR) gene family has been hypothesized to have coincided with the evolution of terrestriality in insects. Missbach et al. (2014) suggested that ORs instead evolved with an ancestral OR co-receptor (Orco) after the origin of terrestriality and the OR/Orco system is an adaptation to winged flight in insects. We investigated genomes of the Collembola, Diplura, Archaeognatha, Zygentoma, Odonata, and Ephemeroptera, and find ORs present in all insect genomes but absent from lineages predating the evolution of insects. Orco is absent only in the ancestrally wingless insect lineage Archaeognatha. Our new genome sequence of the zygentoman firebrat Thermobia domestica reveals a full OR/Orco system. We conclude that ORs evolved before winged flight, perhaps as an adaptation to terrestriality, representing a key evolutionary novelty in the ancestor of all insects, and hence a molecular synapomorphy for the Class Insecta.
Collapse
|
research-article |
7 |
96 |
3
|
Oppert C, Klingeman WE, Willis JD, Oppert B, Jurat-Fuentes JL. Prospecting for cellulolytic activity in insect digestive fluids. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:145-54. [DOI: 10.1016/j.cbpb.2009.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 11/26/2022]
|
|
15 |
50 |
4
|
Oren E, Klingeman W, Gazis R, Moulton J, Lambdin P, Coggeshall M, Hulcr J, Seybold SJ, Hadziabdic D. A novel molecular toolkit for rapid detection of the pathogen and primary vector of thousand cankers disease. PLoS One 2018; 13:e0185087. [PMID: 29304036 PMCID: PMC5755734 DOI: 10.1371/journal.pone.0185087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/06/2017] [Indexed: 11/23/2022] Open
Abstract
Thousand Cankers Disease (TCD) of Juglans and Pterocarya (Juglandaceae) involves a fungal pathogen, Geosmithia morbida, and a primary insect vector, Pityophthorus juglandis. TCD was described originally from dying Juglans nigra trees in the western United States (USA), but it was reported subsequently from the eastern USA and northern Italy. The disease is often difficult to diagnose due to the absence of symptoms or signs on the bark surface of the host. Furthermore, disease symptoms can be confused with those caused by other biotic and abiotic agents. Thus, there is a critical need for a method for rapid detection of the pathogen and vector of TCD. Using species-specific microsatellite DNA markers, we developed a molecular protocol for the detection of G. morbida and P. juglandis. To demonstrate the utility of the method for delineating TCD quarantine zones, we tested whether geographical occurrence of symptoms and signs of TCD was correlated with molecular evidence for the presence of the cryptic TCD organisms. A total of 1600 drill cores were taken from branch sections collected from three regions (n = 40 trees for each location): California-J. hindsii (heavy disease incidence); Tennessee-J. nigra (mild disease incidence); and outside the known TCD zone (Missouri-J. nigra, no record of the disease). California samples had the highest incidence of the TCD organisms (85%, 34/40). Tennessee had intermediate incidence (42.5%, 17/40), whereas neither organism was detected in samples from Missouri. The low cost molecular protocol developed here has a high degree of sensitivity and specificity, and it significantly reduces sample-processing time, making the protocol a powerful tool for rapid detection of TCD.
Collapse
|
research-article |
7 |
21 |
5
|
Willis JD, Oppert B, Oppert C, Klingeman WE, Jurat-Fuentes JL. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). JOURNAL OF INSECT PHYSIOLOGY 2011; 57:300-306. [PMID: 21126522 DOI: 10.1016/j.jinsphys.2010.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 05/28/2023]
Abstract
The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-β-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a full-length TcEG1 cDNA clone (1356bp) revealed sequence homology to enzymes in glycosyl hydrolase family 9 (GHF9), and verified presence of a change (Gly for Ser) in the conserved catalytic domain for GHF9 cellulases. This TcEG1 cDNA clone was predicted to encode a 49.5kDa protein with a calculated pI of 5.39. Heterologous expression of TcEG1 in Drosophila S2 cell cultures resulted in secretion of a 51-kDa protein, as determined by Western blotting. The expressed protein was used to characterize TcEG1 enzymatic activity against two cellulose substrates to determine its specificity and stability. Our data support that TcEG1 as a novel endo-β-1,4-glucanase, the first functional characterization of a cellulase enzyme derived from an insect genome with potential applications in the biofuel industry due to its high relative activity at alkaline pH.
