1
|
Lipsett DB, Frisk M, Aronsen JM, Nordén ES, Buonarati OR, Cataliotti A, Hell JW, Sjaastad I, Christensen G, Louch WE. Cardiomyocyte substructure reverts to an immature phenotype during heart failure. J Physiol 2019; 597:1833-1853. [PMID: 30707448 PMCID: PMC6441900 DOI: 10.1113/jp277273] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Key points
As reactivation of the fetal gene program has been implicated in pathological remodelling during heart failure (HF), we examined whether cardiomyocyte subcellular structure and function revert to an immature phenotype during this disease. Surface and internal membrane structures appeared gradually during development, and returned to a juvenile state during HF. Similarly, dyadic junctions between the cell membrane and sarcoplasmic reticulum were progressively ‘packed’ with L‐type Ca2+ channels and ryanodine receptors during development, and ‘unpacked’ during HF. Despite similarities in subcellular structure, dyads were observed to be functional from early developmental stages, but exhibited an impaired ability to release Ca2+ in failing cardiomyocytes. Thus, while immature and failing cardiomyocytes share similarities in subcellular structure, these do not fully account for the marked impairment of Ca2+ homeostasis observed in HF. Abstract Reactivation of the fetal gene programme has been implicated as a driver of pathological cardiac remodelling. Here we examined whether pathological remodelling of cardiomyocyte substructure and function during heart failure (HF) reflects a reversion to an immature phenotype. Using scanning electron microscopy, we observed that Z‐grooves and t‐tubule openings at the cell surface appeared gradually during cardiac development, and disappeared during HF. Confocal and super‐resolution imaging within the cell interior revealed similar structural parallels; disorganization of t‐tubules in failing cells was strikingly reminiscent of the late stages of postnatal development, with fewer transverse elements and a high proportion of longitudinal tubules. Ryanodine receptors (RyRs) were observed to be laid down in advance of developing t‐tubules and similarly ‘orphaned’ in HF, although RyR distribution along Z‐lines was relatively sparse. Indeed, nanoscale imaging revealed coordinated packing of L‐type Ca2+ channels and RyRs into dyadic junctions during development, and orderly unpacking during HF. These findings support a ‘last in, first out’ paradigm, as the latest stages of dyadic structural development are reversed during disease. Paired imaging of t‐tubules and Ca2+ showed that the disorganized arrangement of dyads in immature and failing cells promoted desynchronized and slowed Ca2+ release in these two states. However, while developing cells exhibited efficient triggering of Ca2+ release at newly formed dyads, dyadic function was impaired in failing cells despite similar organization of Ca2+ handling proteins. Thus, pathologically deficient Ca2+ homeostasis during HF is only partly linked to the re‐emergence of immature subcellular structure, and additionally reflects lost dyadic functionality.
As reactivation of the fetal gene program has been implicated in pathological remodelling during heart failure (HF), we examined whether cardiomyocyte subcellular structure and function revert to an immature phenotype during this disease. Surface and internal membrane structures appeared gradually during development, and returned to a juvenile state during HF. Similarly, dyadic junctions between the cell membrane and sarcoplasmic reticulum were progressively ‘packed’ with L‐type Ca2+ channels and ryanodine receptors during development, and ‘unpacked’ during HF. Despite similarities in subcellular structure, dyads were observed to be functional from early developmental stages, but exhibited an impaired ability to release Ca2+ in failing cardiomyocytes. Thus, while immature and failing cardiomyocytes share similarities in subcellular structure, these do not fully account for the marked impairment of Ca2+ homeostasis observed in HF.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
44 |
2
|
Aronsen JM, Skogestad J, Lewalle A, Louch WE, Hougen K, Stokke MK, Swift F, Niederer S, Smith NP, Sejersted OM, Sjaastad I. Hypokalaemia induces Ca²⁺ overload and Ca²⁺ waves in ventricular myocytes by reducing Na⁺,K⁺-ATPase α₂ activity. J Physiol 2014; 593:1509-21. [PMID: 25772299 DOI: 10.1113/jphysiol.2014.279893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hypokalaemia is a risk factor for development of ventricular arrhythmias. In rat ventricular myocytes, low extracellular K(+) (corresponding to clinical moderate hypokalaemia) increased Ca(2+) wave probability, Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load and induced SR Ca(2+) leak. Low extracellular K(+) reduced Na(+),K(+)-ATPase (NKA) activity and hyperpolarized the resting membrane potential in ventricular myocytes. Both experimental data and modelling indicate that reduced NKA activity and subsequent Na(+) accumulation sensed by the Na(+), Ca(2+) exchanger (NCX) lead to increased Ca(2+) transient amplitude despite concomitant hyperpolarization of the resting membrane potential. Low extracellular K(+) induced Ca(2+) overload by lowering NKA α2 activity. Triggered ventricular arrhythmias in patients with hypokalaemia may therefore be attributed to reduced NCX forward mode activity linked to an effect on the NKA α2 