1
|
Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, Esposito D, Gillette WK, Hopkins RF, Hartley JL, Furihata M, Oishi S, Zhen W, Burke TR, Linehan WM, Schmidt LS, Zbar B. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci U S A 2006; 103:15552-7. [PMID: 17028174 PMCID: PMC1592464 DOI: 10.1073/pnas.0603781103] [Citation(s) in RCA: 363] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Birt-Hogg-Dubé syndrome, a hamartoma disorder characterized by benign tumors of the hair follicle, lung cysts, and renal neoplasia, is caused by germ-line mutations in the BHD(FLCN) gene, which encodes a tumor-suppressor protein, folliculin (FLCN), with unknown function. The tumor-suppressor proteins encoded by genes responsible for several other hamartoma syndromes, LKB1, TSC1/2, and PTEN, have been shown to be involved in the mammalian target of rapamycin (mTOR) signaling pathway. Here, we report the identification of the FLCN-interacting protein, FNIP1, and demonstrate its interaction with 5' AMP-activated protein kinase (AMPK), a key molecule for energy sensing that negatively regulates mTOR activity. FNIP1 was phosphorylated by AMPK, and its phosphorylation was reduced by AMPK inhibitors, which resulted in reduced FNIP1 expression. AMPK inhibitors also reduced FLCN phosphorylation. Moreover, FLCN phosphorylation was diminished by rapamycin and amino acid starvation and facilitated by FNIP1 overexpression, suggesting that FLCN may be regulated by mTOR and AMPK signaling. Our data suggest that FLCN, mutated in Birt-Hogg-Dubé syndrome, and its interacting partner FNIP1 may be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
363 |
2
|
Dharmaiah S, Bindu L, Tran TH, Gillette WK, Frank PH, Ghirlando R, Nissley DV, Esposito D, McCormick F, Stephen AG, Simanshu DK. Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ. Proc Natl Acad Sci U S A 2016; 113:E6766-E6775. [PMID: 27791178 PMCID: PMC5098621 DOI: 10.1073/pnas.1615316113] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
138 |
3
|
Martin RG, Gillette WK, Rhee S, Rosner JL. Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 1999; 34:431-41. [PMID: 10564485 DOI: 10.1046/j.1365-2958.1999.01599.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The promoters of the mar/sox/rob regulon of Escherichia coli contain a binding site (marbox) for the homologous transcriptional activators MarA, SoxS and Rob. In spite of data from footprinting studies, the marbox has not been precisely defined because of its degeneracy and asymmetry and seemingly variable location with respect to the -10 and -35 hexamers for RNA polymerase (RNP) binding. Here, we use DNA retardation studies and hybrid promoters to identify optimally binding 20 bp minimal marboxes from a number of promoters. This has yielded a more defined marbox consensus sequence (AYnGCACnnWnnRYYAAAYn) and has led to the demonstration that some marboxes are inverted relative to others. Using transcriptional fusions to lacZ, we have found that only one marbox orientation is functional at a given location. Moreover, the functional orientation is determined by marbox location: marboxes that are 15 or more basepairs upstream of the -35 hexamer are oriented opposite those closer to the -35 hexamer. Marbox orientation and the spacing between marbox and signals for RNP binding are critical for transcriptional activation, presumably to align MarA with RNP.
Collapse
|
|
26 |
135 |
4
|
Martin RG, Gillette WK, Rosner JL. Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 2000; 35:623-34. [PMID: 10672184 DOI: 10.1046/j.1365-2958.2000.01732.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MarA and SoxS are closely related proteins ( approximately 45% identical) that transcriptionally activate a common set of unlinked genes, resulting in multiple antibiotic and superoxide resistance in Escherichia coli. Both proteins bind as monomers to a 20 bp degenerate asymmetric recognition sequence, the 'marbox', located upstream of the promoter. However, the proteins differ widely in the extents to which they activate particular promoters, with the consequence that overexpression of SoxS leads to greater superoxide resistance than does overexpression of MarA. This 'discrimination' between activators by promoters was demonstrated in vivo, using promoters fused to lacZ, and in vitro, using purified RNA polymerase, promoter DNA and MarA or SoxS. The marbox was found to be a critical element in discrimination by in vivo and in vitro assays of hybrid promoters containing the marbox from one gene and the core promoter from another. Furthermore, by sequential mutation of its marbox, a promoter that discriminated 35-fold in favour of SoxS was converted into one that did not discriminate. The relative activation of a promoter by MarA or SoxS was paralleled by the relative binding of the two activators to the promoter's marbox as assayed by band shift experiments. Thus, differential recognition of closely related marbox sequences by the closely related activators is the primary basis for promoter discrimination. Discrimination enables the cell to customize its response to the stresses that trigger synthesis of the activators.