Collapse
|
|
14 |
21 |
6
|
Willis JD, Klingeman WE, Oppert C, Oppert B, Jurat-Fuentes JL. Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae). Comp Biochem Physiol B Biochem Mol Biol 2010; 157:267-72. [DOI: 10.1016/j.cbpb.2010.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/25/2010] [Accepted: 06/27/2010] [Indexed: 11/26/2022]
|
|
15 |
21 |
7
|
Pothula R, Shirley D, Perera OP, Klingeman WE, Oppert C, Abdelgaffar HMY, Johnson BR, Jurat-Fuentes JL. The digestive system in Zygentoma as an insect model for high cellulase activity. PLoS One 2019; 14:e0212505. [PMID: 30817757 PMCID: PMC6394914 DOI: 10.1371/journal.pone.0212505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
The digestive system of selected phytophagous insects has been examined as a potential prospecting resource for identification of novel cellulolytic enzymes with potential industrial applications. In contrast to other model species, however, limited detailed information is available that characterizes cellulolytic activity and systems in basal hexapod groups. As part of a screening effort to identify insects with highly active cellulolytic systems, we have for the first time, identified species of Zygentoma that displayed the highest relative cellulase activity levels when compared to all other tested insect groups under the experimental conditions, including model species for cellulolytic systems such as termite and cockroach species in Rhinotermitidae (formerly Isoptera) and Cryptocercidae (formerly Blattodea). The goal of the present study was to provide a morphohistological characterization of cellulose digestion and to identify highly active cellulase enzymes present in digestive fluids of Zygentoma species. Morphohistological characterization supported no relevant differences in the digestive system of firebrat (Thermobia domestica) and the gray silverfish (Ctenolepisma longicaudata). Quantitative and qualitative cellulase assays identified the foregut as the region with the highest levels of cellulase activity in both T. domestica and C. longicaudata. However, T. domestica was found to have higher endoglucanase, xylanase and pectinase activities compared to C. longicaudata. Using nano liquid chromatography coupled to tandem mass spectrometry (nanoLC/MS/MS) and a custom gut transcriptome we identified cellulolytic enzymes from digestive fluids of T. domestica. Among the identified enzymes we report putative endoglucanases matching to insect or arthropod enzymes and glucan endo-1,6-β-glucosidases matching bacterial enzymes. These findings support combined activities of endogenous and symbiont-derived plant cell wall degrading enzymes in lignocellulose digestion in Zygentoma and advance our understanding of cellulose digestion in a primitive insect group.
Collapse
|
research-article |
6 |
13 |
8
|
Ony MA, Nowicki M, Boggess SL, Klingeman WE, Zobel JM, Trigiano RN, Hadziabdic D. Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecol Evol 2020; 10:3655-3670. [PMID: 32313625 PMCID: PMC7160182 DOI: 10.1002/ece3.6141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen-seed dispersal mechanisms. However, in the case of tree species, effective pollen-seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine-scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia-Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (H E = 0.63, H O = 0.34), and moderate genetic differentiation (F ST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia-Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.
Collapse
|
research-article |
5 |
12 |
9
|
Chahal K, Gazis R, Klingeman W, Hadziabdic D, Lambdin P, Grant J, Windham M. Assessment of Alternative Candidate Subcortical Insect Vectors From Walnut Crowns in Habitats Quarantined for Thousand Cankers Disease. ENVIRONMENTAL ENTOMOLOGY 2019; 48:882-893. [PMID: 31145452 DOI: 10.1093/ee/nvz064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Thousand cankers disease (TCD) results from the combined activity of the fungal pathogen, Geosmithia morbida Kolařík, Freeland, Utley, and Tisserat and its principle vector, Pityophthorus juglandis (Blackman) (Coleoptera: Curculionidae: Scolytinae) in Juglans L. spp. and Pterocarya Kunth spp. host plants. TCD has been reported from the eastern and western United States. To evaluate potential for other beetle species to vector the fungus in east Tennessee, specimens were collected using ethanol-baited traps that were suspended beneath crowns of TCD-symptomatic trees. Associations of G. morbida with insect species collected in traps were assessed in an unsuccessful, preliminary culture-based fungal assay, and then with a molecular-based detection method. For culture-based assays, rinsate from washed, individual insects was plated on nutrient media and growing colonies were subcultured to obtain axenic G. morbida cultures for identification. For the molecular-based method, G. morbida presence was detected by amplifying the previously developed, species-specific microsatellite locus GS004. Capillary electrophoresis was used to detect the amplified amplicons and representative reactions were validated using Sanger sequencing. Eleven beetle species were found to carry G. morbida, including Cnestus mutilatus (Blandford), Dryoxylon onoharaensum (Murayama), Hylocurus rudis (LeConte), Monarthrum fasciatum (Say), Monarthrum mali (Fitch), Xyleborinus saxesenii (Ratzeburg), Xylosandrus crassiusculus (Motschulsky), Xylosandrus germanus (Blandford) (all Coleoptera: Curculionidae: Scolytinae), Stenomimus pallidus (Boheman) (Coleoptera: Curculionidae: Cossoninae), Oxoplatypus quadridentatus (Olivier) (Coleoptera: Curculionidae: Platypodinae), and Xylops basilaris (Say) (Coleoptera: Bostrichidae). These findings raise concerns that alternative subcortical insect species that already occur within quarantined habitats can sustain incidence of introduced G. morbida and contribute to spread within the native range of black walnut, Juglans nigra L., in the eastern United States.
