Kasten BB, Ma X, Liu H, Hayes TR, Barnes CL, Qi S, Cheng K, Bottorff SC, Slocumb WS, Wang J, Cheng Z, Benny PD. Clickable, hydrophilic ligand for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) applied in an S-functionalized α-MSH peptide.
Bioconjug Chem 2014;
25:579-92. [PMID:
24568284 PMCID:
PMC3983144 DOI:
10.1021/bc5000115]
[Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The copper(I)-catalyzed azide–alkyne
cycloaddition (CuAAC)
click reaction was used to incorporate alkyne-functionalized dipicolylamine
(DPA) ligands (1 and 3) for fac-[MI(CO)3]+ (M = Re/99mTc) complexation into an α-melanocyte stimulating hormone (α-MSH)
peptide analogue. A novel DPA ligand with carboxylate substitutions
on the pyridyl rings (3) was designed to increase the
hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[99mTcI(CO)3]+ complexes used in single photon emission computed tomography (SPECT)
imaging studies with targeting biomolecules. The fac-[ReI(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal
analysis prior to radiolabeling studies between 3 and fac-[99mTcI(OH2)3(CO)3]+. The corresponding 99mTc
complex (4a) was obtained in high radiochemical yields,
was stable in vitro for 24 h during amino acid challenge and serum
stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized
pyridine rings (2a). An α-MSH peptide functionalized
with an azide was labeled with fac-[MI(CO)3]+ using both click, then chelate (CuAAC reaction with 1 or 3 followed by
metal complexation) and chelate, then click (metal
complexation of 1 and 3 followed by CuAAC
with the peptide) strategies to assess the effects of CuAAC conditions
on fac-[MI(CO)3]+ complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR’s and in vitro stabilities compared
to those from the chelate, then click strategy, suggesting
nonspecific coordination of fac-[MI(CO)3]+ using this synthetic route. The fac-[MI(CO)3]+-complexed peptides from
the chelate, then click strategy showed >90% stability
during in vitro challenge conditions for 6 h, demonstrated high affinity
and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells.
Log P analysis of the 99mTc-labeled peptides
confirmed the enhanced hydrophilicity of the peptide bearing the novel,
carboxylate-functionalized DPA chelate (10a′)
compared to the peptide with the unmodified DPA chelate (9a′). In vivo biodistribution analysis of 9a′ and 10a′ showed moderate tumor uptake in a B16F10 melanoma
xenograft mouse model with enhanced renal uptake and surprising intestinal
uptake for 10a′ compared to predominantly hepatic
accumulation for 9a′. These results, coupled with
the versatility of CuAAC, suggests this novel, hydrophilic chelate
can be incorporated into numerous biomolecules containing azides for
generating targeted fac-[MI(CO)3]+ complexes in future studies.
Collapse