Collapse
|
|
25 |
80 |
5
|
Martin RG, Gillette WK, Martin NI, Rosner JL. Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 2002; 43:355-70. [PMID: 11985714 DOI: 10.1046/j.1365-2958.2002.02748.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activation in Escherichia coli is generally considered to proceed via the formation of an activator-DNA-RNA polymerase (RNP) ternary complex. Although the order of assembly of the three elements is thermodynamically irrelevant, a prevalent idea is that the activator-DNA complex is formed first, and recruitment of RNP to the binary complex occurs subsequently. We show here that the closely related activators, MarA, SoxS and Rob, which activate the same family of genes, are capable of forming complexes with RNP core or holoenzyme in the absence of DNA. In addition, we find that the ternary MarA-DNA-RNP and SoxS-DNA-RNP complexes are more stable than the corresponding Rob-DNA-RNP complex, although the binary Rob-DNA complex is often more stable than the corresponding MarA- or SoxS-DNA complexes. These results may help to explain certain puzzling aspects of the MarA/SoxS/Rob system. We suggest that activator-RNP complexes scan the chromosome and bind promoters of the regulon more efficiently than either RNP or the activators alone.
Collapse
|
|
23 |
71 |
6
|
Mbisa GL, Miley W, Gamache CJ, Gillette WK, Esposito D, Hopkins R, Busch MP, Schreiber GB, Little RF, Yarchoan R, Ortiz-Conde BA, Labò N, Whitby D. Detection of antibodies to Kaposi's sarcoma-associated herpesvirus: a new approach using K8.1 ELISA and a newly developed recombinant LANA ELISA. J Immunol Methods 2010; 356:39-46. [PMID: 20211626 DOI: 10.1016/j.jim.2010.02.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/12/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Detection of antibodies to Kaposi's sarcoma-associated herpesvirus (KSHV or Human herpesvirus 8) is a topic of ongoing controversy. KSHV expresses multiple antigens and host responses are highly variable. We have previously described an algorithm for determining KSHV infection based on K8.1 ELISA and LANA immunofluorescence assay (IFA). Here we describe the development of a recombinant ELISA for LANA and an improved testing strategy using ELISAs for LANA and K8.1. We assessed mammalian and baculovirus expression systems for the production of full-length recombinant LANA. We evaluated the performance of LANA ELISAs using human serum samples from several sources including blood donors and clinical patients diagnosed with Kaposi's sarcoma and compared them to LANA IFA. Both LANA ELISAs exhibited comparable sensitivity and specificity to LANA IFA but showed considerably greater reliability. The LANA ELISA can thus be used in conjunction with the previously described K8.1 ELISA to enable the highly sensitive and specific detection of antibodies to KSHV. Use of this testing strategy will provide a more accurate and reliable diagnostic assessment of KSHV status.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
59 |
7
|
Chung JK, Lee YK, Denson JP, Gillette WK, Alvarez S, Stephen AG, Groves JT. K-Ras4B Remains Monomeric on Membranes over a Wide Range of Surface Densities and Lipid Compositions. Biophys J 2018; 114:137-145. [PMID: 29320680 PMCID: PMC5984903 DOI: 10.1016/j.bpj.2017.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
Ras is a membrane-anchored signaling protein that serves as a hub for many signaling pathways and also plays a prominent role in cancer. The intrinsic behavior of Ras on the membrane has captivated the biophysics community in recent years, especially the possibility that it may form dimers. In this article, we describe results from a comprehensive series of experiments using fluorescence correlation spectroscopy and single-molecule tracking to probe the possible dimerization of natively expressed and fully processed K-Ras4B in supported lipid bilayer membranes. Key to these studies is the fact that K-Ras4B has its native membrane anchor, including both the farnesylation and methylation of the terminal cysteine, enabling detailed exploration of possible effects of cholesterol and lipid composition on K-Ras4B membrane organization. The results from all conditions studied indicate that full-length K-Ras4B lacks intrinsic dimerization capability. This suggests that any lateral organization of Ras in living cell membranes likely stems from interactions with other factors.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
