1
|
Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72:2224-32. [PMID: 9499080 PMCID: PMC109519 DOI: 10.1128/jvi.72.3.2224-2232.1998] [Citation(s) in RCA: 1079] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1997] [Accepted: 11/24/1997] [Indexed: 02/06/2023] Open
Abstract
Recently, efficient and long-term in vivo gene transfer by recombinant adeno-associated virus type 2 (rAAV) vectors has been demonstrated in a variety of tissues. Further improvement in vector titer and purity will expedite this in vivo exploration and provide preclinical information required for use in human gene therapy. In an effort to obtain higher titers, we constructed a novel AAV helper plasmid which utilizes translational control of AAV Rep genes (J. Li et al., J. Virol. 71:5236-5243, 1997). To address the issue of purity, in this study we report the first rAAV production method which is completely free of adenovirus (Ad) helper virus. The new production system uses a plasmid construct which contains a mini-Ad genome capable of propagating rAAV in the presence of AAV Rep and Cap genes. This construct is missing some of the early and most of the late Ad genes and is incapable of producing infectious Ad. Transfection of 293 cells with the new mini-Ad helper and AAV packaging plasmids results in high-titer rAAV vectors with yields greater than 1,000 transducing units, or 10(5) viral particles per cell. When rAAV vectors were produced by using this production scheme and compared to traditional heat-inactivated rAAV preparations in vitro and in vivo, we observed transduction equivalent to or better than normal levels. The complete removal of infectious Ad from AAV production should facilitate a better understanding of immune response to AAV vectors in vivo, eliminate the need for developing replication-competent Ad assays, and provide a more defined reagent for clinical use.
Collapse
|
research-article |
27 |
1079 |
2
|
Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O'Malley KL, During MJ. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994; 8:148-54. [PMID: 7842013 DOI: 10.1038/ng1094-148] [Citation(s) in RCA: 768] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adeno-associated viral (AAV) vectors are non-pathogenic, integrating DNA vectors in which all viral genes are removed and helper virus is completely eliminated. To evaluate this system in the post-mitotic cells of the brain, we found that an AAV vector containing the lacZ gene (AAVlac) resulted in expression of beta-galactosidase up to three months post-injection in vivo. A second vector expressing human tyrosine hydroxylase (AAVth) was injected into the denervated striatum of unilateral 6-hydroxydopamine-lesioned rats. Tyrosine hydroxylase (TH) immunoreactivity was detectable in striatal neurons and glia for up to four months and we also found significant behavioural recovery in lesioned rats treated with AAVth versus AAVlac controls. Safe and stable TH gene transfer into the denervated striatum may have potential for the genetic therapy of Parkinson's disease.
Collapse
|
|
31 |
768 |
3
|
Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70:8098-108. [PMID: 8892935 PMCID: PMC190884 DOI: 10.1128/jvi.70.11.8098-8108.1996] [Citation(s) in RCA: 668] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Muscle-directed gene transfer is being considered for the treatment of several metabolic diseases, including hemophilia and Duchene's muscular dystrophy. Previous efforts to target this tissue for somatic delivery with various vector systems have resulted in transient expression due to silencing of the transgene or to an immune response against the vector-transduced cells. We introduced recombinant adeno-associated virus vector (rAAV) carrying a lacZ reporter into muscle tissue of immunocompetent mice. The lacZ reporter gene was efficiently transduced and expressed with no evidence of a cellular immune response. Moreover, gene expression persisted for more than 1.5 years. Molecular characterization of rAAV vector DNA suggests a mechanism for persistence, since vector episomes convert to high-molecular-weight genomic DNA. These data provide the first report for establishing long-term gene transduction into mammalian muscle cells in vivo without the need for immune modulation of the organism.
Collapse
|
research-article |
29 |
668 |
4
|
Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10:3941-50. [PMID: 1657596 PMCID: PMC453134 DOI: 10.1002/j.1460-2075.1991.tb04964.x] [Citation(s) in RCA: 514] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A key feature in adeno-associated virus (AAV) replication is efficient integration of the viral genome into host cell DNA to establish latency when helper virus is absent. The steps involved in this process remain largely uncharacterized, even though AAV integration was first documented 20 years ago. Using a protein--DNA binding method we isolated AAV--cellular junction DNA sequences. The cellular component hybridized to a single restriction fragment in the virus-free parental cell line, and also co-migrated with AAV-specific sequences in numerous latently infected cell lines. Analysis of somatic cell hybrids indicated that this cellular sequence maps to the distal portion of the q arm of human chromosome 19. In situ hybridization of AAV DNA to chromosomes from latently infected cells confirms the physical location of AAV integrations to be q13.4-ter of chromosome 19. Sequence analysis of several independent integration sites shows breakpoints occurring within a 100 bp cellular region. This non-pathogenic parvovirus thus appears to establish viral latency by integrating its DNA specifically into one chromosomal region. Such specific integration is so far unique among the eukaryotic DNA viruses. The incorporation of site-specific integration into AAV vector schemes should make this vector system attractive for human gene therapy approaches.