isoform. ABSTRACT Hypokalaemia is a risk factor for development of ventricular arrhythmias. The aim of this study was to determine the cellular mechanisms leading to triggering of arrhythmias in ventricular myocytes exposed to low Ko. Low Ko, corresponding to moderate hypokalaemia, increased Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load, SR Ca(2+) leak and Ca(2+) wave probability in field stimulated rat ventricular myocytes. The mechanisms leading to Ca(2+) overload were examined. Low Ko reduced Na(+),K(+)-ATPase (NKA) currents, increased cytosolic Na(+) concentration and increased the Na(+) level sensed by the Na(+), Ca(2+) exchanger (NCX). Low Ko also hyperpolarized the resting membrane potential (RMP) without significant alterations in action potential duration. Experiments in voltage clamped and field stimulated ventricular myocytes, along with mathematical modelling, suggested that low Ko increases the Ca(2+) transient amplitude by reducing NKA activity despite hyperpolarization of the RMP. Selective inhibition of the NKA α2 isoform by low dose ouabain abolished the ability of low Ko to reduce NKA currents, to increase Na(+) levels sensed by NCX and to increase the Ca(2+) transient amplitude. We conclude that low Ko, within the range of moderate hypokalaemia, increases Ca(2+) levels in ventricular myocytes by reducing the pumping rate of the NKA α2 isoform with subsequent Na(+) accumulation sensed by the NCX. These data highlight reduced NKA α2 -mediated control of NCX activity as a possible mechanism underlying triggered ventricular arrhythmias in patients with hypokalaemia.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
35 |
3
|
Longobardi S, Lewalle A, Coveney S, Sjaastad I, Espe EKS, Louch WE, Musante CJ, Sher A, Niederer SA. Predicting left ventricular contractile function via Gaussian process emulation in aortic-banded rats. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190334. [PMID: 32448071 PMCID: PMC7287330 DOI: 10.1098/rsta.2019.0334] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cardiac contraction is the result of integrated cellular, tissue and organ function. Biophysical in silico cardiac models offer a systematic approach for studying these multi-scale interactions. The computational cost of such models is high, due to their multi-parametric and nonlinear nature. This has so far made it difficult to perform model fitting and prevented global sensitivity analysis (GSA) studies. We propose a machine learning approach based on Gaussian process emulation of model simulations using probabilistic surrogate models, which enables model parameter inference via a Bayesian history matching (HM) technique and GSA on whole-organ mechanics. This framework is applied to model healthy and aortic-banded hypertensive rats, a commonly used animal model of heart failure disease. The obtained probabilistic surrogate models accurately predicted the left ventricular pump function (R2 = 0.92 for ejection fraction). The HM technique allowed us to fit both the control and diseased virtual bi-ventricular rat heart models to magnetic resonance imaging and literature data, with model outputs from the constrained parameter space falling within 2 SD of the respective experimental values. The GSA identified Troponin C and cross-bridge kinetics as key parameters in determining both systolic and diastolic ventricular function. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
|
|
5 |
26 |
4
|
Gamage TH, Gunnes G, Lee RH, Louch WE, Holmgren A, Bruton JD, Lengle E, Kolstad TRS, Revold T, Amundsen SS, Dalen KT, Holme PA, Tjønnfjord GE, Christensen G, Westerblad H, Klungland A, Bergmeier W, Misceo D, Frengen E. STIM1 R304W causes muscle degeneration and impaired platelet activation in mice. Cell Calcium 2018; 76:87-100. [PMID: 30390422 DOI: 10.1016/j.ceca.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022]
Abstract
STIM1 and ORAI1 regulate store-operated Ca2+ entry (SOCE) in most cell types, and mutations in these proteins have deleterious and diverse effects. We established a mouse line expressing the STIM1 R304 W gain-of-function mutation causing Stormorken syndrome to explore effects on organ and cell physiology. While STIM1 R304 W was lethal in the homozygous state, surviving mice presented with reduced growth, skeletal muscle degeneration, and reduced exercise endurance. Variable STIM1 expression levels between tissues directly impacted cellular SOCE capacity. In contrast to patients with Stormorken syndrome, STIM1 was downregulated in fibroblasts from Stim1R304W/R304W mice, which maintained SOCE despite constitutive protein activity. In studies using foetal liver chimeras, STIM1 protein was undetectable in homozygous megakaryocytes and platelets, resulting in impaired platelet activation and absent SOCE. These data indicate that downregulation of STIM1 R304 W effectively opposes the gain-of-function phenotype associated with this mutation, and highlight the importance of STIM1 in skeletal muscle development and integrity.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
23 |
5
|
Eidet JR, Utheim OA, Raeder S, Dartt DA, Lyberg T, Carreras E, Huynh TT, Messelt EB, Louch WE, Roald B, Utheim TP. Effects of serum-free storage on morphology, phenotype, and viability of ex vivo cultured human conjunctival epithelium. Exp Eye Res 2011; 94:109-16. [PMID: 22154551 DOI: 10.1016/j.exer.2011.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/26/2022]