59 |
8
|
Gillette WK, Esposito D, Abreu Blanco M, Alexander P, Bindu L, Bittner C, Chertov O, Frank PH, Grose C, Jones JE, Meng Z, Perkins S, Van Q, Ghirlando R, Fivash M, Nissley DV, McCormick F, Holderfield M, Stephen AG. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Sci Rep 2015; 5:15916. [PMID: 26522388 PMCID: PMC4629113 DOI: 10.1038/srep15916] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022] Open
Abstract
Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
59 |
9
|
Pooma W, Gillette WK, Jeffrey JL, Petty IT. Host and viral factors determine the dispensability of coat protein for bipartite geminivirus systemic movement. Virology 1996; 218:264-8. [PMID: 8615033 DOI: 10.1006/viro.1996.0189] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Geminiviruses have unique, twinned icosahedral particles which encapsidate circular single-stranded DNA. Their genomes are composed of either one or two DNA segments. Monopartite geminiviruses absolutely require a functional coat protein (CP) for infectivity, whereas bipartite geminivirus CP null mutants can infect plants systemically. However, we show here that a CP mutant of the bipartite tomato golden mosaic virus (TGMV), which can infect Nicotiana benthamiana systemically, is confined to the inoculated leaves of Nicotiana tabacum or Datura stramonium. We also show that a CP mutant of the related bean golden mosaic virus (BGMV), which can infect beans systemically, is confined to the inoculated leaves of N. benthamiana. In each case, the extent of viral DNA accumulation in inoculated leaves was unaffected by the absence of CP, which suggests that CP is required specifically for systemic movement. The dispensability of CP is correlated with the degree of virus-host adaptation. TGMV is well adapted to N. benthamiana and does not require CP to infect this host systemically, whereas BGMV is poorly adapted to N. benthamiana and requires CP. Analysis of TGMV-BGMV hybrid viruses revealed that the viral genetic background can also affect the dispensability of CP for systemic movement in N. benthamiana. Thus, bipartite geminivirus movement in planta can be resolved genetically into three components: (i) local, cell-to-cell movement, which does not require CP; (ii) CP-dependent systemic movement, which occurs in all hosts tested; and (iii) CP-independent systemic movement, which occurs in hosts to which a given virus is well adapted.
Collapse
|
|
29 |
47 |
10
|
Dharmaiah S, Tran TH, Messing S, Agamasu C, Gillette WK, Yan W, Waybright T, Alexander P, Esposito D, Nissley DV, McCormick F, Stephen AG, Simanshu DK. Structures of N-terminally processed KRAS provide insight into the role of N-acetylation. Sci Rep 2019; 9:10512. [PMID: 31324887 PMCID: PMC6642148 DOI: 10.1038/s41598-019-46846-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/04/2019] [Indexed: 01/19/2023] Open
Abstract
Although post-translational modification of the C-terminus of RAS has been studied extensively, little is known about N-terminal processing. Mass spectrometric characterization of KRAS expressed in mammalian cells showed cleavage of the initiator methionine (iMet) and N-acetylation of the nascent N-terminus. Interestingly, structural studies on GDP- and GMPPNP-bound KRAS lacking the iMet and N-acetylation resulted in Mg2+-free structures of KRAS with flexible N-termini. In the Mg2+-free KRAS-GDP structure, the flexible N-terminus causes conformational changes in the interswitch region resulting in a fully open conformation of switch I. In the Mg2+-free KRAS-GMPPNP structure, the flexible N-terminus causes conformational changes around residue A59 resulting in the loss of Mg2+ and switch I in the inactive state 1 conformation. Structural studies on N-acetylated KRAS-GDP lacking the iMet revealed the presence of Mg2+ and a conformation of switch regions also observed in the structure of GDP-bound unprocessed KRAS with the iMet. In the absence of the iMet, the N-acetyl group interacts with the central beta-sheet and stabilizes the N-terminus and the switch regions. These results suggest there is crosstalk between the N-terminus and the Mg2+ binding site, and that N-acetylation plays an important role by stabilizing the N-terminus of RAS upon excision of the iMet.
