1
|
Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, Dell S, Eber E, Escudier E, Hirst RA, Hogg C, Jorissen M, Latzin P, Legendre M, Leigh MW, Midulla F, Nielsen KG, Omran H, Papon JF, Pohunek P, Redfern B, Rigau D, Rindlisbacher B, Santamaria F, Shoemark A, Snijders D, Tonia T, Titieni A, Walker WT, Werner C, Bush A, Kuehni CE. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49:13993003.01090-2016. [PMID: 27836958 DOI: 10.1183/13993003.01090-2016] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 01/30/2023]
Abstract
The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive, tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no "gold standard" reference test. Hence, a Task Force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of primary ciliary dyskinesia; and to provide advice when the diagnosis was not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for primary ciliary dyskinesia.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
429 |
2
|
Behan L, Dimitrov BD, Kuehni CE, Hogg C, Carroll M, Evans HJ, Goutaki M, Harris A, Packham S, Walker WT, Lucas JS. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J 2016; 47:1103-12. [PMID: 26917608 PMCID: PMC4819882 DOI: 10.1183/13993003.01551-2015] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022]
Abstract
Symptoms of primary ciliary dyskinesia (PCD) are nonspecific and guidance on whom to refer for testing is limited. Diagnostic tests for PCD are highly specialised, requiring expensive equipment and experienced PCD scientists. This study aims to develop a practical clinical diagnostic tool to identify patients requiring testing. Patients consecutively referred for testing were studied. Information readily obtained from patient history was correlated with diagnostic outcome. Using logistic regression, the predictive performance of the best model was tested by receiver operating characteristic curve analyses. The model was simplified into a practical tool (PICADAR) and externally validated in a second diagnostic centre. Of 641 referrals with a definitive diagnostic outcome, 75 (12%) were positive. PICADAR applies to patients with persistent wet cough and has seven predictive parameters: full-term gestation, neonatal chest symptoms, neonatal intensive care admittance, chronic rhinitis, ear symptoms, situs inversus and congenital cardiac defect. Sensitivity and specificity of the tool were 0.90 and 0.75 for a cut-off score of 5 points. Area under the curve for the internally and externally validated tool was 0.91 and 0.87, respectively. PICADAR represents a simple diagnostic clinical prediction rule with good accuracy and validity, ready for testing in respiratory centres referring to PCD centres. PICADAR is a simple diagnostic prediction tool for PCD with good accuracy and validity that is now ready for testinghttp://ow.ly/X6y9s
Collapse
|
Validation Study |
9 |
157 |
3
|
Waddington CS, Walker WT, Oeser C, Reiner A, John T, Wilkins S, Casey M, Eccleston PE, Allen RJ, Okike I, Ladhani S, Sheasby E, Hoschler K, Andrews N, Waight P, Collinson AC, Heath PT, Finn A, Faust SN, Snape MD, Miller E, Pollard AJ. Safety and immunogenicity of AS03B adjuvanted split virion versus non-adjuvanted whole virion H1N1 influenza vaccine in UK children aged 6 months-12 years: open label, randomised, parallel group, multicentre study. BMJ 2010; 340:c2649. [PMID: 20508026 PMCID: PMC2877808 DOI: 10.1136/bmj.c2649] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To compare the safety, reactogenicity, and immunogenicity of an adjuvanted split virion H1N1 vaccine and a non-adjuvanted whole virion vaccine used in the pandemic immunisation programme in the United Kingdom. DESIGN Open label, randomised, parallel group, phase II study. SETTING Five UK centres (Oxford, Southampton, Bristol, Exeter, and London). PARTICIPANTS Children aged 6 months to less than 13 years for whom a parent or guardian had provided written informed consent and who were able to comply with study procedures were eligible. Those with laboratory confirmed pandemic H1N1 influenza or clinically diagnosed disease meriting antiviral treatment, allergy to egg or any other vaccine components, or coagulation defects, or who were severely immunocompromised or had recently received blood products were excluded. Children were grouped by age: 6 months-<3 years (younger group) and 3-<13 years (older group). Recruitment was by media advertising and direct mailing. Recruitment visits were attended by 949 participants, of whom 943 were enrolled and 937 included in the per protocol analysis. INTERVENTIONS Participants were randomised 1:1 to receive AS03(B) (tocopherol based oil in water emulsion) adjuvanted split virion vaccine derived from egg culture or non-adjuvanted whole virion vaccine derived from cell culture. Both were given as two doses 21 days apart. Reactogenicity data were collected for one week after immunisation by diary card. Serum samples were collected at baseline and after the second dose. MAIN OUTCOME MEASURES Primary reactogenicity end points were frequency and severity of fever, tenderness, swelling, and erythema after vaccination. Immunogenicity was measured by microneutralisation and haemagglutination inhibition assays. The primary immunogenicity objective was a comparison between vaccines of the percentage of participants showing seroconversion by the microneutralisation assay (fourfold rise to a titre of >or=1:40 from before vaccination to three weeks after the second dose). RESULTS Seroconversion rates were higher after the adjuvanted split virion vaccine