1
|
Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A 1992; 89:5847-51. [PMID: 1631067 PMCID: PMC49394 DOI: 10.1073/pnas.89.13.5847] [Citation(s) in RCA: 624] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have developed an in vitro method for amplifying a large fraction of the DNA sequences present in a single haploid cell by repeated primer extensions using a mixture of 15-base random oligonucleotides. We studied 12 genetic loci and estimate that the probability of amplifying any sequence in the genome to a minimum of 30 copies is not less than 0.78 (95% confidence). Whole genome amplification beginning with a single cell, or other samples with very small amounts of DNA, has significant implications for multipoint mapping by sperm or oocyte typing and possibly for genetic disease diagnosis, forensics, and the analysis of ancient DNA samples.
Collapse
|
research-article |
33 |
624 |
2
|
Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X, Witte DP. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 1997; 14:2175-88. [PMID: 9174053 DOI: 10.1038/sj.onc.1201062] [Citation(s) in RCA: 387] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anaplastic Lymphoma Kinase (ALK) was originally identified as a member of the insulin receptor subfamily of receptor tyrosine kinases that acquires transforming capability when truncated and fused to nucleophosmin (NPM) in the t(2;5) chromosomal rearrangement associated with non-Hodgkin's lymphoma, but further insights into its normal structure and function are lacking. Here, we characterize a full-length normal human ALK cDNA and its product, and determine the pattern of expression of its murine homologue in embryonic and adult tissues as a first step toward the functional assessment of the receptor. Analysis of the 6226 bp ALK cDNA identified an open reading frame encoding a 1620-amino acid (aa) protein of predicted mass approximately 177 kDa that is most closely related to leukocyte tyrosine kinase (LTK), the two exhibiting 57% aa identity and 71% similarity over their region of overlap. Biochemical analysis demonstrated that the approximately 177 kDa ALK polypeptide core undergoes co-translational N-linked glycosylation, emerging in its mature form as a 200 kDa single chain receptor. Surface labeling studies indicated that the 200 kDa glycoprotein is exposed at the cell membrane, consistent with the prediction that ALK serves as the receptor for an unidentified ligand(s). In situ hybridization studies revealed Alk expression beginning on embryonic day 11 and persisting into the neonatal and adult periods of development. Alk transcripts were confined to the nervous system and included several thalamic and hypothalamic nuclei; the trigeminal, facial, and acoustic cranial ganglia; the anterior horns of the spinal cord in the region of the developing motor neurons; the sympathetic chain; and the ganglion cells of the gut. Thus, ALK is a novel orphan receptor tyrosine kinase that appears to play an important role in the normal development and function of the nervous system.
Collapse
MESH Headings
- Amino Acid Sequence
- Anaplastic Lymphoma Kinase
- Animals
- Chromosomes, Human, Pair 2
- Cloning, Molecular
- DNA, Complementary
- Gene Expression Regulation, Developmental
- Glycosylation
- Humans
- In Situ Hybridization
- Lymphoma, Non-Hodgkin/genetics
- Mice
- Molecular Sequence Data
- Muscle, Skeletal/pathology
- Nervous System/embryology
- Nervous System Physiological Phenomena
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Rhabdomyosarcoma/genetics
- Rhabdomyosarcoma/pathology
- Sequence Analysis
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
|
|
28 |
387 |
3
|
Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU. In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 1999; 158:265-78. [PMID: 10415135 DOI: 10.1006/exnr.1999.7098] [Citation(s) in RCA: 369] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation and expansion of human neural progenitor cells have important potential clinical applications, because these cells may be used as graft material in cell therapies to regenerate tissue and/or function in patients with central nervous system (CNS) disorders. This paper describes a continuously dividing multipotent population of progenitor cells in the human embryonic forebrain that can be propagated in vitro. These cells can be maintained and expanded using a serum-free defined medium containing basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), and epidermal growth factor (EGF). Using these three factors, the cell cultures expand and remain multipotent for at least 1 year in vitro. This period of expansion results in a 10(7)-fold increase of this heterogeneous population of cells. Upon differentiation, they form neurons, astrocytes, and oligodendrocytes, the three main phenotypes in the CNS. Moreover, GABA-immunoreactive and tyrosine hydroxylase-immunoreactive neurons can be identified. These results demonstrate the feasibility of long-term in vitro expansion of human neural progenitor cells. The advantages of such a population of neural precursors for allogeneic transplantation include the ability to provide an expandable, well-characterized, defined cell source which can form specific neuronal or glial subtypes.