Abstract
The use of amniotic membrane (AM) represents one of the major developments in ocular surface reconstruction. However, in a study on patients with primary pterygium, transplantation of AM with ex vivo expanded human conjunctival epithelial cells (HCjE) promoted earlier epithelialization than AM alone. We previously showed that cultured human limbal epithelial cells maintain their morphology, phenotype, and viability for one week when stored at 23°C. The current study investigates the feasibility of storing HCjE in HEPES-MEM and Optisol-GS at 23°C for 4 and 7 days, respectively. The five experimental groups were analyzed by light microscopy, immunohistochemistry, transmission electron microscopy, and a viability assay. The ultrastructural integrity of cultured HCjE was well preserved following 4 days of storage, however, 7 days of storage resulted in some loss of cell-cell contacts and epithelial detachment from the amniotic membrane. The number of microvilli in cultured HCjE not subjected to storage was 2.03±0.38 microvilli/μm. In comparison, after 4 and 7 days of HEPES-MEM storage this number was 1.69±0.54 microvilli/μm; P=0.98 and 0.89±1.0 microvilli/μm; P=0.28, respectively. After Optisol-GS storage for 4 and 7 days, the mean number of microvilli was 1.07±1.0 microvilli/μm; P=0.47 and 0.07±0.07 microvilli/μm; P=0.03, respectively. The number of cell layers in cultured HCjE not subjected to storage was 4.4±0.3 cell layers, as opposed to 4.0±0.9 cell layers; P=0.89 after 4 days of HEPES-MEM storage and 2.8±0.6 cell layers; P=0.01 after 7 days of storage in HEPES-MEM. The number of cell layers after 4 and 7 days of storage in Optisol-GS was 3.7±0.2 cell layers; P=0.46 and 3.4±0.4 cell layers; P=0.18, respectively. The expression of markers for undifferentiated cells (ΔNp63α, ABCG2 and p63), proliferating cells (Ki67 and PCNA), goblet cells (Ck7 and MUC5AC), stratified squamous epithelial cells (Ck4), and apoptotic cells (caspase-3) in cultured HCjE appeared to be unchanged after 4 and 7 days of HEPES-MEM and Optisol-GS storage. The percentage of viable cells in cultured HCjE not subjected to storage (91.4%±3.2%) was sustained after 4 and 7 days of storage in HEPES-MEM (94.1%±4.5%; P=0.99 and 85.1%±13.7%; P=0.87, respectively) as well as after 4 and 7 days of storage in Optisol-GS (87.7%±15.2%; P=0.97 and 79.8%±15.7%; P=0.48, respectively). We conclude that cultured HCjE may be stored for at least 4 days in serum-free conditions at 23°C while maintaining the phenotype and viability. HEPES-MEM appears to be comparable to Optisol-GS for serum-free storage with preservation of the ultrastructure for at least 4 days.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
22 |
6
|
Li L, Louch WE, Niederer SA, Andersson KB, Christensen G, Sejersted OM, Smith NP. Calcium dynamics in the ventricular myocytes of SERCA2 knockout mice: A modeling study. Biophys J 2011; 100:322-31. [PMID: 21244828 DOI: 10.1016/j.bpj.2010.11.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/09/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022] Open
Abstract
We describe a simulation study of Ca²(+) dynamics in mice with cardiomyocyte-specific conditional excision of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) gene, using an experimental data-driven biophysically-based modeling framework. Previously, we reported a moderately impaired heart function measured in mice at 4 weeks after SERCA2 gene deletion (knockout (KO)), along with a >95% reduction in the level of SERCA2 protein. We also reported enhanced Ca²(+) flux through the L-type Ca²(+) channels and the Na(+)/Ca²(+) exchanger in ventricular myocytes isolated from these mice, compared to the control Serca2(flox/flox) mice (flox-flox (FF)). In the current study, a mathematical model-based analysis was applied to enable further quantitative investigation into changes in the Ca²(+) handling mechanisms in these KO cardiomyocytes. Model parameterization based on a wide range of experimental measurements showed a 67% reduction in SERCA activity and an over threefold increase in the activity of the Na(+)/Ca²(+) exchanger. The FF and KO models were then validated against experimentally measured [Ca²(+)](i) transients and experimentally estimated sarco(endo)plasmic reticulum (SR) function. Simulation results were in quantitative agreement with experimental measurements, confirming that sustained [Ca²(+)](i) transients could be maintained in the KO cardiomyocytes despite severely impaired SERCA function. In silico analysis shows that diastolic [Ca²(+)](i) rises sharply with progressive reductions in SERCA activity at physiologically relevant pacing frequencies. Furthermore, an analysis of the roles of the compensatory mechanisms revealed that the major combined effect of the compensatory mechanisms is to lower diastolic [Ca²(+)](i). Finally, by using a comprehensive sensitivity analysis of the role of all cellular calcium handling mechanisms, we show that the combination of upregulation of the Na(+)/Ca²(+) exchanger and increased L-type Ca²(+) current is the most effective means to maintain diastolic and systolic calcium levels after loss of SERCA function.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
21 |
7
|