than after the whole virion vaccine, most notably in the youngest children (163 of 166 participants with paired serum samples (98.2%, 95% confidence interval 94.8% to 99.6%) v 157 of 196 (80.1%, 73.8% to 85.5%), P<0.001) in children under 3 years and 226 of 228 (99.1%, 96.9% to 99.9%) v 95.9%, 92.4% to 98.1%, P=0.03) in those over 3 years). The adjuvanted split virion vaccine was more reactogenic than the whole virion vaccine, with more frequent systemic reactions and severe local reactions in children aged over 5 years after dose one (13 (7.2%, 3.9% to 12%) v 2 (1.1%, 0.1% to 3.9%), P<0.001) and dose two (15 (8.5%, 4.8% to 13.7%) v 2 (1.1%, 0.1% to 4.1%), P<0.002) and after dose two in those under 5 years (15 (5.9%, 3.3% to 9.6%) v 0 (0.0%, 0% to 1.4%), P<0.001). Dose two of the adjuvanted split virion vaccine was more reactogenic than dose one, especially for fever >or=38 masculineC in those aged under 5 (24 (8.9%, 5.8% to 12.9%) v 57 (22.4%, 17.5% to 28.1%), P<0.001). CONCLUSIONS In this first direct comparison of an AS03(B) adjuvanted split virion versus whole virion non-adjuvanted H1N1 vaccine, the adjuvanted vaccine, while more reactogenic, was more immunogenic and, importantly, achieved high seroconversion rates in children aged less than 3 years. This indicates the potential for improved immunogenicity of influenza vaccines in this age group. TRIAL REGISTRATION Clinical trials.gov NCT00980850; ISRCTN89141709.
Collapse
|
Clinical Trial, Phase II |
15 |
141 |
4
|
Walker WT, Jackson CL, Lackie PM, Hogg C, Lucas JS. Nitric oxide in primary ciliary dyskinesia. Eur Respir J 2012; 40:1024-32. [PMID: 22408195 DOI: 10.1183/09031936.00176111] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nitric oxide is continually synthesised in the respiratory epithelium and is upregulated in response to infection or inflammation. Primary ciliary dyskinesia (PCD) is characterised by recurrent sinopulmonary infections due to impaired mucociliary clearance. Despite chronic infections, nasal nitric oxide in such patients is markedly reduced and is used as a screening test for this condition. These low levels were first described >15 yrs ago but the underlying mechanisms have yet to be fully elucidated. We review epithelial nitric oxide synthesis, release and measurement in the upper airways with particular reference to PCD. The key hypotheses that have been proposed to explain the low nitric oxide levels in this condition are explored and the potential benefits of augmenting airway nitric oxide levels are considered. Further work in these patients clarifying both whether the respiratory epithelium is able to biosynthesise normal levels of nitric oxide and the role played by abnormalities in the anatomy of the paranasal sinuses is essential. While nitric oxide augmentation is unlikely to be beneficial in common PCD phenotypes, it has potential in the treatment of secondary dyskinesias and may also improve treatment of bacterial infections, particularly where biofilms are implicated.
Collapse
|
Review |
13 |
82 |
5
|
Jackson CL, Behan L, Collins SA, Goggin PM, Adam EC, Coles JL, Evans HJ, Harris A, Lackie P, Packham S, Page A, Thompson J, Walker WT, Kuehni C, Lucas JS. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur Respir J 2015; 47:837-48. [PMID: 26647444 PMCID: PMC4771621 DOI: 10.1183/13993003.00749-2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/15/2015] [Indexed: 11/26/2022]
Abstract
Diagnosis of primary ciliary dyskinesia (PCD) lacks a “gold standard” test and is therefore based on combinations of tests including nasal nitric oxide (nNO), high-speed video microscopy analysis (HSVMA), genotyping and transmission electron microscopy (TEM). There are few published data on the accuracy of this approach. Using prospectively collected data from 654 consecutive patients referred for PCD diagnostics we calculated sensitivity and specificity for individual and combination testing strategies. Not all patients underwent all tests. HSVMA had excellent sensitivity and specificity (100% and 93%, respectively). TEM was 100% specific, but 21% of PCD patients had normal ultrastructure. nNO (30 nL·min−1 cut-off) had good sensitivity and specificity (91% and 96%, respectively). Simultaneous testing using HSVMA and TEM was 100% sensitive and 92% specific. In conclusion, combination testing was found to be a highly accurate approach for diagnosing PCD. HSVMA alone has excellent accuracy, but requires significant expertise, and repeated sampling or cell culture is often needed. TEM alone is specific but misses 21% of cases. nNO (≤30 nL·min−1) contributes well to the diagnostic process. In isolation nNO screening at this cut-off would miss ∼10% of cases, but in combination with HSVMA could reduce unnecessary further testing. Standardisation of testing between centres is a future priority. Combination testing in PCD diagnosis remains the most accurate approach, but standardisation is neededhttp://ow.ly/TLEDu
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
61 |
6
|