Collapse
|
|
34 |
514 |
5
|
Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 1999; 18:5943-52. [PMID: 10545106 PMCID: PMC1171660 DOI: 10.1093/emboj/18.21.5943] [Citation(s) in RCA: 415] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HSF1 is the major heat shock transcriptional factor that binds heat shock element (HSE) in the promoter of heat shock proteins (Hsps) and controls rapid Hsp induction in cells subjected to various environmental stresses. Although at least four members of the vertebrate HSF family have been described, details of their individual physiological roles remain relatively obscure. To assess whether HSF1 exhibited redundant or unique in vivo functions, we created Hsf1(-/-) deficient mice. We demonstrate that homozygous Hsf1(-/-) mice can survive to adulthood but exhibit multiple phenotypes including: defects of the chorioallantoic placenta and prenatal lethality; growth retardation; female infertility; elimination of the 'classical' heat shock response; and exaggerated tumor necrosis factor alpha production resulting in increased mortality after endotoxin challenge. Because basal Hsp expression is not altered appreciably by the HSF1 null mutation, our findings suggest that this factor, like Drosophila Hsf protein, might be involved in regulating other important genes or signaling pathways. Our results establish direct causal effects for the HSF1 transactivator in regulating critical physiological events during extra-embryonic development and under pathological conditions such as sepsis to modulate pro-inflammatory responses, indicating that these pathways have clinical importance as therapeutic targets in humans.
Collapse
|
research-article |
26 |
415 |
6
|
McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 1998; 273:7523-8. [PMID: 9516453 DOI: 10.1074/jbc.273.13.7523] [Citation(s) in RCA: 389] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock transcription factor 1 (HSF1) is a member of the vertebrate HSF family that regulates stress-inducible synthesis of heat shock proteins (HSPs). Although the synthesis of the constitutively expressed and inducible members of the heat shock family of stress proteins correlates with increased cellular protection, their relative contributions in acquired cellular resistance or "thermotolerance" in mammalian cells is presently unknown. We report here that constitutive expression of multiple HSPs in cultured embryonic cells was unaffected by disruption of the murine HSF1 gene. In contrast, thermotolerance was not attainable in hsf1(-/-) cells, and this response was required for protection against heat-induced apoptosis. We conclude that 1) constitutive and inducibly expressed HSPs exhibit distinct physiological functions for cellular maintenance and adaptation, respectively, and 2) other mammalian HSFs or distinct evolutionarily conserved stress response pathways do not compensate for HSF1 in the physiological response to heat shock.
Collapse
|
|
27 |
389 |
7
|
McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ. Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 1996; 713:99-107. [PMID: 8724980 DOI: 10.1016/0006-8993(95)01488-8] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Safe, long-term gene expression is a primary criteria for effective gene therapy in the brain, so studies were initiated to evaluate adeno-associated virus (AAV) vector transfer of a reporter gene into specific sites of the rat brain. In the 4 day old rat, site infusions of AAV-CMV-lacZ (1 microliter; 5 x 10(4) particles) produced neuronal beta-galactosidase gene expression 3 weeks later in the hippocampus and inferior colliculus, but not in the cerebral cortex. Seven days after infusion of AAV-CMV-lacZ viral vectors (1 microliter) in the adult rat, beta-galactosidase gene expression was found in the olfactory tubercle, caudate, hippocampus, piriform cortex and inferior colliculus. primarily in multipolar neurons close to the infusion site. Three months after vector microinfusion, similar levels of gene expression remained in the olfactory tubercle and the inferior colliculus, with some reduction found in the caudate, but substantial reductions in beta-galactosidase gene expression occurred in the hippocampus and piriform cortex. In no case were obvious signs of toxicity noted. Therefore, AAV vectors can transfer foreign genes into the adult and neonatal CNS, but the pattern and longevity of gene expression depends upon the area of brain being studied.