Collapse
|
|
6 |
7 |
10
|
Shirley D, Oppert C, Reynolds TB, Miracle B, Oppert B, Klingeman WE, Jurat-Fuentes JL. Expression of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae. INSECT SCIENCE 2014; 21:609-618. [PMID: 24318365 DOI: 10.1111/1744-7917.12069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/10/2013] [Indexed: 05/28/2023]
Abstract
Insects are a largely unexploited resource in prospecting for novel cellulolytic enzymes to improve the production of ethanol fuel from lignocellulosic biomass. The cost of lignocellulosic ethanol production is expected to decrease by the combination of cellulose degradation (saccharification) and fermentation of the resulting glucose to ethanol in a single process, catalyzed by the yeast Saccharomyces cerevisiae transformed to express efficient cellulases. While S. cerevisiae is an established heterologous expression system, there are no available data on the functional expression of insect cellulolytic enzymes for this species. To address this knowledge gap, S. cerevisiae was transformed to express the full-length cDNA encoding an endoglucanase from the red flour beetle, Tribolium castaneum (TcEG1), and evaluated the activity of the transgenic product (rTcEG1). Expression of the TcEG1 cDNA in S. cerevisiae was under control of the strong glyceraldehyde-3 phosphate dehydrogenase promoter. Cultured transformed yeast secreted rTcEG1 protein as a functional β-1,4-endoglucanase, which allowed transformants to survive on selective media containing cellulose as the only available carbon source. Evaluation of substrate specificity for secreted rTcEG1 demonstrated endoglucanase activity, although some activity was also detected against complex cellulose substrates. Potentially relevant to uses in biofuel production rTcEG1 activity increased with pH conditions, with the highest activity detected at pH 12. Our results demonstrate the potential for functional production of an insect cellulase in S. cerevisiae and confirm the stability of rTcEG1 activity in strong alkaline environments.
Collapse
|
|
11 |
7 |
11
|
Klingeman WE, Braman SK, Buntin GD. Evaluating grower, landscape manager, and consumer perceptions of azalea lace bug (Heteroptera: Tingidae) feeding injury. JOURNAL OF ECONOMIC ENTOMOLOGY 2000; 93:141-148. [PMID: 14658524 DOI: 10.1603/0022-0493-93.1.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A survey using modified azalea stems was used to establish a "tally threshold value" for assessing azalea lace bug, Stephanitis pyrioides (Scott), feeding injury to azalea shrubs. Consumers and green-industry professionals, represented by ornamental growers, landscape architects, and landscape managers, recognized azalea lace bug injury when injured leaf area exceeded 2%. Purchase and treatment decisions of professionals and consumers were evaluated by surveying responses to Rhododendron indica variety alba 'Delaware Valley White' azaleas representing a range of damage. Survey participants also provided a brief biographical background and answers to questions regarding pesticide use, ability to identify diseases, pests, and beneficial organisms, and willingness to consider pesticide alternatives. Professionals and consumers expressed a strong interest in limiting urban pesticide use. The 2 groups indicated a hypothetically acceptable level of 6-10% plant damage by arthropod pests. A 2% injury threshold was used to determine the level of proportional damage (the percentage of leaves displaying 2% or more lace bug leaf feeding injury) resulting in either the rejection of plant purchase or initiation of treatment. A nonlinear curve was fit to treatment and no-purchase responses of professionals and consumers using a modified 3-parameter Mitscherlich nonlinear growth function. Half of the surveyed professionals and consumers indicated that damage proportions >10% (1.03% actual injury) were sufficient to reject an azalea for purchase. Proportional damage levels >43% (3.3% actual injury) would be necessary to prompt 50% of the respondents to initiate treatment of damaged azaleas to control lace bugs.