Collapse
|
Comparative Study |
6 |
47 |
11
|
Waters AM, Ozkan-Dagliyan I, Vaseva AV, Fer N, Strathern LA, Hobbs GA, Tessier-Cloutier B, Gillette WK, Bagni R, Whiteley GR, Hartley JL, McCormick F, Cox AD, Houghton PJ, Huntsman DG, Philips MR, Der CJ. Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Sci Signal 2017; 10:eaao3332. [PMID: 28951536 PMCID: PMC5812265 DOI: 10.1126/scisignal.aao3332] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is intense interest in developing therapeutic strategies for RAS proteins, the most frequently mutated oncoprotein family in cancer. Development of effective anti-RAS therapies will be aided by the greater appreciation of RAS isoform-specific differences in signaling events that support neoplastic cell growth. However, critical issues that require resolution to facilitate the success of these efforts remain. In particular, the use of well-validated anti-RAS antibodies is essential for accurate interpretation of experimental data. We evaluated 22 commercially available anti-RAS antibodies with a set of distinct reagents and cell lines for their specificity and selectivity in recognizing the intended RAS isoforms and mutants. Reliability varied substantially. For example, we found that some pan- or isoform-selective anti-RAS antibodies did not adequately recognize their intended target or showed greater selectivity for another; some were valid for detecting G12D and G12V mutant RAS proteins in Western blotting, but none were valid for immunofluorescence or immunohistochemical analyses; and some antibodies recognized nonspecific bands in lysates from "Rasless" cells expressing the oncoprotein BRAFV600E Using our validated antibodies, we identified RAS isoform-specific siRNAs and shRNAs. Our results may help to ensure the accurate interpretation of future RAS studies.
Collapse
|
research-article |
8 |
45 |
12
|
Gillette WK, Martin RG, Rosner JL. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation. J Mol Biol 2000; 299:1245-55. [PMID: 10873449 DOI: 10.1006/jmbi.2000.3827] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MarA transcriptional activator binds to a 20 bp asymmetric degenerate sequence (marbox) located at different positions and orientations within the promoters of the genes of the Escherichia coli mar regulon. Solution of the MarA-marbox X-ray crystallographic structure suggested the presence of base-specific and non-specific interactions between the marbox and two helix-turn-helix (HTH) motifs on the monomeric MarA. Here, we use alanine-scanning mutagenesis and DNA retardation analysis to: (i) evaluate the contacts between MarA and the marboxes of five differently configured mar regulon promoters; (ii) assess the role of conserved hydrophobic amino acid residues for MarA activity; and (iii) identify residues required for RNA polymerase activation. These analyses revealed that the phosphate-backbone contacts and hydrogen bonds with the bases of the marbox are more significant for DNA binding than are the van der Waals interactions. While both N and C-terminal HTH motifs make essential contributions to binding site affinity, MarA is more sensitive to alterations in the N-terminal HTH. In a similar way, the activity of MarA is more sensitive to alterations in the hydrophobic core of this HTH. Solvent-exposed amino acid residues located at many positions on the MarA surface are important for activity. Some of these residues affect activity on all promoters and thus, are implicated in maintaining MarA structure whereas several solvent-exposed amino acids not involved in DNA binding were important for MarA activity on specific promoters. The pattern of activation defects defined a class II promoter-specific activating region. However, a localized class I activating region was not apparent. These results suggest that MarA activates transcription by at least two distinct mechanisms. Furthermore, the important role of phosphate contacts in marbox affinity suggests that indirect readout contributes to binding site recognition by MarA.