Collapse
|
|
29 |
345 |
8
|
Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 2000; 97:13714-9. [PMID: 11095710 PMCID: PMC17641 DOI: 10.1073/pnas.240335297] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common and lethal genetic muscle disorder, caused by recessive mutations in the dystrophin gene. One of every 3,500 males suffers from DMD, yet no treatment is currently available. Genetic therapeutic approaches, using primarily myoblast transplantation and adenovirus-mediated gene transfer, have met with limited success. Adeno-associated virus (AAV) vectors, although proven superior for muscle gene transfer, are too small (5 kb) to package the 14-kb dystrophin cDNA. Here we have created a series of minidystrophin genes (<4.2 kb) under the control of a muscle-specific promoter that readily package into AAV vectors. When injected into the muscle of mdx mice (a DMD model), two of the minigenes resulted in efficient and stable expression in a majority of the myofibers, restoring the missing dystrophin and dystrophin-associated protein complexes onto the plasma membrane. More importantly, this AAV treatment ameliorated dystrophic pathology in mdx muscle and led to normal myofiber morphology, histology, and cell membrane integrity. Thus, we have defined minimal functional dystrophin units and demonstrated the effectiveness of using AAV to deliver the minigenes in vivo, offering a promising avenue for DMD gene therapy.
Collapse
|
research-article |
25 |
339 |
9
|
Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2004; 10:2105-11. [PMID: 14625564 DOI: 10.1038/sj.gt.3302133] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adeno-associated virus (AAV) is a promising gene vector based on a single-stranded (ss) DNA virus. Its transgene expression requires the conversion of ssDNA to double-stranded (ds) genome, a slow process responsible for the delayed transduction and occasional inefficiency. By mutating the inverted terminal repeat, we have made novel AAV vectors that predominantly package the self-complementary dsDNA genome. The dsAAV consistently demonstrated superior and accelerated transduction in vitro and in vivo. Dramatic increases in transgene expression were observed in most of the cell lines examined, including B16 melanoma and 3LL lung cancer that are difficult to be transduced by the conventional ssAAV vectors. Similar increases were also observed in vivo in a variety of tissues including muscle and liver. The dsAAV transduced a vast majority of the hepatocytes for more than 6 months, while the ssAAV transduced only a small fraction. In addition to circumventing the requirement for DNA synthesis, the dsAAV exhibited higher in vivo DNA stability and more effective circularization than the ssAAV, suggesting potential molecular mechanisms for the faster, stronger and prolonged transgene expression.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
337 |
10
|
Jiang XC, Qin S, Qiao C, Kawano K, Lin M, Skold A, Xiao X, Tall AR. Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nat Med 2001; 7:847-52. [PMID: 11433351 DOI: 10.1038/89977] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased secretion and levels of ApoB-containing lipoproteins (BLp) commonly occur in familial hyperlipidemia, obesity and diabetes. The plasma phospholipid-transfer protein (PLTP) is known to mediate transfer of phospholipids between BLp and HDL during their intravascular metabolism. To address a possible role of PLTP in dyslipidemia and atherogenesis, we bred mice deficient in the gene encoding PLTP (PLTP-deficient mice) using different hyperlipidemic mouse strains. In ApoB-transgenic and ApoE-deficient backgrounds, PLTP deficiency resulted in reduced production and levels of BLp and markedly decreased atherosclerosis. BLp secretion was diminished in hepatocytes from ApoB-transgenic PLTP-deficient mice, a defect that was corrected when PLTP was reintroduced in adenovirus. The studies reveal a major, unexpected role of PLTP in regulating the secretion of BLp and identify PLTP as a therapeutic target.
Collapse
|
|
24 |
218 |
11
|
Silver DL, Wang N, Xiao X, Tall AR. High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J Biol Chem 2001; 276:25287-93. [PMID: 11301333 DOI: 10.1074/jbc.m101726200] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High density lipoprotein (HDL) mediates reverse transport of cholesterol from atheroma foam cells to the liver, but the mechanisms of hepatic uptake and trafficking of HDL particles are poorly understood. In contrast to its accepted role as a cell surface receptor, scavenger receptor class B type 1 (SR-BI) is shown to be an endocytic receptor that mediates HDL particle uptake and recycling, but not degradation, in both transfected Chinese hamster ovary cells and hepatocytes. Confocal microscopy of polarized primary hepatocytes shows that HDL particles enter both the endocytic recycling compartment and the apical canalicular region paralleling the movement of SR-BI. In polarized epithelial cells (Madin-Darby canine kidney) expressing SR-BI, HDL protein and cholesterol undergo selective sorting with recycling of HDL protein from the basolateral membrane and secretion of HDL-derived cholesterol through the apical membrane. Thus, HDL particles, internalized via SR-BI, undergo a novel process of selective transcytosis, leading to polarized cholesterol transport. A distinct process not mediated by SR-BI is involved in uptake and degradation of apoE-free HDL in hepatocytes.