Collapse
|
|
26 |
369 |
4
|
Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface 2017; 14:20160877. [PMID: 28202590 PMCID: PMC5332573 DOI: 10.1098/rsif.2016.0877] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional multicellular spheroids (MCSs) have a complex architectural structure, dynamic cell-cell/cell-matrix interactions and bio-mimicking in vivo microenvironment. As a fundamental building block for tissue reconstruction, MCSs have emerged as a powerful tool to narrow down the gap between the in vitro and in vivo model. In this review paper, we discussed the structure and biology of MCSs and detailed fabricating methods. Among these methods, the approach in microfluidics with hydrogel support for MCS formation is promising because it allows essential cell-cell/cell-matrix interactions in a confined space.
Collapse
|
Review |
8 |
328 |
5
|
Parenti A, Morbidelli L, Cui XL, Douglas JG, Hood JD, Granger HJ, Ledda F, Ziche M. Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase1/2 activation in postcapillary endothelium. J Biol Chem 1998; 273:4220-6. [PMID: 9461619 DOI: 10.1074/jbc.273.7.4220] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We recently demonstrated that nitric oxide (NO) significantly contributes to the mitogenic effect of vascular endothelial growth factor (VEGF), suggesting a role for the NO pathway in the signaling cascade following kinase-derivative receptor activation in vascular endothelium. The aim of this study was to investigate the intracellular pathways linked to VEGF/NO-induced endothelial cell proliferation. We assessed the activity of the mitogen-activated protein kinase (MAPK) that is specifically activated by growth factors, extracellular-regulated kinase (ERK1/2), on cultured microvascular endothelium isolated from coronary postcapillary venules. ERK1/2 was immunoprecipitated, and its activity was assessed with an immunocomplex kinase assay. In endothelial cells exposed for 5 min to the NO donor drug sodium nitroprusside at a concentration of 100 microM, ERK1/2 activity significantly increased. VEGF produced a time- and concentration-dependent activation of ERK1/2. Maximal activity was obtained after 5 min of stimulation at a concentration of 10 ng/ml. The specific MAPK kinase inhibitor PD 98059 abolished ERK1/2 activation and endothelial cell proliferation in a concentration-dependent manner in response to VEGF and sodium nitroprusside. The NO synthase inhibitor Nomega-monomethyl-L-arginine, as well as the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, blocked the activation of ERK1/2 induced by VEGF, suggesting that NO and cGMP contributed to the VEGF-dependent ERK1/2 activation. These results demonstrate for the first time that kinase-derivative receptor activation triggers the NO synthase/guanylate cyclase pathway to activate the MAPK cascade and substantiates the hypothesis that the activation of ERK1/2 is necessary for VEGF-induced endothelial cell proliferation.