Wanichawan P, Hafver TL, Hodne K, Aronsen JM, Lunde IG, Dalhus B, Lunde M, Kvaløy H, Louch WE, Tønnessen T, Sjaastad I, Sejersted OM, Carlson CR. Molecular basis of calpain cleavage and inactivation of the sodium-calcium exchanger 1 in heart failure. J Biol Chem 2014; 289:33984-98. [PMID: 25336645 DOI: 10.1074/jbc.m114.602581] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cardiac sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is central to the maintenance of normal Ca(2+) homeostasis and contraction. Studies indicate that the Ca(2+)-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca(2+) binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met(369) antibody identified a novel calpain cleavage site at Met(369). Engineering NCX1-Met(369) into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met(369) inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met(369) cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
20 |
8
|
Tinholt M, Stavik B, Louch W, Carlson CR, Sletten M, Ruf W, Skretting G, Sandset PM, Iversen N. Syndecan-3 and TFPI colocalize on the surface of endothelial-, smooth muscle-, and cancer cells. PLoS One 2015; 10:e0117404. [PMID: 25617766 PMCID: PMC4305309 DOI: 10.1371/journal.pone.0117404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 12/23/2014] [Indexed: 01/02/2023] Open
Abstract
Background Tissue factor (TF) pathway inhibitor (TFPI) exists in two isoforms; TFPIα and TFPIβ. Both isoforms are cell surface attached mainly through glycosylphosphatidylinositol (GPI) anchors. TFPIα has also been proposed to bind other surface molecules, like glycosaminoglycans (GAGs). Cell surface TFPIβ has been shown to exert higher anticoagulant activity than TFPIα, suggesting alternative functions for TFPIα. Further characterization and search for novel TFPI binding partners is crucial to completely understand the biological functions of cell associated TFPI. Methods and Results Potential association of TFPI to heparan sulphate (HS) proteoglycans in the syndecan family were evaluated by knock down studies and flow cytometry analysis. Cell surface colocalization was assessed by confocal microscopy, and native PAGE or immunoprecipitation followed by Western blotting was used to test for protein interaction. Heparanase was used to enzymatically degrade cell surface HS GAGs. Anticoagulant potential was evaluated using a factor Xa (FXa) activity assay. Knock down of syndecan-3 in endothelial,- smooth muscle- and breast cancer cells reduced the TFPI surface levels by 20-50%, and an association of TFPIα to syndecan-3 on the cell surface was demonstrated. Western blotting indicated that TFPIα was found in complex with syndecan-3. The TFPI bound to syndecan-3 did not inhibit the FXa generation. Removal of HS GAGs did not release TFPI antigen from the cells. Conclusions We demonstrated an association between TFPIα and syndecan-3 in vascular cells and in cancer cells, which did not appear to depend on HS GAGs. No anticoagulant activity was detected for the TFPI associated with syndecan-3, which may indicate coagulation independent functions for this cell associated TFPI pool. This will, however, require further investigation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
20 |
9
|
Rixon C, Andreassen K, Shen X, Erusappan PM, Almaas VM, Palmero S, Dahl CP, Ueland T, Sjaastad I, Louch WE, Stokke MK, Tønnessen T, Christensen G, Lunde IG. Lumican accumulates with fibrillar collagen in fibrosis in hypertrophic cardiomyopathy. ESC Heart Fail 2022; 10:858-871. [PMID: 36444917 PMCID: PMC10053290 DOI: 10.1002/ehf2.14234] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
AIMS Familial hypertrophic cardiomyopathy (HCM) is the most common form of inherited cardiac disease. It is characterized by myocardial hypertrophy and diastolic dysfunction, and can lead to severe heart failure, arrhythmias, and sudden cardiac death. Cardiac fibrosis, defined by excessive accumulation of extracellular matrix (ECM) components, is central to the pathophysiology of HCM. The ECM proteoglycan lumican is increased during heart failure and cardiac fibrosis, including HCM, yet its role in HCM remains unknown. We provide an in-depth assessment of lumican in clinical and experimental HCM. METHODS Left ventricular (LV) myectomy specimens were collected from patients with hypertrophic obstructive cardiomyopathy (n = 15), and controls from hearts deemed unsuitable for transplantation (n = 8). Hearts were harvested from a mouse model of HCM; Myh6 R403Q mice administered cyclosporine A and wild-type littermates (n = 8-10). LV tissues were analysed for mRNA and protein expression. Patient myectomy or mouse mid-ventricular sections were imaged using confocal microscopy, direct stochastic optical reconstruction microscopy (dSTORM), or electron microscopy. Human foetal cardiac fibroblasts (hfCFBs) were treated with recombinant human lumican (n = 3) and examined using confocal microscopy. RESULTS Lumican mRNA was increased threefold in HCM patients (P < 0.05) and correlated strongly with expression of collagen I (R2 = 0.60, P < 0.01) and III (R2 = 0.58, P < 0.01). Lumican protein was increased by 40% in patients with HCM (P < 0.01) and correlated with total (R2 = 0.28, P = 0.05) and interstitial (R2 = 0.30, P < 0.05) fibrosis. In mice with HCM, lumican mRNA increased fourfold (P < 0.001), and lumican protein increased 20-fold (P < 0.001) in insoluble ECM lysates. Lumican and fibrillar collagen were located together throughout fibrotic areas in HCM patient tissue, with increased co-localization measured in patients and