Collapse
|
|
24 |
203 |
12
|
Sun L, Li J, Xiao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 2000; 6:599-602. [PMID: 10802720 DOI: 10.1038/75087] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
|
25 |
179 |
13
|
Benyamin B, Pourcain BS, Davis OS, Davies G, Hansell NK, Brion MJA, Kirkpatrick RM, Cents RAM, Franić S, Miller MB, Haworth CMA, Meaburn E, Price TS, Evans DM, Timpson N, Kemp J, Ring S, McArdle W, Medland SE, Yang J, Harris SE, Liewald DC, Scheet P, Xiao X, Hudziak JJ, de Geus EJC, Jaddoe VWV, Starr JM, Verhulst FC, Pennell C, Tiemeier H, Iacono WG, Palmer LJ, Montgomery GW, Martin NG, Boomsma DI, Posthuma D, McGue M, Wright MJ, Smith GD, Deary IJ, Plomin R, Visscher PM. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 2014; 19:253-8. [PMID: 23358156 PMCID: PMC3935975 DOI: 10.1038/mp.2012.184] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/28/2012] [Accepted: 11/12/2012] [Indexed: 01/11/2023]
Abstract
Intelligence in childhood, as measured by psychometric cognitive tests, is a strong predictor of many important life outcomes, including educational attainment, income, health and lifespan. Results from twin, family and adoption studies are consistent with general intelligence being highly heritable and genetically stable throughout the life course. No robustly associated genetic loci or variants for childhood intelligence have been reported. Here, we report the first genome-wide association study (GWAS) on childhood intelligence (age range 6-18 years) from 17,989 individuals in six discovery and three replication samples. Although no individual single-nucleotide polymorphisms (SNPs) were detected with genome-wide significance, we show that the aggregate effects of common SNPs explain 22-46% of phenotypic variation in childhood intelligence in the three largest cohorts (P=3.9 × 10(-15), 0.014 and 0.028). FNBP1L, previously reported to be the most significantly associated gene for adult intelligence, was also significantly associated with childhood intelligence (P=0.003). Polygenic prediction analyses resulted in a significant correlation between predictor and outcome in all replication cohorts. The proportion of childhood intelligence explained by the predictor reached 1.2% (P=6 × 10(-5)), 3.5% (P=10(-3)) and 0.5% (P=6 × 10(-5)) in three independent validation cohorts. Given the sample sizes, these genetic prediction results are consistent with expectations if the genetic architecture of childhood intelligence is like that of body mass index or height. Our study provides molecular support for the heritability and polygenic nature of childhood intelligence. Larger sample sizes will be required to detect individual variants with genome-wide significance.
Collapse
|
Meta-Analysis |
11 |
179 |
14
|
Li J, Samulski RJ, Xiao X. Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 1997; 71:5236-43. [PMID: 9188591 PMCID: PMC191759 DOI: 10.1128/jvi.71.7.5236-5243.1997] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent success achieving long-term in vivo gene transfer without a significant immune response by using adeno-associated virus (AAV) vectors (X. Xiao, J. Li, and R. J. Samulski, J. Virol. 70:8098-8108, 1996) has encouraged further development of this vector for human gene therapy. Currently, studies focus on the generation of high-titer vectors by using the two-plasmid helper-vector system in adenovirus (Ad)-infected cells. To examine the effects of the AAV replication (rep) genes on recombinant AAV (rAAV) vector production, we have constructed a series of AAV helper plasmids that contain strong heterologous promoters in place of the endogenous p5 promoter. Although high-level rep gene expression was achieved, rAAV DNA failed to replicate in the absence of Ad infection. Moreover, unregulated overexpression of Rep78/68 led to substantially lower rAAV yields in the presence of Ad (10(4-5) versus 10(7-8)). In contrast, under similar conditions, reduced Rep78/68 expression resulted in much higher rAAV yields (10(9)). Molecular characterization showed that overexpression of the rep gene decreased rAAV DNA replication and severely inhibited capsid (cap) gene expression. Interestingly, a reduced rep level enhanced cap gene expression and supported normal rAAV DNA replication. These studies suggest a critical role for regulated rep gene expression in rAAV production and have facilitated the development of a new AAV helper plasmid that increases vector production eightfold over currently used constructs.