Shoemark A, Rubbo B, Legendre M, Fassad MR, Haarman EG, Best S, Bon ICM, Brandsma J, Burgel PR, Carlsson G, Carr SB, Carroll M, Edwards M, Escudier E, Honoré I, Hunt D, Jouvion G, Loebinger MR, Maitre B, Morris-Rosendahl D, Papon JF, Parsons CM, Patel MP, Thomas NS, Thouvenin G, Walker WT, Wilson R, Hogg C, Mitchison HM, Lucas JS. Topological data analysis reveals genotype-phenotype relationships in primary ciliary dyskinesia. Eur Respir J 2021; 58:13993003.02359-2020. [PMID: 33479112 DOI: 10.1183/13993003.02359-2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a heterogeneous inherited disorder caused by mutations in approximately 50 cilia-related genes. PCD genotype-phenotype relationships have mostly arisen from small case series because existing statistical approaches to investigating relationships have been unsuitable for rare diseases. METHODS We applied a topological data analysis (TDA) approach to investigate genotype-phenotype relationships in PCD. Data from separate training and validation cohorts included 396 genetically defined individuals carrying pathogenic variants in PCD genes. To develop the TDA models, 12 clinical and diagnostic variables were included. TDA-driven hypotheses were subsequently tested using traditional statistics. RESULTS Disease severity at diagnosis, measured by forced expiratory volume in 1 s (FEV1) z-score, was significantly worse in individuals with CCDC39 mutations (compared to other gene mutations) and better in those with DNAH11 mutations; the latter also reported less neonatal respiratory distress. Patients without neonatal respiratory distress had better preserved FEV1 at diagnosis. Individuals with DNAH5 mutations were phenotypically diverse. Cilia ultrastructure and beat pattern defects correlated closely to specific causative gene groups, confirming these tests can be used to support a genetic diagnosis. CONCLUSIONS This large scale, multi-national study presents PCD as a syndrome with overlapping symptoms and variations in phenotype according to genotype. TDA modelling confirmed genotype-phenotype relationships reported by smaller studies (e.g. FEV1 worse with CCDC39 mutation) and identified new relationships, including FEV1 preservation with DNAH11 mutations and diversity of severity with DNAH5 mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
58 |
7
|
Walker WT, Liew A, Harris A, Cole J, Lucas JS. Upper and lower airway nitric oxide levels in primary ciliary dyskinesia, cystic fibrosis and asthma. Respir Med 2013; 107:380-6. [PMID: 23290188 DOI: 10.1016/j.rmed.2012.11.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Patients with primary ciliary dyskinesia (PCD) have abnormal ciliary function and low nitric oxide levels. Nitric oxide (NO) biosynthesis is dependent on nitric oxide synthases (NOS). Cilia line the bronchial but not the alveolar epithelium. It has been hypothesised that NOS function relies on normal ciliary function and that in PCD bronchial but not alveolar NO might therefore be reduced. The aim of this study was to assess bronchial and alveolar NO levels primarily comparing healthy children to PCD and secondarily to cystic fibrosis (CF) and asthmatic children. METHODS Multiple flow-rate fractional exhaled and nasal NO measurements were performed using a NIOX(®) Flex NO analyser (Aerocrine, Sweden) in children with PCD (n = 14), asthma (n = 18), CF (n = 12) and healthy controls (n = 18). Alveolar and bronchial NO levels were derived using a model of pulmonary NO exchange-dynamics. RESULTS Both the bronchial and alveolar NO were significantly lower in PCD than healthy controls (mean (SD) 264 (209) picolitres/second (pl/s) vs. 720 (514) pl/s, p = 0.024 and 1.7 (0.8) parts per billion (ppb) vs. 3.5 (1.3) ppb, p = 0.001 respectively.) In asthmatics bronchial NO was found to be significantly higher than in healthy controls and in children with CF alveolar NO was significantly lower (2100 (1935) pl/s, p = 0.045 and 2.5 (1.2) ppb, p = 0.034 respectively.) CONCLUSION Our findings do not support the hypothesis that NOS and ciliary function are coupled instead suggesting a more generalised mechanism for the low levels of NO seen in PCD. Our findings in CF and asthma corroborate evidence that these are diseases of the lung peripheries and bronchi respectively.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
36 |
8
|
Harris A, Bhullar E, Gove K, Joslin R, Pelling J, Evans HJ, Walker WT, Lucas JS. Validation of a portable nitric oxide analyzer for screening in primary ciliary dyskinesias. BMC Pulm Med 2014; 14:18. [PMID: 24507708 PMCID: PMC3929562 DOI: 10.1186/1471-2466-14-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/04/2014] [Indexed: 12/22/2022] Open
Abstract
Background Nasal nitric oxide (nNO) levels are very low in primary ciliary dyskinesia (PCD) and it is used as a screening test. Methods We assessed the reliability and usability of a hand-held analyser in comparison to a stationary nitric oxide (NO) analyser in 50 participants (15 healthy, 13 PCD, 22 other respiratory diseases; age 6–79 years). Nasal NO was measured using a stationary NO analyser during a breath-holding maneuver, and using a hand-held analyser during tidal breathing, sampling at 2 ml/sec or 5 ml/sec. The three methods were compared for their specificity and sensitivity as a screen for PCD, their success rate in different age groups, within subject repeatability and acceptability. Correlation between methods was assessed. Results Valid nNO measurements were obtained in 94% of participants using the stationary analyser, 96% using the hand-held analyser at 5 ml/sec and 76% at 2 ml/sec. The hand-held device at 5 ml/sec had excellent sensitivity and specificity as a screening test for PCD during tidal breathing (cut-off of 30 nL/min,100% sensitivity, >95% specificity). The cut-off using the stationary analyser during breath-hold was 38 nL/min (100% sensitivity, 95% specificity). The stationary and hand-held analyser (5 ml/sec) showed reasonable within-subject repeatability(% coefficient of variation = 15). Conclusion The hand-held NO analyser provides a promising screening tool for PCD.