mice with HCM (patients: +19%, P < 0.01; mice: +13%, P < 0.01). dSTORM super-resolution microscopy was utilized to image interstitial ECM which had yet to undergo overt fibrotic remodelling. In these interstitial areas, collagen I deposits located closer to (-15 nm, P < 0.05), overlapped more frequently with (+7.3%, P < 0.05) and to a larger degree with (+5.6%, P < 0.05) lumican in HCM. Collagen fibrils in such deposits were visualized using electron microscopy. The effect of lumican on collagen fibre formation was demonstrated by adding lumican to hfCFB cultures, resulting in thicker (+53.8 nm, P < 0.001), longer (+345.9 nm, P < 0.001), and fewer (-8.9%, P < 0.001) collagen fibres. CONCLUSIONS The ECM proteoglycan lumican is increased in HCM and co-localizes with fibrillar collagen throughout areas of fibrosis in HCM. Our data suggest that lumican may promote formation of thicker collagen fibres in HCM.
Collapse
|
|
3 |
18 |
10
|
Boardman NT, Aronsen JM, Louch WE, Sjaastad I, Willoch F, Christensen G, Sejersted O, Aasum E. Impaired left ventricular mechanical and energetic function in mice after cardiomyocyte-specific excision of Serca2. Am J Physiol Heart Circ Physiol 2014; 306:H1018-24. [PMID: 24486508 DOI: 10.1152/ajpheart.00741.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA)2 transports Ca2+ from the cytosol into the sarcoplasmic reticulum of cardiomyocytes and is essential for maintaining myocardial Ca2+ handling and thus the mechanical function of the heart. SERCA2 is a major ATP consumer in excitation-contraction coupling but is regarded to contribute to energetically efficient Ca2+ handling in the cardiomyocyte. Previous studies using cardiomyocyte-specific SERCA2 knockout (KO) mice have demonstrated that decreased SERCA2 activity reduces the Ca2+ transient amplitude and induces compensatory Ca2+ transport mechanisms that may lead to more inefficient Ca2+ transport. In this study, we examined the relationship between left ventricular (LV) function and myocardial O2 consumption (MVo2) in ex vivo hearts from SERCA2 KO mice to directly measure how SERCA2 elimination influences mechanical and energetic features of the heart. Ex vivo hearts from SERCA2 KO hearts developed mechanical dysfunction at 4 wk and demonstrated virtually no working capacity at 7 wk. In accordance with the reported reduction in Ca2+ transient amplitude in cardiomyocytes from SERCA2 KO mice, work-independent MVo2 was decreased due to a reduced energy cost of excitation-contraction coupling. As these hearts also showed a marked impairment in the efficiency of chemomechanical energy transduction (contractile efficiency, i.e, work-dependent MVo2), hearts from SERCA2 KO mice were found to be mechanically inefficient. This ex vivo evaluation of mechanical and energetic function in hearts from SERCA2 KO mice brings together findings from previous experimental and mathematical modeling-based studies and demonstrates that reduced SERCA2 activity not only leads to mechanical dysfunction but also to energetic dysfunction.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
15 |
11
|
Hafver TL, Hodne K, Wanichawan P, Aronsen JM, Dalhus B, Lunde PK, Lunde M, Martinsen M, Enger UH, Fuller W, Sjaastad I, Louch WE, Sejersted OM, Carlson CR. Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman. J Biol Chem 2015; 291:4561-79. [PMID: 26668322 DOI: 10.1074/jbc.m115.677898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/06/2022] Open
Abstract
The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
11 |
12
|
Shen X, van den Brink J, Bergan-Dahl A, Kolstad TR, Norden ES, Hou Y, Laasmaa M, Aguilar-Sanchez Y, Quick AP, Espe EKS, Sjaastad I, Wehrens XHT, Edwards AG, Soeller C, Louch WE. Prolonged β-adrenergic stimulation disperses ryanodine receptor clusters in cardiomyocytes. eLife 2022; 11:77725. [PMID: 35913125 PMCID: PMC9410709 DOI: 10.7554/elife.77725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022] Open
Abstract
Ryanodine receptors (RyRs) exhibit dynamic arrangements in cardiomyocytes, and we previously showed that ‘dispersion’ of RyR clusters disrupts Ca2+ homeostasis during heart failure (HF) (Kolstad et al., eLife, 2018). Here, we investigated whether prolonged β-adrenergic stimulation, a hallmark of HF, promotes RyR cluster dispersion and examined the underlying mechanisms. We observed that treatment of healthy rat cardiomyocytes with isoproterenol for 1 hr triggered progressive fragmentation of RyR clusters. Pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed these effects, while cluster dispersion was reproduced by specific activation of CaMKII, and in mice with constitutively active Ser2814-RyR. A similar role of protein kinase A (PKA) in promoting RyR cluster fragmentation was established by employing PKA activation or inhibition. Progressive cluster dispersion was linked to declining Ca2+ spark fidelity and magnitude, and slowed release kinetics from Ca2+ propagation between more numerous RyR clusters. In healthy cells, this served to dampen the stimulatory actions of β-adrenergic stimulation over the longer term and protect against pro-arrhythmic Ca2+ waves. However, during HF, RyR dispersion was linked to impaired Ca2+ release. Thus, RyR localization and function are intimately linked via channel phosphorylation by both CaMKII and PKA, which, while finely tuned in healthy cardiomyocytes, underlies impaired cardiac function during pathology.