Collapse
|
research-article |
28 |
170 |
15
|
Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X, Hart RP, Schwartz M. Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 2005; 92:997-1009. [PMID: 15715651 DOI: 10.1111/j.1471-4159.2004.02954.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate in excessive amounts is a major contributor to neuronal degeneration, and its removal is attributed mainly to astrocytes. Traumatic injury to the central nervous system (CNS) is often accompanied by disappearance of astrocytes from the lesion site and failure of the remaining cells to withstand the ensuing toxicity. Microglia that repopulate the lesion site are the usual suspects for causing redox imbalance and inflammation and thus further exacerbating the neurotoxicity. However, our group recently demonstrated that early post-injury activation of microglia as antigen-presenting cells correlates with an ability to withstand injurious conditions. Moreover, we found that T cells reactive to CNS-specific self-antigens protected neurons against glutamate toxicity. Here, we show that antigen-specific autoimmune T cells, by tailoring the microglial phenotype, can increase the ability of microglia-enriched cultures to remove glutamate. This T-cell-mediated effect could not be achieved by the potent microglia-activating agent lipopolysaccharide (LPS), but was dose-dependently reproduced by the Th1 cytokine interferon (IFN)-gamma and significantly reduced by neutralizing anti-IFN-gamma antibodies. Under the same conditions, IFN-gamma had no effect on cultured astrocytes. Up-regulation of glutamate uptake induced by IFN-gamma activation was not accompanied by the acute inflammatory response seen in LPS-activated cultures. These findings suggest that T cells or their cytokines can cause microglia to adopt a phenotype that facilitates rather than impairs glutamate clearance, possibly contributing to restoration of homeostasis.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
164 |
16
|
Xiao X, Li J, McCown TJ, Samulski RJ. Gene transfer by adeno-associated virus vectors into the central nervous system. Exp Neurol 1997; 144:113-24. [PMID: 9126160 DOI: 10.1006/exnr.1996.6396] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adeno-associated virus (AAV) vectors are derived from a nonpathogenic and defective human parvovirus. Although currently unable to display the integration specificity featured by its wild-type parent, the recombinant AAV (rAAV) system has continued to attract enormous interest primarily due to its unique features such as safety, high titers, broad host range, transduction of quiescent cells, and vector integration. Recently, rAAV-mediated in vivo gene transfers have demonstrated efficient long-term transduction (from 3 months to more than 1.5 years) and lack of cytotoxicity and cellular immune responses in the target tissues, especially in the CNS. Alternative approaches using rAAV plasmid DNA in nonviral gene delivery systems also generated promising results. Propelled by various efforts to improve the system, rAAV vectors will provide numerous opportunities to explore the potential therapeutic applications in humans.
Collapse
|
Review |
28 |
158 |
17
|
Xiao X, Shao S, Ding Y, Huang Z, Chou KC. Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 2005; 30:49-54. [PMID: 16044193 PMCID: PMC7087770 DOI: 10.1007/s00726-005-0225-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 06/04/2005] [Indexed: 11/18/2022]
Abstract
The avalanche of newly found protein sequences in the post-genomic era has motivated and challenged us to develop an automated method that can rapidly and accurately predict the localization of an uncharacterized protein in cells because the knowledge thus obtained can greatly speed up the process in finding its biological functions. However, it is very difficult to establish such a desired predictor by acquiring the key statistical information buried in a pile of extremely complicated and highly variable sequences. In this paper, based on the concept of the pseudo amino acid composition (Chou, K. C. PROTEINS: Structure, Function, and Genetics, 2001, 43: 246–255), the approach of cellular automata image is introduced to cope with this problem. Many important features, which are originally hidden in the long amino acid sequences, can be clearly displayed through their cellular automata images. One of the remarkable merits by doing so is that many image recognition tools can be straightforwardly applied to the target aimed here. High success rates were observed through the self-consistency, jackknife, and independent dataset tests, respectively.
Collapse
|
Journal Article |
20 |
153 |
18
|
Walsh CE, Liu JM, Xiao X, Young NS, Nienhuis AW, Samulski RJ. Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc Natl Acad Sci U S A 1992; 89:7257-61. [PMID: 1323131 PMCID: PMC49685 DOI: 10.1073/pnas.89.15.7257] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene therapy of severe hemoglobinopathies will require high-level expression of a transferred globin gene in erythroid cells. Distant regulatory elements flanking the beta-globin gene cluster, the locus control region, are needed for appropriate expression. We have explored the use of a human parvovirus, the adeno-associated virus (AAV), for globin gene transfer. The human A gamma-globin gene, linked to hypersensitivity site 2 from the locus control region of the beta-globin gene cluster, was subcloned into a plasmid (psub201) containing the AAV inverted terminal repeats. This construct was cotransfected with a helper plasmid containing trans-acting AAV genes into human 293 cells that had been infected with adenovirus. The recombinant AAV vector containing hypersensitivity site 2 stably introduced on average one or two unrearranged proviral copies into human K562 erythroleukemia cells. The transferred globin gene exhibited normal regulation upon hemin induction of erythroid maturation and was expressed at a level equivalent to a native chromosomal A gamma-globin gene.