Collapse
|
Validation Study |
11 |
31 |
9
|
Walker WT, Faust SN. Monovalent inactivated split-virion AS03-adjuvanted pandemic influenza A (H1N1) vaccine. Expert Rev Vaccines 2014; 9:1385-98. [DOI: 10.1586/erv.10.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
11 |
29 |
10
|
Lucas JS, Alanin MC, Collins S, Harris A, Johansen HK, Nielsen KG, Papon JF, Robinson P, Walker WT. Clinical care of children with primary ciliary dyskinesia. Expert Rev Respir Med 2017; 11:779-790. [DOI: 10.1080/17476348.2017.1360770] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
|
8 |
26 |
11
|
Coles JL, Thompson J, Horton KL, Hirst RA, Griffin P, Williams GM, Goggin P, Doherty R, Lackie PM, Harris A, Walker WT, O’Callaghan C, Hogg C, Lucas JS, Blume C, Jackson CL. A Revised Protocol for Culture of Airway Epithelial Cells as a Diagnostic Tool for Primary Ciliary Dyskinesia. J Clin Med 2020; 9:E3753. [PMID: 33233428 PMCID: PMC7700393 DOI: 10.3390/jcm9113753] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Air-liquid interface (ALI) culture of nasal epithelial cells is a valuable tool in the diagnosis and research of primary ciliary dyskinesia (PCD). Ex vivo samples often display secondary dyskinesia from cell damage during sampling, infection or inflammation confounding PCD diagnostic results. ALI culture enables regeneration of healthy cilia facilitating differentiation of primary from secondary ciliary dyskinesia. We describe a revised ALI culture method adopted from April 2018 across three collaborating PCD diagnostic sites, including current University Hospital Southampton COVID-19 risk mitigation measures, and present results. Two hundred and forty nasal epithelial cell samples were seeded for ALI culture and 199 (82.9%) were ciliated. Fifty-four of 83 (63.9%) ex vivo samples which were originally equivocal or insufficient provided diagnostic information following in vitro culture. Surplus basal epithelial cells from 181 nasal brushing samples were frozen in liquid nitrogen; 39 samples were ALI-cultured after cryostorage and all ciliated. The ciliary beat patterns of ex vivo samples (by high-speed video microscopy) were recapitulated, scanning electron microscopy demonstrated excellent ciliation, and cilia could be immuno-fluorescently labelled (anti-alpha-tubulin and anti-RSPH4a) in representative cases that were ALI-cultured after cryostorage. In summary, our ALI culture protocol provides high ciliation rates across three centres, minimising patient recall for repeat brushing biopsies and improving diagnostic certainty. Cryostorage of surplus diagnostic samples was successful, facilitating PCD research.