Collapse
|
|
25 |
5 |
12
|
Bergh JC, Leskey TC, Walgenbach JF, Klingeman WE, Kain DP, Zhang A. Dogwood borer (Lepidoptera: Sesiidae) abundance and seasonal flight activity in apple orchards, urban landscapes, and woodlands in five eastern states. ENVIRONMENTAL ENTOMOLOGY 2009; 38:530-538. [PMID: 19508761 DOI: 10.1603/022.038.0304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The relative abundance and seasonal flight activity of dogwood borer, Synanthedon scitula Harris (Lepidoptera: Sesiidae), was measured using weekly records from traps baited with its sex pheromone and deployed in apple orchards, urban landscapes, and native woodland sites in New York, West Virginia, Virginia, North Carolina, and Tennessee in 2005 and 2006. The mean total number of moths captured per site in apple orchards was 3,146 +/- 644 and 3095 +/- 584 SE in 2005 and 2006, respectively, exceeding captures at urban sites by 16 and 13 times and at woodland sites by 210 and 206 times in 2005 and 2006, respectively. Mean total captures at urban sites exceeded those in woodland habitats by 13 and 16 times in 2005 and 2006, respectively. The mean duration (wk) of the flight period did not differ significantly between apple orchards (22.6 +/- 0.6 SE) and urban sites (20.3 +/- 1.2 SE). The onset of flight was somewhat later in New York (around early June) than further south (around early to mid-May), but moth captures continued into October in all states. Captures in apple orchards and at urban sites with higher populations were essentially continuous throughout the flight period, with substantial weekly fluctuations, and tended to show a bimodal pattern with peaks from late May through mid-July and from late August through mid-September. Captures at woodland sites tended to occur predominantly from mid-May through about mid-June and were very sporadic thereafter.
Collapse
|
Comparative Study |
16 |
4 |
13
|
Zhuang X, Klingeman WE, Hu J, Chen F. Emission of volatile chemicals from flowering dogwood (cornus Florida L.) flowers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9570-9574. [PMID: 18811168 DOI: 10.1021/jf801651v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Reproduction of flowering dogwood trees occurs via obligate out-crossing, and U.S. native bees have been suggested to be primary pollinators of this ecologically and economically important deciduous tree. Whether floral volatiles play a role in reproduction of the dogwood remains unclear. Objectives of this study were to identify principal volatile chemicals emitted from dogwood flowers and to assess a temporal volatile emission profile and volatile consistency across four cultivars. Inflorescences with intact bracts and 5 cm flower pedicel were removed from dogwood trees and subjected to headspace volatile collection. Six principal volatile compounds were detected from the flowers of the cultivar 'World's Fair' with 3-formylpyridine as the most abundant constituent. Subsequent headspace analyses performed using inflorescences without bracts or floral pedicels alone indicated that 3-formylpyridine, E-beta-ocimene, S-linalool, and ketoisophorone were mainly emitted from inflorescences. Experiments were also conducted to determine whether volatile emissions differed across time and between different cultivars of flowering dogwood. When volatile emission was analyzed for 48 h using 12 h light/dark cycles, the emission of several volatile compounds displayed diurnal patterns. Finally, whereas florets in inflorescences of four different dogwood cultivars emitted similar levels of the six principal floral volatile chemicals, 'Cherokee Brave' flowers alone yielded 4-methoxybenzaldehyde and germacrene-D. The implications of the findings of this study to dogwood breeding programs are discussed.