Collapse
|
research-article |
33 |
146 |
19
|
Xiao X, Wu L, Stantchev TS, Feng YR, Ugolini S, Chen H, Shen Z, Riley JL, Broder CC, Sattentau QJ, Dimitrov DS. Constitutive cell surface association between CD4 and CCR5. Proc Natl Acad Sci U S A 1999; 96:7496-501. [PMID: 10377443 PMCID: PMC22114 DOI: 10.1073/pnas.96.13.7496] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1999] [Indexed: 11/18/2022] Open
Abstract
HIV-1 entry into cells involves formation of a complex between gp120 of the viral envelope glycoprotein (Env), a receptor (CD4), and a coreceptor. For most strains of HIV, this coreceptor is CCR5. Here, we provide evidence that CD4 is specifically associated with CCR5 in the absence of gp120 or any other receptor-specific ligand. The amount of CD4 coimmunoprecipitated with CCR5 was significantly higher than that with the other major HIV coreceptor, CXCR4, and in contrast to CXCR4 the CD4-CCR5 coimmunoprecipitation was not significantly increased by gp120. The CD4-CCR5 interaction probably takes place via the second extracellular loop of CCR5 and the first two domains of CD4. It can be inhibited by CCR5- and CD4-specific antibodies that interfere with HIV-1 infection, indicating a possible role in virus entry. These findings suggest a possible pathway of HIV-1 evolution and development of immunopathogenicity, a potential new target for antiretroviral drugs and a tool for development of vaccines based on Env-CD4-CCR5 complexes. The constitutive association of a seven-transmembrane-domain G protein-coupled receptor with another receptor also indicates new possibilities for cross-talk between cell surface receptors.
Collapse
|
research-article |
26 |
144 |
20
|
Monahan PE, Samulski RJ, Tazelaar J, Xiao X, Nichols TC, Bellinger DA, Read MS, Walsh CE. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther 1998; 5:40-9. [PMID: 9536263 DOI: 10.1038/sj.gt.3300548] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A recombinant adeno-associated virus (rAAV) vector carrying the human factor IX cDNA was tested for safety and therapeutic gene expression in a canine model of human hemophilia B. Intramuscular delivery of rAAV was chosen based on our previous work which described long-term (> 1.5 years) reporter gene expression in immunocompetent mice following direct muscle injection. For the current study, rAAV with the human factor IX (hF.IX) cDNA under the control of the cytomegalovirus (CMV) immediate-early promoter was constructed, and rAAV/hF.IX proved capable of transducing hemophilic dog primary fibroblast cultures in a dose-dependent fashion. Direct intramuscular injection of 2.5 x 10(12) rAAV/hF.IX virus particles into the hindlimbs of a hemophilia B dog was tolerated without bleeding or systemic reaction, and the animal was asymptomatic throughout the entire study. Transient reduction in the whole blood clotting time (WBCT) occurred during the first week, with the anticipated development of an antihuman F.IX inhibitor antibody which corresponded with the loss of coagulation correction. At 10 weeks after vector administration, immunohistochemical analysis of injected muscle confirmed continued hF.IX expression. Limited areas of focal lymphocytic infiltration and myofiber pathology were detected which directly correlated with positive antibody staining for helper adenovirus contamination. PCR tissue analysis revealed rAAV/hF.IX DNA solely in injected muscle tissue and adjacent lymph node, without dissemination to other organs (including gonads). This first large animal study suggests that intramuscular gene delivery using rAAV vectors is safe and supports continued development of this approach for gene therapy of human diseases, including hemophilia B.