Collapse
|
research-article |
5 |
26 |
12
|
Walker WT, Jackson CL, Allan RN, Collins S, Kelso MJ, Rineh A, Yepuri NR, Nicholas B, Lau L, Johnston D, Lackie P, Faust SN, Lucas JS, Hall-Stoodley L. Primary ciliary dyskinesia ciliated airway cells show increased susceptibility to
Haemophilus influenzae
biofilm formation. Eur Respir J 2017; 50:50/3/1700612. [DOI: 10.1183/13993003.00612-2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/04/2017] [Indexed: 11/05/2022]
|
|
8 |
23 |
13
|
Wheway G, Thomas NS, Carroll M, Coles J, Doherty R, Goggin P, Green B, Harris A, Hunt D, Jackson CL, Lord J, Mennella V, Thompson J, Walker WT, Lucas JS. Whole genome sequencing in the diagnosis of primary ciliary dyskinesia. BMC Med Genomics 2021; 14:234. [PMID: 34556108 PMCID: PMC8461892 DOI: 10.1186/s12920-021-01084-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND It is estimated that 1-13% of cases of bronchiectasis in adults globally are attributable to primary ciliary dyskinesia (PCD) but many adult patients with bronchiectasis have not been investigated for PCD. PCD is a disorder caused by mutations in genes required for motile cilium structure or function, resulting in impaired mucociliary clearance. Symptoms appear in infancy but diagnosis is often late or missed, often due to the lack of a "gold standard" diagnostic tool and non-specific symptoms. Mutations in > 50 genes account for around 70% of cases, with additional genes, and non-coding, synonymous, missense changes or structural variants (SVs) in known genes presumed to account for the missing heritability. METHODS UK patients with no identified genetic confirmation for the cause of their PCD or bronchiectasis were eligible for whole genome sequencing (WGS) in the Genomics England Ltd 100,000 Genomes Project. 21 PCD probands and 52 non-cystic fibrosis (CF) bronchiectasis probands were recruited in Wessex Genome Medicine Centre (GMC). We carried out analysis of single nucleotide variants (SNVs) and SVs in all families recruited in Wessex GMC. RESULTS 16/21 probands in the PCD cohort received confirmed (n = 9), probable (n = 4) or possible (n = 3) diagnosis from WGS, although 13/16 of these could have been picked up by current standard of care gene panel testing. In the other cases, SVs were identified which were missed by panel testing. We identified variants in novel PCD candidate genes (IFT140 and PLK4) in 2 probands in the PCD cohort. 3/52 probands in the non-CF bronchiectasis cohort received a confirmed (n = 2) or possible (n = 1) diagnosis of PCD. We identified variants in novel PCD candidate genes (CFAP53 and CEP164) in 2 further probands in the non-CF bronchiectasis cohort. CONCLUSIONS Genetic testing is an important component of diagnosing PCD, especially in cases of atypical disease history. WGS is effective in cases where prior gene panel testing has found no variants or only heterozygous variants. In these cases it may detect SVs and is a powerful tool for novel gene discovery.
Collapse
|
research-article |
4 |
19 |
14
|
Walker WT, de Whalley P, Andrews N, Oeser C, Casey M, Michaelis L, Hoschler K, Harrill C, Moulsdale P, Thompson B, Jones C, Chalk J, Kerridge S, John TM, Okike I, Ladhani S, Tomlinson R, Heath PT, Miller E, Faust SN, Snape MD, Finn A, Pollard AJ. H1N1 antibody persistence 1 year after immunization with an adjuvanted or whole-virion pandemic vaccine and immunogenicity and reactogenicity of subsequent seasonal influenza vaccine: a multicenter follow-on study. Clin Infect Dis 2012; 54:661-9. [PMID: 22267719 PMCID: PMC3275760 DOI: 10.1093/cid/cir905] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two doses of AS03B-adjuvanted pandemic influenza vaccine may be sufficient to maintain seroprotection across 2 influenza seasons. Administration of trivalent influenza vaccine to children who previously received 2 doses of pandemic influenza vaccine is safe and is immunogenic for the H1N1 strain. Background. We investigated antibody persistence in children 1 year after 2 doses of either an AS03B-adjuvanted split-virion or nonadjuvanted whole-virion monovalent pandemic influenza vaccine and assessed the immunogenicity and reactogenicity of a subsequent dose of trivalent influenza vaccine (TIV). Methods. Children previously immunized at age 6 months to 12 years in the original study were invited to participate. After a blood sample was obtained to assess persistence of antibody against swine influenza A/H1N1(2009) pandemic influenza, children received 1 dose of 2010/2011 TIV, reactogenicity data were collected for 7 days, and another blood sample was obtained 21 days after vaccination. Results. Of 323 children recruited, 302 received TIV. Antibody persistence (defined as microneutralization [MN] titer ≥1:40) 1 year after initial vaccination was significantly higher in the AS03B-adjuvanted compared with the whole-virion vaccine group, 100% (95% confidence interval [CI], 94.1%–100%) vs 32.4% (95% CI, 21.5%–44.8%) in children immunized <3 years old and 96.9% (95% CI, 91.3%–99.4%) vs 65.9% (95% CI, 55.3%–75.5%) in those 3–12 years old at immunization, respectively (P < .001 for both groups). All children receiving TIV had post-vaccination MN titers ≥1:40. Although TIV was well tolerated in all groups, reactogenicity in children <5 years old was slightly greater in those who originally received AS03B-adjuvanted vaccine. Conclusions. This study provides serological evidence that 2 doses of AS03B-adjuvanted pandemic influenza vaccine may be sufficient to maintain protection across 2 influenza seasons. Administration of TIV to children who previously received 2 doses of either pandemic influenza vaccine is safe and is immunogenic for the H1N1 strain.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