Collapse
|
|
3 |
11 |
13
|
Lubelwana Hafver T, Wanichawan P, Manfra O, de Souza GA, Lunde M, Martinsen M, Louch WE, Sejersted OM, Carlson CR. Mapping the in vitro interactome of cardiac sodium (Na + )-calcium (Ca 2+ ) exchanger 1 (NCX1). Proteomics 2017; 17. [PMID: 28755400 DOI: 10.1002/pmic.201600417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/03/2017] [Accepted: 07/26/2017] [Indexed: 11/07/2022]
Abstract
The sodium (Na+ )-calcium (Ca2+ ) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end-stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti-NCX1 against endogenous NCX1 and (2) anti-His (where His is histidine) with His-trigger factor-NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein-protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where "cell communication" and "signal transduction" formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in "cardiovascular disease" which can be explored as novel drug targets in future research.
Collapse
|
Journal Article |
8 |
11 |
14
|
Skogestad J, Lines GT, Louch WE, Sejersted OM, Sjaastad I, Aronsen JM. Evidence for heterogeneous subsarcolemmal Na + levels in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2019; 316:H941-H957. [PMID: 30657726 DOI: 10.1152/ajpheart.00637.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular Na+ concentration ([Na+]) regulates cardiac contractility. Previous studies have suggested that subsarcolemmal [Na+] is higher than cytosolic [Na+] in cardiac myocytes, but this concept remains controversial. Here, we used electrophysiological experiments and mathematical modeling to test whether there are subsarcolemmal pools with different [Na+] and dynamics compared with the bulk cytosol in rat ventricular myocytes. A Na+ dependency curve for Na+-K+-ATPase (NKA) current was recorded with symmetrical Na+ solutions, i.e., the same [Na+] in the superfusate and internal solution. This curve was used to estimate [Na+] sensed by NKA in other experiments. Three experimental observations suggested that [Na+] is higher near NKA than in the bulk cytosol: 1) when extracellular [Na+] was high, [Na+] sensed by NKA was ~6 mM higher than the internal solution in quiescent cells; 2) long trains of Na+ channel activation almost doubled this gradient; compared with an even intracellular distribution of Na+, the increase of [Na+] sensed by NKA was 10 times higher than expected, suggesting a local Na+ domain; and 3) accumulation of Na+ near NKA after trains of Na+ channel activation dissipated very slowly. Finally, mathematical models assuming heterogeneity of [Na+] between NKA and the Na+ channel better reproduced experimental data than the homogeneous model. In conclusion, our data suggest that NKA-sensed [Na+] is higher than [Na+] in the bulk cytosol and that there are differential Na+ pools in the subsarcolemmal space, which could be important for cardiac contractility and arrhythmogenesis. NEW & NOTEWORTHY Our data suggest that the Na+-K+-ATPase-sensed Na+ concentration is higher than the Na+ concentration in the bulk cytosol and that there are differential Na+ pools in the subsarcolemmal space, which could be important for cardiac contractility and arrhythmogenesis. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/heterogeneous-sodium-in-ventricular-myocytes/ .
Collapse
|
Webcast |
6 |
8 |
15
|
Røe ÅT, Sjaastad I, Louch WE. Heart failure with preserved ejection fraction. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2017; 137:16-1068. [PMID: 28972354 DOI: 10.4045/tidsskr.16.1068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Half of all heart failure patients have preserved ejection fraction, but there is no established therapy for this patient group. Effective heart failure therapy depends on an understanding of the underlying pathophysiology. This article presents an updated review of knowledge on the causal mechanisms underlying heart failure with preserved ejection fraction (HFpEF). METHOD Articles were found by means of a literature search in PubMed.