Collapse
|
|
27 |
143 |
21
|
During MJ, Samulski RJ, Elsworth JD, Kaplitt MG, Leone P, Xiao X, Li J, Freese A, Taylor JR, Roth RH, Sladek JR, O'Malley KL, Redmond DE. In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther 1998; 5:820-7. [PMID: 9747462 DOI: 10.1038/sj.gt.3300650] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An adeno-associated virus (AAV) vector, expressing genes for human tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC), demonstrated significantly increased production of dopamine in 293 (human embryonic kidney) cells. This bicistronic vector was used to transduce striatal cells of six asymptomatic but dopamine-depleted monkeys which had been treated with the neurotoxin MPTP. Striatal cells were immunoreactive for the vector-encoded TH after stereotactic injection for periods up to 134 days, with biochemical effects consistent with dopamine biosynthetic enzyme expression. A subsequent experiment was carried out in six more severely depleted and parkinsonian monkeys. Several TH/aadc-treated monkeys showed elevated levels of dopamine near injection tracts after 2.5 months. Two monkeys that received a beta-galactosidase expressing vector showed no change in striatal dopamine. Behavioral changes could not be statistically related to the vector treatment groups. Toxicity was limited to transient fever in several animals and severe hyperactivity in one animal in the first days after injection with no associated histological evidence of inflammation. This study shows the successful transfection of primate neurons over a period up to 2.5 months with suggestive evidence of biochemical phenotypic effects and without significant toxicity. While supporting the idea of an in vivo gene therapy for Parkinson's disease, more consistent and longer lasting biochemical and behavioral effects will be necessary to establish the feasibility of this appraoch in a primate model of parkinsonism.
Collapse
|
|
27 |
137 |
22
|
Yang CC, Xiao X, Zhu X, Ansardi DC, Epstein ND, Frey MR, Matera AG, Samulski RJ. Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J Virol 1997; 71:9231-47. [PMID: 9371582 PMCID: PMC230226 DOI: 10.1128/jvi.71.12.9231-9247.1997] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human parvovirus adeno-associated virus (AAV) is unique in its ability to target viral integration to a specific site on chromosome 19 (ch-19). Recombinant AAV (rAAV) vectors retain the ability to integrate but have apparently lost this ability to target. In this report, we characterize the terminal-repeat-mediated integration for wild-type (wt), rAAV, and in vitro systems to gain a better understanding of these differences. Cell lines latent for either wt or rAAV were characterized by a variety of techniques, including PCR, Southern hybridization, and fluorescence in situ hybridization analysis. More than 40 AAV-rAAV integration junctions were cloned, sequenced, and then subjected to comparison and analysis. In both immortalized and normal diploid human cells, wt AAV targeted integration to ch-19. Integrated provirus structures consisted of head-to-tail tandem arrays with the majority of the junction sequences involving the AAV inverted terminal repeats (ITRs). No complete viral ITRs were directly observed. In some examples, the AAV p5 promoter sequence was found to be fused at the virus-cell junction. Data from dot blot analysis of PCR products were consistent with the occurrence of inversions of genomic and/or viral DNA sequences at the wt integration site. Unlike wt provirus junctions, rAAV provirus junctions mapped to a subset of non-ch-19 sequences. Southern analysis supported the integration of proviruses from two independent cell lines at the same locus on ch-2. In addition, provirus terminal repeat sequences existed in both the flip and flop orientations, with microhomology evident at the junctions. In all cases with the exception of the ITRs, the vector integrated intact. rAAV junction sequence data were consistent with the occurrence of genomic rearrangement by deletion and/or rearrangement-translocation at the integration locus. Finally, junctions formed in an in vitro system between several AAV substrates and the ch-19 target site were isolated and characterized. Linear AAV substrates typically utilized the end of the virus DNA substrate as the point of integration, whereas products derived from AAV terminal repeat hairpin structures in the presence or absence of Rep protein resembled AAV-ch-19 junctions generated in vivo. These results describing wt AAV, rAAV, and in vitro integration junctions suggest that the viral integration event itself is mediated by terminal repeat hairpin structures via nonviral cellular recombination pathways, with specificity for ch-19 in vivo requiring additional viral components. These studies should have an important impact on the use of rAAV vectors in human gene therapy.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Transformed
- Chromosome Mapping
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 2
- Cloning, Molecular
- DNA, Viral
- Dependovirus/genetics
- HeLa Cells
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Proviruses/genetics
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Virus Integration
Collapse
|
research-article |
28 |
132 |
23
|