Collapse
|
|
25 |
42 |
13
|
Van QN, López CA, Tonelli M, Taylor T, Niu B, Stanley CB, Bhowmik D, Tran TH, Frank PH, Messing S, Alexander P, Scott D, Ye X, Drew M, Chertov O, Lösche M, Ramanathan A, Gross ML, Hengartner NW, Westler WM, Markley JL, Simanshu DK, Nissley DV, Gillette WK, Esposito D, McCormick F, Gnanakaran S, Heinrich F, Stephen AG. Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane. Proc Natl Acad Sci U S A 2020; 117:24258-24268. [PMID: 32913056 PMCID: PMC7533834 DOI: 10.1073/pnas.2006504117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
41 |
14
|
Gillette WK, Elkan GH. Bradyrhizobium (Arachis) sp. strain NC92 contains two nodD genes involved in the repression of nodA and a nolA gene required for the efficient nodulation of host plants. J Bacteriol 1996; 178:2757-66. [PMID: 8631662 PMCID: PMC178009 DOI: 10.1128/jb.178.10.2757-2766.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The common nodulation locus and closely linked nodulation genes of Bradyrhizobium (Arachis) sp. strain NC92 have been isolated on an 11.0-kb EcoRI restriction fragment. The nucleotide sequence of a 7.0-kb EcoRV-EcoRI subclone was determined and found to contain open reading frames (ORFs) homologous to the nodA, nodB, nodD1, nodD2, and nolA genes of Bradyrhizobium japonicum and Bradyrhizobium elkanii. Nodulation assays of nodD1, nodD2, or nolA deletion mutants on the host plants Macroptilium atropurpureum (siratro) and Vigna unguiculata (cowpea) indicate that nolA is required for efficient nodulation, as nolA mutants exhibit a 6-day nodulation delay and reduced nodule numbers. The nolA phenotype was complemented by providing the nolA ORF in trans, indicating that the phenotype is due to the lack of the nolA ORF. nodD1 mutants displayed a 2-day nodulation delay, whereas nodD2 strains were indistinguishable from the wild type. Translational nodA-lacZ, nodD1-lacZ, nodD2-lacZ, and nolA-lacZ fusions were created. Expression of the nodA-lacZ fusion was induced by the addition of peanut, cowpea, and siratro seed exudates and by the addition of the isoflavonoids genistein and daidzein. In a nodD1 or nodD2 background, basal expression of the nodA-lacZ fusion increased two- to threefold. The level of expression of the nodD2-lacZ and nolA-lacZ fusions was low in the wild type but increased in nodD1, nodD2, and nodD1 nodD2 backgrounds independently of the addition of the inducer genistein. nolA was required for increased expression of the nodD2-lacZ fusion. These data suggest that a common factor is involved in the regulation of nodD2 and nolA, and they are also consistent with a model of nod gene expression in Bradyrhizobium (Arachis) sp. strain NC92 in which negative regulation is mediated by the products of the nodD1 and nodD2 genes.
Collapse
|
research-article |
29 |
39 |
15
|
Lakshman B, Messing S, Schmid EM, Clogston JD, Gillette WK, Esposito D, Kessing B, Fletcher DA, Nissley DV, McCormick F, Stephen AG, Jean-Francois FL. Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. J Biol Chem 2019; 294:2193-2207. [PMID: 30559287 PMCID: PMC6369290 DOI: 10.1074/jbc.ra118.005669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/28/2018] [Indexed: 11/06/2022] Open
Abstract
The gene encoding the GTPase KRAS is frequently mutated in pancreatic, lung, and colorectal cancers. The KRAS fraction in the plasma membrane (PM) correlates with activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent cellular proliferation. Understanding KRAS's interaction with the PM is challenging given the complexity of the cellular environment. To gain insight into key components necessary for KRAS signal transduction at the PM, we used synthetic membranes such as liposomes and giant unilamellar vesicles. Using surface plasmon resonance (SPR) spectroscopy, we demonstrated that KRAS and Raf-1 proto-oncogene Ser/Thr kinase (RAF1) domains interact with these membranes primarily through electrostatic interactions with negatively charged lipids reinforced by additional interactions involving phosphatidyl ethanolamine and cholesterol. We found that the RAF1 region spanning RBD through CRD (RBDCRD) interacts with the membrane significantly more strongly than the isolated RBD or CRD domains and synergizes KRAS partitioning to the membrane. We also found that calmodulin and phosphodiesterase 6 delta (PDE6δ), but not galectin3 previously proposed to directly interact with KRAS, passively sequester KRAS and prevent it from partitioning into the PM. RAF1 RBDCRD interacted with membranes preferentially at nonraft lipid domains. Moreover, a C-terminal O-methylation was crucial for KRAS membrane localization. These results contribute to a better understanding of how the KRAS-membrane interaction is tuned by multiple factors whose identification could inform drug discovery efforts to disrupt this critical interaction in diseases such as cancer.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