Collapse
|
|
17 |
4 |
14
|
Stackhouse T, Boggess SL, Hadziabdic D, Trigiano RN, Ginzel MD, Klingeman WE. Conventional Gel Electrophoresis and TaqMan Probes Enable Rapid Confirmation of Thousand Cankers Disease from Diagnostic Samples. PLANT DISEASE 2021; 105:3171-3180. [PMID: 33591833 DOI: 10.1094/pdis-10-20-2258-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Thousand cankers disease (TCD) is caused by the fungal pathogen Geosmithia morbida and vectored by the walnut twig beetle Pityophthorus juglandis. In infected walnut and butternut (Juglans spp.) hosts and wingnut species (Pterocarya spp.) hosts, tree decline and death results in ecological disruption and economic losses. A rapid molecular detection protocol for TCD using microsatellite markers can confirm the presence of insect vector or fungal pathogen DNA, but it requires specialized expensive equipment and technical expertise. Using four different experimental approaches, capillary and conventional gel electrophoresis, and traditional polymerase chain reaction (PCR) and quantitative PCR (qPCR), we describe simplified and inexpensive processes for diagnostic confirmation of TCD. The improved and rapid detection protocols reported in this study reduce time and equipment costs associated with detection of molecular pest and pathogen DNA by (1) using conventional gel electrophoresis or TaqMan molecular probes to elucidate the detection limits for G. morbida and P. juglandis DNA and (2) identifying resources that allow visualization of positive test results for infected host plant tissue samples. Conventional gel electrophoresis and TaqMan molecular probe protocols detected presence of DNA from TCD-associated fungal and insect samples. These procedural improvements can be readily adopted by diagnostic end-users and adapted for use with other complex disease systems to enable rapid pest and pathogen detection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
|
|
4 |
4 |
15
|
Toennisson TA, Sanders NJ, Klingeman WE, Vail KM. Influences on the structure of suburban ant (Hymenoptera: Formicidae) communities and the abundance of Tapinoma sessile. ENVIRONMENTAL ENTOMOLOGY 2011; 40:1397-1404. [PMID: 22217754 DOI: 10.1603/en11110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Urbanization can alter the organization of ant communities and affect populations of urban pest ants. In this study, we sampled ant communities in urban and suburban yards to understand the habitat factors that shape these communities and influence the abundance of a common pest species, Tapinoma sessile (Say). We used pitfall traps to sample ant communities and a combination of pitfall traps and baiting to collect T. sessile at 24 sites in Knoxville, TN. In total, we collected 46 ant species. Ant species richness ranged from seven to 24 species per yard. Ant species richness tended to be lowest near houses, whereas T. sessile abundance was highest near houses. The best predictors of ant species richness in yards were canopy cover and presence of leaf litter: ant species richness peaked at mid-levels of canopy cover and was negatively correlated with the presence of leaf litter. Tapinoma sessile abundance increased with presence of logs, boards, or landscaping timbers and leaf litter in yards. Our results indicate that ant communities and the abundance of particular pest species in these urban and suburban landscapes are shaped by many of the same factors that structure ant communities in less anthropogenically disturbed environments.
Collapse
|
|
14 |
4 |
16
|
Blood BL, Klingeman WE, Paschen MA, Hadžiabdic Ð, Couture JJ, Ginzel MD. Behavioral Responses of Pityophthorus juglandis (Coleoptera: Curculionidae: Scolytinae) to Volatiles of Black Walnut and Geosmithia morbida (Ascomycota: Hypocreales: Bionectriaceae), the Causal Agent of Thousand Cankers Disease. ENVIRONMENTAL ENTOMOLOGY 2018; 47:412-421. [PMID: 29373654 DOI: 10.1093/ee/nvx194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thousand cankers disease (TCD) is a pest complex formed by the association of the walnut twig beetle (WTB), Pityophthorus juglandis Blackman (Coleoptera: Curculionidae: Scolytinae), with the fungal pathogen Geosmithia morbida Kolařík, Freeland, Utley and Tisserat (Ascomycota: Hypocreales: Bionectriaceae). Current monitoring and detection efforts for WTB rely on a pheromone lure that is effective over a limited distance while plant- and fungal-derived volatiles that may facilitate host location remain poorly understood. In this study, we test the hypothesis that adult beetles are attracted to volatiles of black walnut, Juglans nigra L. (Juglandaceae), and the pathogen, G. morbida. We measured the response of beetles to head-space volatiles collected from leaves and stems of 12 genotypes of black walnut and found genotypic variation in the attractiveness of host trees to adult WTB. Volatile profiles of the most attractive genotypes contained more α-pinene and β-pinene, and adult beetles were attracted to both of these compounds in olfactometer bioassays. In bioassays, we also demonstrated that adult WTB are attracted to volatiles of G. morbida. These findings suggest that, in addition to the aggregation pheromone, dispersing WTB potentially use host plant and fungal volatiles to locate suitable larval hosts. Finally, we conducted a field experiment to determine the extent to which ethanol, a common attractant for bark beetles, and limonene, a known bark beetle repellent, influence the behavior of adult WTB to pheromone-baited traps. Although ethanol did not increase trap capture, WTB were repelled by limonene, suggesting that this compound could be used to manipulate and manage WTB populations.