van der Loo JC, Xiao X, McMillin D, Hashino K, Kato I, Williams DA. VLA-5 is expressed by mouse and human long-term repopulating hematopoietic cells and mediates adhesion to extracellular matrix protein fibronectin. J Clin Invest 1998; 102:1051-61. [PMID: 9727075 PMCID: PMC508972 DOI: 10.1172/jci3687] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibronectin (FN), an extracellular matrix protein, is involved in the adhesion and migration of hematopoietic cells and has been shown to enhance retroviral gene transfer into primitive hematopoietic cells by co-localization of target cells and retrovirus when used as a substrate in vitro. We have previously found that mouse hematopoietic stem cells could be transduced on a FN fragment that included the recognition sequence Arg-Gly-Asp (RGD), suggesting that stem cells may express the integrin very late antigen (VLA)-5. To address this, we investigated the binding of mouse and human hematopoietic cells to recombinant peptides that contained one or a combination of the three principle cell-binding domains of FN. These domains included the VLA-5- binding sequence RGD, the VLA-4-binding site CS1, and the high affinity heparin-binding domain. Here we show that mouse long-term in vivo repopulating stem cells, as well as primitive human NOD/SCID mouse repopulating cells, can bind extracellular matrix protein FN by using integrin VLA-5 in vitro. This binding is specific and can be inhibited by antibodies to VLA-5. In addition, preincubation of BM cells with peptide CH-296, which contains all three primary FN-binding domains, decreased the engraftment of cells in the bone marrow in vivo, while intravenous injection of the same peptide induced an increase of progenitor cells in the spleen. In summary, our data demonstrate that VLA-5 is expressed on primitive mouse and human hematopoietic cells and suggest that there may be significant cooperation between integrin receptors and proteoglycan molecules in the engraftment of bone marrow cells and hematopoietic cell adhesion in vivo.
Collapse
|
research-article |
27 |
131 |
24
|
Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 2007; 14:804-13. [PMID: 17344902 DOI: 10.1038/sj.gt.3302938] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone marrow cells are routinely accessed clinically for cartilage repair. This study was performed to determine whether adeno-associated virus (AAV) effectively transduces human bone marrow-derived mesenchymal stem cells (hMSC) in vitro, whether AAV infection interferes with hMSC chondrogenesis and whether AAV-transforming growth factor-beta-1 (TGF-beta1)-transduced hMSC can improve cartilage repair in vivo. Adult hMSC were transduced with AAV-green fluorescent protein (GFP) or AAV-transforming growth factor beta1 (TGF beta1) and studied in pellet cultures. For in vivo studies, AAV-GFP and AAV-TGF-beta1-transduced hMSCs were implanted into osteochondral defects of 21 athymic rats. GFP was detected using fluorescent microscopy. Cartilage repair was assessed using gross and histological analysis at 4, 8 and 12 weeks. In pellet culture, GFP expression was visualized in situ through 21 days in vitro. In vivo GFP transgene expression was observed by in situ fluorescent surface imaging in 100% of GFP implanted defects at 2 , 67% at 8 and 17% at 12 weeks. Improved cartilage repair was observed in osteochondral defects implanted with AAV-TGF-beta1-transduced hMSC at 12 weeks (P=0.0047). These results show that AAV is a suitable vector for gene delivery to improve the cartilage repair potential of human mesenchymal stem cells.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
129 |
25
|
Hug P, Lin HM, Korte T, Xiao X, Dimitrov DS, Wang JM, Puri A, Blumenthal R. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J Virol 2000; 74:6377-85. [PMID: 10864648 PMCID: PMC112144 DOI: 10.1128/jvi.74.14.6377-6385.2000] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment of human osteosarcoma cells, expressing CD4 and various chemokine receptors, with the glucosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), blocked target membrane glycosphingolipid (GSL) biosynthesis and reduced the susceptibility of cells to infection and fusion mediated by envelope glycoproteins from a variety of human immunodeficiency virus type 1 (HIV-1) isolates that utilize CXCR4 and/or CCR5. PPMP treatment of the cell lines did not significantly change the cell surface expression of CD4, CXCR4, and/or CCR5, nor did it alter the chemokine receptor association with CD4. PPMP-treated cells exhibited no changes in chemokine-induced Ca(2+) mobilization and chemotaxis. However, massive envelope glycoprotein conformational changes triggered by CD4 and the appropriate chemokine receptor on the target membrane were inhibited when the target cells were treated with PPMP. Addition of various purified GSLs to PPMP-treated target cells showed that for all isolates tested, globotriaosylceramide (Gb3) was the most potent GSL in restoring the fusion susceptibility of target cells with cells expressing HIV-1 envelope glycoproteins; addition of the monosialoganglioside GM3 yielded a slight enhancement of fusion susceptibility. Our data are consistent with the notion that a limited number of specific GSL species serve as crucial elements in organizing gp120-gp41, CD4, and an appropriate chemokine receptor into a membrane fusion complex.
Collapse
|
research-article |
25 |
124 |