19 |
15
|
Walker WT, Temple IK, Gnanapragasam JP, Goddard JR, Brown EM. Quality of life after repair of tetralogy of Fallot. Cardiol Young 2002; 12:549-53. [PMID: 12636003 DOI: 10.1017/s1047951102000999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To determine the quality of life in individuals with corrected tetralogy of Fallot. METHODS AND SUBJECTS Questionnaires concerning quality of life were sent to all 87 surviving patients aged between 16 and 40 years who had undergone intracardiac repair of tetralogy of Fallot and follow-up in the Wessex Cardiothoracic Unit, and to 87 age and sex matched controls, with medically treated haemodynamically insignificant ventricular septal defects. RESULTS The only significant difference found between the cases and controls was in requirements for schooling, where those with tetralogy of Fallot were more likely to require additional educational help at school (p = 0.044). For all other aspects of quality of life examined by the questionnaire, including social and genetic history, exercise ability, and health related quality of life, no significant differences were found. Different operative techniques, such as transjunctional patching, right ventriculotomy, and previous palliative shunting, did not affect the quality of life of our population with Tetralogy of Fallot, on average twenty years after their surgery, although the range of operative techniques was limited. Neither age at surgery, nor time since surgery, was correlated with measurements of quality of life. CONCLUSIONS Those who have undergone surgical correction of tetralogy of Fallot have a normal quality of life, with few differences compared to controls.
Collapse
|
Comparative Study |
23 |
17 |
16
|
Beydon N, Kouis P, Marthin JK, Latzin P, Colas M, Davis SD, Haarman E, Harris AL, Hogg C, Kilbride E, Kuehni CE, Marangu D, Nielsen KG, Pendergrast C, Robinson P, Rumman N, Rutter M, Walker WT, Ferkol T, Lucas JS. Nasal nitric oxide measurement in children for the diagnosis of primary ciliary dyskinesia: European Respiratory Society technical standard. Eur Respir J 2023; 61:13993003.02031-2022. [PMID: 36822632 DOI: 10.1183/13993003.02031-2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023]
Abstract
Nasal nitric oxide (nNO) is extremely low in most people with primary ciliary dyskinesia (PCD) and its measurement is an important contributor to making the diagnosis. Existing guidelines and technical standards focus on nNO measurements in older, cooperative children using chemiluminescent analysers. However, measurements of nNO in pre-school children (2-5 years) may facilitate early diagnosis, and electrochemical rather than chemiluminescence analysers are widely used. Pre-schoolers often need different methods to be employed when measuring nNO. Hence a European Respiratory Society Task Force has developed this technical standard as the first step towards standardising sampling, analysis, and reporting of nNO measured as part of the diagnostic testing for PCD in all age groups including preschool-age children. Furthermore, we considered both chemiluminescence and electrochemical analysers that are in use worldwide. There was paucity of quality evidence for electrochemical analysers and sampling methods used in young children, and this manuscript proposes future research priorities to allow updates of this technical standard.
Collapse
|
|
2 |
17 |
17
|
Pryde K, Walker WT, Hollingsworth C, Haywood P, Baird J, Hussey M, Freeman A, Gawne-Cain M, Harms B, Kirkham FJ, Faust SN. Stroke in paediatric pneumococcal meningitis: a cross-sectional population-based study. Arch Dis Child 2013; 98:647-9. [PMID: 23757479 DOI: 10.1136/archdischild-2013-304243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
Letter |
12 |
16 |
18
|
Jackson CL, Lucas JS, Walker WT, Owen H, Premadeva I, Lackie PM. Neuronal NOS localises to human airway cilia. Nitric Oxide 2014; 44:3-7. [PMID: 25460324 DOI: 10.1016/j.niox.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/21/2014] [Accepted: 11/03/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. METHODS AND RESULTS Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. CONCLUSIONS We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function.
Collapse
|
Journal Article |
11 |
15 |
19
|
Walker WT, Young A, Bennett M, Guy M, Carroll M, Fleming J, Conway J, Lucas JS. Pulmonary radioaerosol mucociliary clearance in primary ciliary dyskinesia. Eur Respir J 2014; 44:533-5. [PMID: 24791827 DOI: 10.1183/09031936.00011814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
Letter |
11 |
15 |
20
|
Lucas JS, Chetcuti P, Copeland F, Hogg C, Kenny T, Moya E, O'Callaghan C, Walker WT. Overcoming challenges in the management of primary ciliary dyskinesia: the UK model. Paediatr Respir Rev 2014; 15:142-5. [PMID: 23764568 DOI: 10.1016/j.prrv.2013.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/13/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disease associated with bronchiectasis, chronic rhinosinusitis, infertility and situs inversus. Estimates of prevalence vary widely, but is probably between 1:10,000- 1:40,000 in most populations. A number of observational studies indicate that access to services to diagnose and manage patients with PCD vary both between and within countries. Diagnosis is often delayed and frequently missed completely. The prognosis of patients with PCD is variable, but evidence suggests that it is improved by early diagnosis and specialist care. This article briefly reviews the literature concerning PCD and the evidence that specialist care will improve healthcare outcomes. The article specifically refers to a new national service in the UK.