36 |
16
|
Kurotani R, Okumura S, Matsubara T, Yokoyama U, Buckley JR, Tomita T, Kezuka K, Nagano T, Esposito D, Taylor TE, Gillette WK, Ishikawa Y, Abe H, Ward JM, Kimura S. Secretoglobin 3A2 suppresses bleomycin-induced pulmonary fibrosis by transforming growth factor beta signaling down-regulation. J Biol Chem 2011; 286:19682-92. [PMID: 21478551 DOI: 10.1074/jbc.m111.239046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With increasing worldwide rates of morbidity and mortality of pulmonary fibrosis, the development of effective therapeutics for this disease is of great interest. Secretoglobin (SCGB) 3A2, a novel cytokine-like molecule predominantly expressed in pulmonary airways epithelium, exhibits anti-inflammatory and growth factor activities. In the current study SCGB3A2 was found to inhibit TGFβ-induced differentiation of fibroblasts to myofibroblasts, a hallmark of the fibrogenic process, using pulmonary fibroblasts isolated from adult mice. This induction was through increased phosphorylation of STAT1 and expression of SMAD7 and decreased phosphorylation of SMAD2 and SMAD3. To demonstrate the effect of SCGB3A2 on the TGFβ signaling in vivo, a bleomycin-induced pulmonary fibrosis mouse model was used. Mice were administered bleomycin intratracheally followed by intravenous injection of recombinant SCGB3A2. Histological examination in conjunction with inflammatory cell counts in bronchoalveolar lavage fluids demonstrated that SCGB3A2 suppressed bleomycin-induced pulmonary fibrosis. Microarray analysis was carried out using RNAs from lungs of bleomycin-treated mice with or without SCGB3A2 and normal mice treated with SCGB3A2. The results demonstrated that SCGB3A2 affects TGFβ signaling and reduces the expression of genes involved in fibrosis. This study suggests the potential utility of SCGB3A2 for targeting TGFβ signaling in the treatment of pulmonary fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
28 |
17
|
Oishi S, Karki RG, Shi ZD, Worthy KM, Bindu L, Chertov O, Esposito D, Frank P, Gillette WK, Maderia M, Hartley J, Nicklaus MC, Barchi JJ, Fisher RJ, Burke TR. Evaluation of macrocyclic Grb2 SH2 domain-binding peptide mimetics prepared by ring-closing metathesis of C-terminal allylglycines with an N-terminal beta-vinyl-substituted phosphotyrosyl mimetic. Bioorg Med Chem 2005; 13:2431-8. [PMID: 15755645 DOI: 10.1016/j.bmc.2005.01.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 01/24/2005] [Indexed: 11/28/2022]
Abstract
Preferential binding of ligands to Grb2 SH2 domains in beta-bend conformations has made peptide cyclization a logical means of effecting affinity enhancement. This is based on the concept that constraint of open-chain sequences to bend geometries may reduce entropy penalties of binding. The current study extends this approach by undertaking ring-closing metathesis (RCM) macrocyclization between i and i+3 residues through a process involving allylglycines and beta-vinyl-functionalized residues. Ring closure in this fashion results in minimal macrocyclic tetrapeptide mimetics. The predominant effects of such macrocyclization on Grb2 SH2 domain binding affinity were increases in rates of association (from 7- to 16-fold) relative to an open-chain congener, while decreases in dissociation rates were less pronounced (approximately 2-fold). The significant increases in association rates were consistent with pre-ordering of solution conformations to near those required for binding. Data from NMR experiments and molecular modeling simulations were used to interpret the binding results. An understanding of the conformational consequences of such i to i+3 ring closure may facilitate its application to other systems where bend geometries are desired.