Collapse
|
|
7 |
3 |
17
|
Klingeman WE, Braman SK, Buntin GD. Azalea growth in response to azalea lace bug (Heteroptera: Tingidae) feeding. JOURNAL OF ECONOMIC ENTOMOLOGY 2001; 94:129-137. [PMID: 11233102 DOI: 10.1603/0022-0493-94.1.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of azalea lace bug, Stephanitis pyrioides (Scott), feeding injury on azalea growth and development were investigated using 'Girard's Rose' azaleas during a 2-yr field study in Georgia Low, medium, and high injury treatments, which corresponded to 6, 8, and 14% maximum canopy area injury, were compared with control azaleas that received no lace bug infestation. Flower number, whole-shrub leaf and stem dry mass, and dry mass and size of new growth tissues were unaffected by treatments. In contrast, growth index measurements, a general measure of variability frequently used for horticultural differentiation, showed significant reductions for all treatments in comparison to control azaleas after 20 wk. Though not directly quantified, this apparent discrepancy may be explained as an artifact of lace bug feeding-induced leaf abscission. Growth index measurements had considerable variability and may not be the most reliable measurement of size. In July 1998, plant canopy densities among azaleas maintained in the high injury treatments were approximately 15% less full than the canopies of control shrubs. Predaceous insects had a significant negative association with azalea lace bug number during the 2-yr study. Flower and new tissue production, measured destructively during two growing seasons, revealed azalea tolerance to 14% of maximum canopy area lace bug feeding-injury levels.
Collapse
|
|
24 |
3 |
18
|
Sapkota S, Boggess SL, Trigiano RN, Klingeman WE, Hadziabdic D, Coyle DR, Nowicki M. Microsatellite Loci Reveal High Genetic Diversity, Mutation, and Migration Rates as Invasion Drivers of Callery Pear ( Pyrus calleryana) in the Southeastern United States. Front Genet 2022; 13:861398. [PMID: 35480304 PMCID: PMC9037086 DOI: 10.3389/fgene.2022.861398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pyrus calleryana Decne. (Callery pear) is a deciduous tree native to China, Japan, Korea, and Taiwan. It is a popular ornamental tree in the United States (US) with early spring blooms and vibrant fall color. There are at least 26 cultivars of P. calleryana available in the US of which "Bradford" is the most well-known. Open-pollinated P. calleryana escapees are becoming one of the most common invasive tree species in the eastern United States. Developing better management practices for invasive P. calleryana requires detailed knowledge about reproductive biology and genetic diversity of the species, however, little is currently known about genetic variability within those open-pollinated populations. We investigated genetic diversity and population structure of non-cultivated, escaped P. calleryana populations within a ∼177 km radius in the southeastern United States. Because P. calleryana exhibits a range of morphological variation with great evolutionary potential, we hypothesized that a high genetic diversity would be manifested among escaped P. calleryana. Using 15 previously developed microsatellite loci, we genotyped 180 open-pollinated P. calleryana individuals that were collected across six naturally occurring sites in Tennessee, Georgia, and South Carolina, United States. Our results demonstrated the presence of a population structure with high genetic diversity, high gene flow, and high genetic differentiation between individuals across collection sites. Our results revealed that P. calleryana populations had differentiated shortly after the introduction to the US, most likely from specimens imported from Asia, consistent with historical records and our prior findings. The high invasive potential of the species is perhaps best underscored by transformation of P. calleryana specimens introduced from Asia into escape populations at continental scale across the United States. Our data also provided novel insight into potential issues that could be problematic for the future as P. calleryana may pose a potential threat to the economy, ecology, and native biodiversity in invaded areas.
Collapse
|
research-article |
3 |
3 |
19
|
Sapkota S, Boggess SL, Trigiano RN, Klingeman WE, Hadziabdic D, Coyle DR, Olukolu BA, Kuster RD, Nowicki M. Microsatellite Loci Reveal Genetic Diversity of Asian Callery Pear ( Pyrus calleryana) in the Species Native Range and in the North American Cultivars. Life (Basel) 2021; 11:531. [PMID: 34200292 PMCID: PMC8226646 DOI: 10.3390/life11060531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/05/2022] Open
Abstract
Pyrus calleryana Decne. (Callery pear) includes cultivars that in the United States are popular ornamentals in commercial and residential landscapes. Last few decades, this species has increasingly naturalized across portions of the eastern and southern US. However, the mechanisms behind this plant's spread are not well understood. The genetic relationship of present-day P.calleryana trees with their Asian P. calleryana forebears (native trees from China, Japan, and Korea) and the original specimens of US cultivars are unknown. We developed and used 18 microsatellite markers to analyze 147 Pyrus source samples and to articulate the status of genetic diversity within Asian P. calleryana and US cultivars. We hypothesized that Asian P. calleryana specimens and US cultivars would be genetically diverse and would show genetic relatedness. Our data revealed high genetic diversity, high gene flow, and presence of population structure in P. calleryana, potentially relating to the highly invasive capability of this species. Strong evidence for genetic relatedness between Asian P. calleryana specimens and US cultivars was also demonstrated. Our data suggest the source for P. calleryana that have become naturalized in US was China. These results will help understand the genetic complexity of invasive P. calleryana when developing management for escaped populations: In follow-up studies, we use the gSSRs developed here to analyze P. calleryana escape populations from across US.