Collapse
|
Review |
11 |
15 |
21
|
Raidt J, Maitre B, Pennekamp P, Altenburg J, Anagnostopoulou P, Armengot M, Bloemsma LD, Boon M, Borrelli M, Brinkmann F, Carr SB, Carroll MP, Castillo-Corullón S, Coste A, Cutrera R, Dehlink E, Destouches DMS, Di Cicco ME, Dixon L, Emiralioglu N, Erdem Eralp E, Haarman EG, Hogg C, Karadag B, Kobbernagel HE, Lorent N, Mall MA, Marthin JK, Martinu V, Narayanan M, Ozcelik U, Peckham D, Pifferi M, Pohunek P, Polverino E, Range S, Ringshausen FC, Robson E, Roehmel J, Rovira-Amigo S, Santamaria F, Schlegtendal A, Szépfalusi Z, Tempels P, Thouvenin G, Ullmann N, Walker WT, Wetzke M, Yiallouros P, Omran H, Nielsen KG. The disease-specific clinical trial network for Primary Ciliary Dyskinesia (PCD-CTN). ERJ Open Res 2022; 8:00139-2022. [PMID: 35983540 PMCID: PMC9379353 DOI: 10.1183/23120541.00139-2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterised by impaired mucociliary clearance leading to irreversible lung damage. In contrast to other rare lung diseases like cystic fibrosis (CF), there are only few clinical trials and limited evidence-based treatments. Management is mainly based on expert opinions and treatment is challenging due to a wide range of clinical manifestations and disease severity. To improve clinical and translational research and facilitate development of new treatments, the clinical trial network for PCD (PCD-CTN) was founded in 2020 under the framework of the European Reference Network (ERN)-LUNG PCD Core. Applications from European PCD sites interested in participating in the PCD-CTN were requested. Inclusion criteria consisted of patient numbers, membership of ERN-LUNG PCD Core, use of associated standards of care, experience in PCD and/or CF clinical research, resources to run clinical trials, good clinical practice (GCP) certifications and institutional support. So far, applications from 22 trial sites in 18 European countries have been approved, including >1400 adult and >1600 paediatric individuals with PCD. The PCD-CTN is headed by a coordinating centre and consists of a steering and executive committee, a data safety monitoring board and committees for protocol review, training and standardisation. A strong association with patient organisations and industrial companies are further cornerstones. All participating trial sites agreed on a code of conduct. As CTNs from other diseases have demonstrated successfully, this newly formed PCD-CTN operates to establish evidence-based treatments for this orphan disease and to bring new personalised treatment approaches to patients. The disease-specific clinical trial network for primary ciliary dyskinesia (PCD-CTN) was built under the framework of the European Reference Network (ERN)-LUNG PCD Core, and operates to establish evidence-based and new personalised treatment for PCDhttps://bit.ly/3sLtC8o
Collapse
|
|
3 |
14 |
22
|
Halbeisen F, Hogg C, Alanin MC, Bukowy-Bieryllo Z, Dasi F, Duncan J, Friend A, Goutaki M, Jackson C, Keenan V, Harris A, Hirst RA, Latzin P, Marsh G, Nielsen K, Norris D, Pellicer D, Reula A, Rubbo B, Rumman N, Shoemark A, Walker WT, Kuehni CE, Lucas JS. Proceedings of the 2nd BEAT-PCD conference and 3rd PCD training school: part 1. BMC Proc 2018; 12:1. [PMID: 29630684 PMCID: PMC5841193 DOI: 10.1186/s12919-018-0098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare heterogenous condition that causes progressive suppurative lung disease, chronic rhinosinusitis, chronic otitis media, infertility and abnormal situs. 'Better Experimental Approaches to Treat Primary Ciliary Dyskinesia' (BEAT-PCD) is a network of scientists and clinicians coordinating research from basic science through to clinical care with the intention of developing treatments and diagnostics that lead to improved long-term outcomes for patients. BEAT-PCD activities are supported by EU funded COST Action (BM1407). The second BEAT-PCD conference, and third PCD training school were held jointly in April 2017 in Valencia, Spain. Presentations and workshops focussed on advancing the knowledge and skills relating to PCD in: basic science, epidemiology, diagnostic testing, clinical management and clinical trials. The multidisciplinary conference provided an interactive platform for exchanging ideas through a program of lectures, poster presentations, breakout sessions and workshops. Three working groups met to plan consensus statements. Progress with BEAT-PCD projects was shared and new collaborations were fostered. In this report, we summarize the meeting, highlighting developments made during the meeting.