Collapse
|
Journal Article |
20 |
23 |
18
|
Gillette WK, Esposito D, Taylor TE, Hopkins RF, Bagni RK, Hartley JL. Purify First: rapid expression and purification of proteins from XMRV. Protein Expr Purif 2010; 76:238-47. [PMID: 21146612 DOI: 10.1016/j.pep.2010.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 11/25/2022]
Abstract
Purifying proteins from recombinant sources is often difficult, time-consuming, and costly. We have recently instituted a series of improvements in our protein purification pipeline that allows much more accurate choice of expression host and conditions and purification protocols. The key elements are parallel cloning, small scale parallel expression and lysate preparation, and small scale parallel protein purification. Compared to analyzing expression data only, results from multiple small scale protein purifications predict success at scale-up with greatly improved reliability. Using these new procedures we purified eight of nine proteins from xenotropic murine leukemia virus-related virus (XMRV) on the first attempt at large scale.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
21 |
19
|
Cai Y, Winn ME, Zehmer JK, Gillette WK, Lubkowski JT, Pilon AL, Kimura S. Preclinical evaluation of human secretoglobin 3A2 in mouse models of lung development and fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 306:L10-22. [PMID: 24213919 DOI: 10.1152/ajplung.00037.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretoglobin (SCGB) 3A2 is a member of the SCGB gene superfamily of small secreted proteins, predominantly expressed in lung airways. We hypothesize that human SCGB3A2 may exhibit anti-inflammatory, growth factor, and antifibrotic activities and be of clinical utility. Recombinant human SCGB3A2 was expressed, purified, and biochemically characterized as a first step to its development as a therapeutic agent in clinical settings. Human SCGB3A2, as well as mouse SCGB3A2, readily formed a dimer in solution and exhibited novel phospholipase A2 inhibitory activity. This is the first demonstration of any quantitative biochemical measurement for the evaluation of SCGB3A2 protein. In the mouse as an experimental animal, human SCGB3A2 exhibited growth factor activity by promoting embryonic lung development in both ex vivo and in vivo systems and antifibrotic activity in the bleomycin-induced lung fibrosis model. The results suggested that human SCGB3A2 can function as a growth factor and an antifibrotic agent in humans. When SCGB3A2 was administered to pregnant female mice through the tail vein, the protein was detected in the dam's serum and lung, as well as the placenta, amniotic fluids, and embryonic lungs at 10 min postadministration, suggesting that SCGB3A2 readily crosses the placenta. The results warrant further development of recombinant SCGB3A2 as a therapeutic agent in treating patients suffering from lung diseases or preterm infants with respiratory distress.
Collapse
|
Research Support, N.I.H., Intramural |
12 |
21 |
20
|
Egan SM, Pease AJ, Lang J, Li X, Rao V, Gillette WK, Ruiz R, Ramos JL, Wolf RE. Transcription activation by a variety of AraC/XylS family activators does not depend on the class II-specific activation determinant in the N-terminal domain of the RNA polymerase alpha subunit. J Bacteriol 2000; 182:7075-7. [PMID: 11092872 PMCID: PMC94837 DOI: 10.1128/jb.182.24.7075-7077.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal domain of the RNA polymerase alpha subunit (alpha-NTD) was tested for a role in transcription activation by a variety of AraC/XylS family members. Based on substitutions at residues 162 to 165 and an extensive genetic screen we conclude that alpha-NTD is not an activation target for these activators.