Collapse
|
research-article |
4 |
3 |
20
|
Boggess SL, Wadl PA, Hadziabdic D, E. Scheffler B, Windham AS, Klingeman WE, Trigiano RN. Characterization of 12 polymorphic microsatellite loci of Pityopsis graminifolia var. latifolia. CONSERV GENET RESOUR 2014. [DOI: 10.1007/s12686-014-0282-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
11 |
2 |
21
|
Klingeman WE, Bray AM, Oliver JB, Ranger CM, Palmquist DE. Trap Style, Bait, and Height Deployments in Black Walnut Tree Canopies Help Inform Monitoring Strategies for Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:1120-1129. [PMID: 28961948 DOI: 10.1093/ee/nvx133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Knowledge about which bark and ambrosia beetle species are active and at what heights in black walnut canopies is not well understood. Neither is the role of these beetles in spreading Thousand Cankers Disease. To assist with future planned research, which will assess the extent to which these beetle species are associated with Geosmithia morbida Kolařík, Freeland, Utley, and Tisserat (Ascomycota: Hypocreales: Bionectriaceae), experiments were undertaken to monitor bark and ambrosia beetles in urban landscapes and parks in Tennessee between 2011 and 2013. Within mature walnut tree canopies, sticky panel, modified soda bottle, and Lindgren traps were deployed at different heights, with and without ethanol as an attractant and with and without walnut stem sections, or in situ limbs that had been girdled or injection with ethanol to simulate stressed tree tissues. Bark and ambrosia beetle species (Coleoptera: Curculionidae: Scolytinae) collected in greatest abundance included Ambrosiodmus rubricollis (Eichhoff), Ambrosiophilus atratus (Eichhoff), Cnestus mutilatus (Blandford), Dryoxylon onoharaense (Murayama), Euwallacea validus (Eichhoff), Monarthrum fasciatum (Say), Monarthrum mali (Fitch), Xyleborinus saxesenii (Ratzeburg), Xyleborus affinis Eichhoff, Xyleborus ferrugineus (Fabricius), Xylosandrus crassiusculus (Motschulsky), and Xylosandrus germanus (Blandford). C. mutilatus, X. saxesenii, and X. crassiusculus were more active higher in trees than most other species and were strongly attracted to ethanol via all means of lure deployment. C. mutilatus, which were captured from April through October and increased in abundance across the 3-yr study, were most abundant in late May with a second activity period in late August.
Collapse
|
Comparative Study |
8 |
2 |
22
|
Klingeman WE, Van Iersel MW, Buntin GD, Braman SK. Whole-plant CO2 exchange measurements on azaleas injured by azalea lace bug (Heteroptea: Tingidae) feeding. JOURNAL OF ECONOMIC ENTOMOLOGY 2000; 93:352-356. [PMID: 10826185 DOI: 10.1603/0022-0493-93.2.352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Whole-plant gas exchange was measured continuously for 24 h on rooted cuttings of Girard's 'Pleasant White' azaleas. Azalea treatments were azalea lace bug, Stephanitis pyrioides (Scott), feeding injury levels that averaged 6, 13, or 31% leaf-area injury throughout the plant canopies. Gas exchange parameters, including net photosynthesis, dark respiration, carbon use efficiency, and growth, were compared with undamaged control plants. Responses of Girard's 'Pleasant White' azaleas suggested that azaleas were tolerant of lace bug feeding injury levels above the aesthetic threshold. Azalea tolerance can be incorporated into an integrated management plan to reduce chemical inputs into the urban landscape.
Collapse
|
|
25 |
1 |
23
|
Ony M, Klingeman WE, Zobel J, Trigiano RN, Ginzel M, Nowicki M, Boggess SL, Everhart S, Hadziabdic D. Genetic diversity in North American Cercis Canadensis reveals an ancient population bottleneck that originated after the last glacial maximum. Sci Rep 2021; 11:21803. [PMID: 34750401 PMCID: PMC8576035 DOI: 10.1038/s41598-021-01020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding of the present-day genetic diversity, population structure, and evolutionary history of tree species can inform resource management and conservation activities, including response to pressures presented by a changing climate. Cercis canadensis (Eastern Redbud) is an economically valuable understory tree species native to the United States (U.S.) that is also important for forest ecosystem and wildlife health. Here, we document and explain the population genetics and evolutionary history of this deciduous tree species across its distributed range. In this study, we used twelve microsatellite markers to investigate 691 wild-type trees sampled at 74 collection sites from 23 Eastern U.S. states. High genetic diversity and limited gene flow were revealed in wild, natural stands of C. canadensis with populations that are explained by two major genetic clusters. These findings indicate that an ancient population bottleneck occurred coinciding with the last glacial maximum (LGM) in North America. The structure in current populations likely originated from an ancient population in the eastern U.S. that survived LGM and then later diverged into two contemporary clusters. Data suggests that populations have expanded since the last glaciation event from one into several post-glacial refugia that now occupy this species’ current geographic range. Our enhanced understanding benchmarks the genetic variation preserved within this species and can direct future efforts in conservation, and resource utilization of adaptively resilient populations that present the greatest genetic and structural diversity.