Collapse
|
Case Reports |
7 |
11 |
23
|
Marthin JK, Lucas JS, Boon M, Casaulta C, Crowley S, Destouches DMS, Eber E, Escribano A, Haarman E, Hogg C, Maitre B, Marsh G, Martinu V, Moreno-Galdó A, Mussaffi H, Omran H, Pohunek P, Rindlisbacher B, Robinson P, Snijders D, Walker WT, Yiallouros P, Johansen HK, Nielsen KG. International BEAT-PCD consensus statement for infection prevention and control for primary ciliary dyskinesia in collaboration with ERN-LUNG PCD Core Network and patient representatives. ERJ Open Res 2021; 7:00301-2021. [PMID: 34350277 PMCID: PMC8326680 DOI: 10.1183/23120541.00301-2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction In primary ciliary dyskinesia (PCD) impaired mucociliary clearance leads to recurrent airway infections and progressive lung destruction, and concern over chronic airway infection and patient-to-patient transmission is considerable. So far, there has been no defined consensus on how to control infection across centres caring for patients with PCD. Within the BEAT-PCD network, COST Action and ERS CRC together with the ERN-Lung PCD core a first initiative has now been taken towards creating such a consensus statement. Methods A multidisciplinary international PCD expert panel was set up to create a consensus statement for infection prevention and control (IP&C) for PCD, covering diagnostic microbiology, infection prevention for specific pathogens considered indicated for treatment and segregation aspects. Using a modified Delphi process, consensus to a statement demanded at least 80% agreement within the PCD expert panel group. Patient organisation representatives were involved throughout the process. Results We present a consensus statement on 20 IP&C statements for PCD including suggested actions for microbiological identification, indications for treatment of Pseudomonas aeruginosa, Burkholderia cepacia and nontuberculous mycobacteria and suggested segregation aspects aimed to minimise patient-to-patient transmission of infections whether in-hospital, in PCD clinics or wards, or out of hospital at meetings between people with PCD. The statement also includes segregation aspects adapted to the current coronavirus disease 2019 (COVID-19) pandemic. Conclusion The first ever international consensus statement on IP&C intended specifically for PCD is presented and is targeted at clinicians managing paediatric and adult patients with PCD, microbiologists, patient organisations and not least the patients and their families. For the first time ever, an international consensus statement for infection prevention and control in PCD is presented. A total of 20 statements were developed in a collaboration of BEAT-PCD, COST Action, ERS CRC and ERN-LUNG PCD Core Network.https://bit.ly/3yuahKt
Collapse
|
Journal Article |
4 |
10 |
24
|
Hoschler K, Andrews NJ, Faust SN, Finn A, Pollard AJ, Snape MD, Walker WT, Zambon M, Miller E. Administration of AS03B-adjuvanted A(H1N1)pdm09 vaccine in children aged <3 years enhances antibody response to H3 and B viruses following a single dose of trivalent vaccine one year later. Clin Infect Dis 2013; 58:181-7. [PMID: 24149079 DOI: 10.1093/cid/cit692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We report on a follow-up clinical and serological investigation of 274 children who received seasonal influenza vaccine (trivalent inactivated vaccine [TIV]) 1 year after receipt of either AS03(B)-adjuvanted subunit or whole virus monovalent A(H1N1)pdm09 vaccine and describe the antibody responses to the H3N2 A/Perth/16/2009 and B/Brisbane/60/2008 components of TIV. METHODS Vaccine responses were analyzed using hemagglutination inhibition (HAI) assays. In children aged <3 years, previous receipt of adjuvanted vaccine resulted in higher HAI antibody responses to H3N2 and B strains compared with nonadjuvanted vaccine (fold change 16.8 vs 4.3 for H3N2 and 7.0 vs 1.6 for B). In children aged >3 years, responses to the H3 and B components of TIV were similar between vaccine groups. Sera taken before and after the pandemic vaccine were also analyzed by HAI using A/Perth/16/2009 virus. This analysis showed that 11.1% of children receiving the AS03(B)-adjuvanted vaccine but only 1.4% in the nonadjuvanted group had a 4-fold rise to A/Perth/16/2009. CONCLUSION AS03B-adjuvanted A(H1N1)pdm09 influenza vaccine generates a cross-reactive antibody response to H3N2 in children and enhances responses to heterologous subtypes in children aged <3 years 1 year later.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
9 |
25
|
Walker WT, Jackson CL, Coles J, Lackie PM, Faust SN, Hall-Stoodley L, Lucas JS. Ciliated Cultures From Patients With Primary Ciliary Dyskinesia Produce Nitric Oxide in Response to Haemophilus influenzae Infection and Proinflammatory Cytokines. Chest 2014; 145:668-669. [DOI: 10.1378/chest.13-2398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
|
11 |
9 |