Collapse
|
research-article |
25 |
20 |
21
|
Gillette WK, Rhee S, Rosner JL, Martin RG. Structural homology between MarA of the AraC family of transcriptional activators and the integrase family of site-specific recombinases. Mol Microbiol 2000; 35:1582-3. [PMID: 10760157 DOI: 10.1046/j.1365-2958.2000.01803.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
Letter |
25 |
12 |
22
|
Gillette WK, Esposito D, Frank PH, Zhou M, Yu LR, Jozwik C, Zhang X, McGowan B, Jacobowitz DM, Pollard HB, Hao T, Hill DE, Vidal M, Conrads TP, Veenstra TD, Hartley JL. Pooled ORF Expression Technology (POET). Mol Cell Proteomics 2005; 4:1647-52. [PMID: 16113400 DOI: 10.1074/mcp.m500128-mcp200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have developed a pooled ORF expression technology, POET, that uses recombinational cloning and proteomic methods (two-dimensional gel electrophoresis and mass spectrometry) to identify ORFs that when expressed are likely to yield high levels of soluble, purified protein. Because the method works on pools of ORFs, the procedures needed to subclone, express, purify, and assay protein expression for hundreds of clones are greatly simplified. Small scale expression and purification of 12 positive clones identified by POET from a pool of 688 Caenorhabditis elegans ORFs expressed in Escherichia coli yielded on average 6 times as much protein as 12 negative clones. Larger scale expression and purification of six of the positive clones yielded 47-374 mg of purified protein/liter. Using POET, pools of ORFs can be constructed, and the pools of the resulting proteins can be analyzed and manipulated to rapidly acquire information about the attributes of hundreds of proteins simultaneously.
Collapse
|
|
20 |
10 |
23
|
Gillette WK, Meade TJ, Jeffrey JL, Petty IT. Genetic determinants of host-specificity in bipartite geminivirus DNA A components. Virology 1998; 251:361-9. [PMID: 9837800 DOI: 10.1006/viro.1998.9424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Geminiviruses are small, ssDNA-containing plant viruses. Bean golden mosaic virus (BGMV) and tomato golden mosaic virus (TGMV) have bipartite genomes, the components of which are designated A and B. Although they are closely related, BGMV and TGMV nevertheless exhibit distinct host-specific phenotypes, with BGMV being well adapted to beans and TGMV being well adapted to Nicotiana benthamiana. A previous study showed that the two open reading frames (ORFs) of DNA B only partially determine the host-adapted phenotypes of BGMV and TGMV. We have now investigated the contributions of A component ORFs to host adaptation. Co-inoculated TGMV DNA A enhances the accumulation of BGMV in N. benthamiana. Using mutant and hybrid TGMV A components, the determinant of this phenotype was mapped to a region encompassing the overlapping AL2 and AL3 ORFs (AL23). BGMV- and TGMV-based hybrid A components containing the heterologous AL23 region each displayed host-specific gain-of-function phenotypes, which indicates that these sequences contribute to host adaptation in both viruses. In N. benthamiana, al2 and al3 mutants of either virus can be complemented in trans by the heterologous A component, so adaptation of the AL23 region to this host is likely mediated through a virus nonspecific, trans-acting factor. In beans, however, co-inoculated BGMV A does not affect the accumulation of TGMV, and TGMV did not complement BGMV al2 or al3 mutants. Thus host-adaptation of the AL23 region may have a different mechanistic basis in beans than it does in N. benthamiana. Although our experiments did not reveal significant host adaptation of the coat protein, which is encoded by the AR1 ORF, a virus-specific effect on viral ssDNA accumulation was observed.
Collapse
|
|
27 |
10 |
24
|
Esposito D, Gillette WK, Miller DA, Taylor TE, Frank PH, Hu R, Bekisz J, Hernandez J, Cregg JM, Zoon KC, Hartley JL. Gateway cloning is compatible with protein secretion from Pichia pastoris. Protein Expr Purif 2005; 40:424-8. [PMID: 15766886 PMCID: PMC7130006 DOI: 10.1016/j.pep.2004.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 12/09/2004] [Indexed: 11/15/2022]
Abstract
Secretion of a recombinant protein from the yeast Pichia pastoris requires the presence of a signal peptide at the amino terminus. Maintaining the full amino acid sequence of the signal peptide is thought to be important for proper signal processing and protein secretion. We show that at least for one protein, a synthetic human interferon, the presence of a Gateway recombination site within the signal peptide is fully compatible with high levels of protein secretion. The amino termini of the secreted interferon proteins cloned with Gateway and cloned with restriction enzymes and ligase are identical, and the proteins were highly active in biological assays. Compatibility with Gateway cloning simplifies construction of plasmids directing secretion of recombinant proteins from P. pastoris.
Collapse
|
Journal Article |
20 |
8 |
25
|
|
Letter |
25 |
7 |