Collapse
|
|
4 |
1 |
24
|
Audley J, Mayfield AE, Myers SW, Taylor A, Klingeman WE. Phytosanitation Methods Influence Posttreatment Colonization of Juglans nigra Logs by Pityophthorus juglandis (Coleoptera: Curculionidae: Scolytinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:213-221. [PMID: 26318005 DOI: 10.1093/jee/tov252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Several North American walnut species (Juglans spp.) are threatened by thousand cankers disease which is caused by the walnut twig beetle (Pityophthorus juglandis Blackman) and its associated fungal plant pathogen, Geosmithia morbida M. Kolarík, E. Freeland, C. Utley and N. Tisserat sp. nov. Spread of this disease may occur via movement of infested black walnut (Juglans nigra L.) wood. This study evaluated the ability of P. juglandis to colonize J. nigra wood previously treated with various phytosanitation methods. Steam-heated and methyl bromide-fumigated J. nigra logs, as well as kiln-dried natural wane J. nigra lumber (with and without bark) were subsequently exposed to P. juglandis colonization pressure in two exposure scenarios. Following a pheromone-mediated, high-pressure scenario in the canopy of infested trees, beetles readily colonized the bark of steam-heated and methyl bromide-fumigated logs, and were also recovered from kiln-dried lumber on which a thin strip of bark was retained. In the simulated lumberyard exposure experiment, during which samples were exposed to lower P. juglandis populations, beetles were again recovered from bark-on steam-heated logs, but were not recovered from kiln-dried bark-on lumber. These data suggest logs and bark-on lumber treated with phytosanitation methods should not be subsequently exposed to P. juglandis populations. Further beetle exclusion efforts for phytosanitized, bark-on walnut wood products transported out of quarantined areas may be necessary to ensure that these products do not serve as a pathway for the spread of P. juglandis and thousand cankers disease.
Collapse
|
|
9 |
1 |
25
|
Pietsch GM, Gazis R, Klingeman WE, Huff ML, Staton ME, Kolarik M, Hadziabdic D. Characterization and microsatellite marker development for a common bark and ambrosia beetle associate, Geosmithia obscura. Microbiologyopen 2022; 11:e1286. [PMID: 35765178 PMCID: PMC9108439 DOI: 10.1002/mbo3.1286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
Symbioses between Geosmithia fungi and wood-boring and bark beetles seldom result in disease induction within the plant host. Yet, exceptions exist such as Geosmithia morbida, the causal agent of Thousand Cankers Disease (TCD) of walnuts and wingnuts, and Geosmithia sp. 41, the causal agent of Foamy Bark Canker disease of oaks. Isolates of G. obscura were recovered from black walnut trees in eastern Tennessee and at least one isolate induced cankers following artificial inoculation. Due to the putative pathogenicity and lack of recovery of G. obscura from natural lesions, a molecular diagnostic screening tool was developed using microsatellite markers mined from the G. obscura genome. A total of 3256 candidate microsatellite markers were identified (2236, 789, 137 di-, tri-, and tetranucleotide motifs, respectively), with 2011, 703, 101 di-, tri-, and tetranucleotide motifs, respectively, containing markers with primers. From these, 75 microsatellite markers were randomly selected, screened, and optimized, resulting in 28 polymorphic markers that yielded single, consistently recovered bands, which were used in downstream analyses. Five of these microsatellite markers were found to be specific to G. obscura and did not cross-amplify into other, closely related species. Although the remaining tested markers could be useful, they cross-amplified within different Geosmithia species, making them not reliable for G. obscura detection. Five novel microsatellite markers (GOBS9, GOBS10, GOBS41, GOBS43, and GOBS50) were developed based on the G. obscura genome. These species-specific microsatellite markers are available as a tool for use in molecular diagnostics and can assist future surveillance studies.
Collapse
|
research-article |
3 |
|