The search combination “heart failure with preserved ejection fraction” OR “HFpEF” OR “diastolic heart failure”) AND (“mechanisms” OR “hypertrophy” OR “inflammation”) yielded 603 hits on 6 April 2017. Relevant articles on causal mechanisms were read in full text. RESULTS In recent years there has been a paradigm shift with respect to understanding of the pathophysiology of HFpEF. Concentric hypertrophy of the left ventricle with subsequent diastolic dysfunction had long been recognised as an important disease mechanism, but recent research has identified other factors that also contribute to the condition. These include systolic dysfunction, abnormal regulation of heart rhythm, pathological vascular stiffness, autonomic dysfunction and peripheral vasculopathy. Several studies have suggested that comorbidity plays a part by inducing a systemic proinflammatory response which results in multi-organ dysfunction. INTERPRETATION The pathophysiological picture of HFpEF indicates that the condition resembles a syndrome more than an isolated cardiac disorder. A stronger focus on comorbidity may lead to new diagnostic and therapeutic options.
Collapse
|
Review |
8 |
4 |
16
|
Støle TP, Lunde M, Shen X, Martinsen M, Lunde PK, Li J, Lockwood F, Sjaastad I, Louch WE, Aronsen JM, Christensen G, Carlson CR. The female syndecan-4−/− heart has smaller cardiomyocytes, augmented insulin/pSer473-Akt/pSer9-GSK-3β signaling, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels. Front Cell Dev Biol 2022; 10:908126. [PMID: 36092718 PMCID: PMC9452846 DOI: 10.3389/fcell.2022.908126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In cardiac muscle, the ubiquitously expressed proteoglycan syndecan-4 is involved in the hypertrophic response to pressure overload. Protein kinase Akt signaling, which is known to regulate hypertrophy, has been found to be reduced in the cardiac muscle of exercised male syndecan-4−/− mice. In contrast, we have recently found that pSer473-Akt signaling is elevated in the skeletal muscle (tibialis anterior, TA) of female syndecan-4−/− mice. To determine if the differences seen in Akt signaling are sex specific, we have presently investigated Akt signaling in the cardiac muscle of sedentary and exercised female syndecan-4−/− mice. To get deeper insight into the female syndecan-4−/− heart, alterations in cardiomyocyte size, a wide variety of different extracellular matrix components, well-known syndecan-4 binding partners and associated signaling pathways have also been investigated.Methods: Left ventricles (LVs) from sedentary and exercise trained female syndecan-4−/− and WT mice were analyzed by immunoblotting and real-time PCR. Cardiomyocyte size and phosphorylated Ser473-Akt were analyzed in isolated adult cardiomyocytes from female syndecan-4−/− and WT mice by confocal imaging. LV and skeletal muscle (TA) from sedentary male syndecan-4−/− and WT mice were immunoblotted with Akt antibodies for comparison. Glucose levels were measured by a glucometer, and fasting blood serum insulin and C-peptide levels were measured by ELISA.Results: Compared to female WT hearts, sedentary female syndecan-4−/− LV cardiomyocytes were smaller and hearts had higher levels of pSer473-Akt and its downstream target pSer9-GSK-3β. The pSer473-Akt inhibitory phosphatase PHLPP1/SCOP was lowered, which may be in response to the elevated serum insulin levels found in the female syndecan-4−/− mice. We also observed lowered levels of pThr308-Akt/Akt and GLUT4 in the female syndecan-4−/− heart and an increased LRP6 level after exercise. Otherwise, few alterations were found. The pThr308-Akt and pSer473-Akt levels were unaltered in the cardiac and skeletal muscles of sedentary male syndecan-4−/− mice.Conclusion: Our data indicate smaller cardiomyocytes, an elevated insulin/pSer473-Akt/pSer9-GSK-3β signaling pathway, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels in the female syndecan-4−/− heart. In contrast, cardiomyocyte size, and Akt signaling were unaltered in both cardiac and skeletal muscles from male syndecan-4−/− mice, suggesting important sex differences.
Collapse
|
|
3 |
3 |
17
|
Manfra O, Shen X, Hell JW, Edward Louch W. Super-Resolution (dSTORM) Imaging of Calcium Handling Proteins in Cardiomyocytes. Biophys J 2018. [DOI: 10.1016/j.bpj.2017.11.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
|
7 |
1 |
18
|
Thomsen MB, Louch WE. Special Interest Group on Cardiac Physiology established within the Scandinavian Physiological Society. Acta Physiol (Oxf) 2012; 204:464. [PMID: 22364639 DOI: 10.1111/j.1748-1716.2011.02374.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
Editorial |
13 |
1 |
19
|
Frisk M, Lipsett DB, Louch WE. Reply from M. Frisk, D. B. Lipsett and W. E. Louch. J Physiol 2019; 597:2967-2968. [PMID: 31021407 DOI: 10.1113/jp278067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
Letter |
6 |
|
20
|
Gamage TH, Grabmayr H, Horvath F, Fahrner M, Misceo D, Louch WE, Gunnes G, Pullisaar H, Reseland JE, Lyngstadaas SP, Holmgren A, Amundsen SS, Rathner P, Cerofolini L, Ravera E, Krobath H, Luchinat C, Renger T, Müller N, Romanin C, Frengen E. A single amino acid deletion in the ER Ca 2+ sensor STIM1 reverses the in vitro and in vivo effects of the Stormorken syndrome-causing R304W mutation. Sci Signal 2023; 16:eadd0509. [PMID: 36749824 DOI: 10.1126/scisignal.add0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.
Collapse
|
|
2 |
|
21
|
Silva GJJ, Parvan R, Shen X, Frisk M, Altara R, Strand ME, Rypdal KB, Lunde IG, Louch WE, Aronsen JM, Stenslokken KO, Stokke MK, Cataliotti A. ProANP31-67 ameliorates adverse cardiac remodeling and improves systolic and diastolic functions in a preclinical model of cardiorenal syndrome. Cardiovasc Res 2022. [DOI: 10.1093/cvr/cvac066.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Funding Acknowledgements
Type of funding sources: Public grant(s) – National budget only. Main funding source(s): South-Eastern Norway Regional Health Authority (HSØ-RHF, Project No. 25674)
Background
The cardiac hormone proANP31-67, a linear fragment of the N-terminal Atrial Natriuretic Peptide, has known enhancing renal effects. More recently, we described the cardio protective effects of this hormone in a model of chronic hypertension. More specifically, independently of the blood pressure level, proANP31-67 improved diastolic function, attenuated cardiac fibrosis, and reduced hypertrophy.
Purpose
The current study was designed to assess the cardiorenal effects of proANP31-67 in a rodent model of hampered renal function, followed by cardiac injury produced by ischemia/reperfusion (I/R).
Methods
Right uninephrectomy (UNX) was performed in Wistar rats (n=28). Sixteen weeks after UNX, rats underwent cardiac I/R injury and randomly assigned to proANP31-67 (50 ng/kg/day s.c., n=15) or Vehicle (n=13) for four weeks post I/R. Echocardiographic examinations were performed at baseline (before UNX), 16 weeks after UNX, and four weeks after I/R. At the end of the study, cardiomyocytes were isolated and tissue samples were collected.
Results
Chronic UNX resulted in diastolic impairment (E/A: 1.47±0.08 at baseline vs 0.98±0.14 at 16 wks post UNX, p=0.0010). I/R further accentuated the development of the cardiorenal syndrome, and induced a mild systolic dysfunction in the placebo treated animals. However, four weeks of treatment with proANP31-67 preserved systolic function (EF: 62±3% placebo vs 74±2% proANP31-67, p<0.0001), and reverted the diastolic dysfunction (E/A: 0.72±0.15 placebo vs 1.24±0.11 proANP31-67, p=0.0134). ProANP31-67 ameliorated the adverse cardiac remodeling (i.e., reduction in the cardiomyocyte cross-sectional area and interstitial fibrosis), enhanced Ca2+ handling, and improved cardiomyocyte t-tubules´ structural changes compared to vehicle. At the cellular level, in vitro experiments demonstrated the direct effect of proANP31-67 on cardiomyocyte hypertrophy (assessed by [3H]-leucine incorporation) induced by endothelin 1 and angiotensin II.
Conclusion
ProANP31-67 has a direct cardiomyocyte protective effect, leading to an improvement in Ca2+ homeostasis and t-tubules´ structures and, prevents the development of systolic and diastolic dysfunction in a pre-clinical model of cardiorenal syndrome.
Collapse
|
|
3 |
|
22
|
Hou Y, Le C, Soeller C, Louch W. Protocol for the Isolation and Super-resolution dSTORM Imaging of RyR2 in Cardiac Myocytes. Bio Protoc 2018. [DOI: 10.21769/bioprotoc.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
|
7 |
|
23
|
Herum K, Lunde I, Skrbic B, Tønnessen T, Louch W, Hasic A, Sjaastad I, Linke W, Gomez M, Christensen G. Syndecan‐4 promotes myocardial stiffness by regulating collagen expression and cross‐linking in response to pressure overload (1152.2). FASEB J 2014. [DOI: 10.1096/fasebj.28.1_supplement.1152.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
11 |
|
24
|
Frisk M, Le C, Hou Y, Røe Å, Dahl C, Shen X, Sjaastad I, Lunde I, Gullestad L, Tønnessen T, Sejersted O, Jones P, Louch W. T-tubule disruption is a prominent feature of HFrEF but not HFpEF. J Mol Cell Cardiol 2020. [DOI: 10.1016/j.yjmcc.2019.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
|
5 |
|
25
|
Bergan-Dahl A, Carlson CR, Laasmaa M, Nordén E, Sjaastad I, Louch W, Shen X. Localized CaMKII movement towards the Z-line mediates RyR phosphorylation in cardiomyocytes. J Mol Cell Cardiol 2022. [DOI: 10.1016/j.yjmcc.2022.08.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
3 |
|