Collapse
|
|
27 |
324 |
6
|
Zhang Q, Siebert R, Yan M, Hinzmann B, Cui X, Xue L, Rakestraw KM, Naeve CW, Beckmann G, Weisenburger DD, Sanger WG, Nowotny H, Vesely M, Callet-Bauchu E, Salles G, Dixit VM, Rosenthal A, Schlegelberger B, Morris SW. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 1999; 22:63-8. [PMID: 10319863 DOI: 10.1038/8767] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphomas most frequently involve the gastrointestinal tract and are the most common subset of extranodal non-Hodgkin lymphoma (NHL). Here we describe overexpression of BCL10, a novel apoptotic signalling gene that encodes an amino-terminal caspase recruitment domain (CARD), in MALT lymphomas due to the recurrent t(1;14)(p22;q32). BCL10 cDNAs from t(1;14)-positive MALT tumours contained a variety of mutations, most resulting in truncations either in or carboxy terminal to the CARD. Wild-type BCL10 activated NF-kappaB but induced apoptosis of MCF7 and 293 cells. CARD-truncation mutants were unable to induce cell death or activate NF-kappaB, whereas mutants with C-terminal truncations retained NF-kappaB activation but did not induce apoptosis. Mutant BCL10 overexpression might have a twofold lymphomagenic effect: loss of BCL10 pro-apoptosis may confer a survival advantage to MALT B-cells, and constitutive NF-kappaB activation may provide both anti-apoptotic and proliferative signals mediated via its transcriptional targets.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- B-Cell CLL-Lymphoma 10 Protein
- Binding Sites
- Blotting, Northern
- Caspases/metabolism
- Cell Death/genetics
- Cell Line
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 14/genetics
- DNA/chemistry
- DNA/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- In Situ Hybridization, Fluorescence
- Lymphoma, B-Cell, Marginal Zone/genetics
- Male
- Molecular Sequence Data
- Mutation
- NF-kappa B/metabolism
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Structure, Tertiary
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
|
|
26 |
283 |
7
|
Jenney FE, Verhagen MF, Cui X, Adams MW. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 1999; 286:306-9. [PMID: 10514376 DOI: 10.1126/science.286.5438.306] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Superoxide reductase from the hyperthermophilic anaerobe Pyrococcus furiosus uses electrons from reduced nicotinamide adenine dinucleotide phosphate, by way of rubredoxin and an oxidoreductase, to reduce superoxide to hydrogen peroxide, which is then reduced to water by peroxidases. Unlike superoxide dismutase, the enzyme that protects aerobes from the toxic effects of oxygen, SOR does not catalyze the production of oxygen from superoxide and therefore confers a selective advantage on anaerobes. Superoxide reductase and associated proteins are catalytically active 80 degrees C below the optimum growth temperature (100 degrees C) of P. furiosus, conditions under which the organism is likely to be exposed to oxygen.
Collapse
|
|
26 |
282 |
8
|
Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 56:261-72. [PMID: 11340598 DOI: 10.1002/1097-4636(200108)56:2<261::aid-jbm1094>3.0.co;2-i] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interface between micromachined neural microelectrodes and neural tissue plays an important role in chronic in vivo recording. Electrochemical polymerization was used to optimize the surface of the metal electrode sites. Electrically conductive polymers (polypyrrole) combined with biomolecules having cell adhesion functionality were deposited with great precision onto microelectrode sites of neural probes. The biomolecules used were a silk-like polymer having fibronectin fragments (SLPF) and nonapeptide CDPGYIGSR. The existence of protein polymers and peptides in the coatings was confirmed by reflective microfocusing Fourier transform infrared spectroscopy (FTIR). The morphology of the coating was rough and fuzzy, providing a high density of bioactive sites for interaction with neural cells. This high interfacial area also helped to lower the impedance of the electrode site and, consequently, to improve the signal transport. Impedance spectroscopy showed a lowered magnitude and phase of impedance around the biologically relevant frequency of 1 kHz. Cyclic voltammetry demonstrated the intrinsic redox reaction of the doped polypyrrole and the increased charge capacity of the coated electrodes. Rat glial cells and human neuroblastoma cells were seeded and cultured on neural probes with coated and uncoated electrodes. Glial cells appeared to attach better to polypyrrole/SLPF-coated electrodes than to uncoated gold electrodes. Neuroblastoma cells grew preferentially on and around the polypyrrole/CDPGYIGSR-coated electrode sites while the polypyrrole/CH(3)COO(-)-coated sites on the same probe did not show a preferential attraction to the cells. These results indicate that we can adjust the chemical composition, morphology, electronic transport, and bioactivity of polymer coatings on electrode surfaces on a multichannel micromachined neural probe by controlling electrochemical deposition conditions.
Collapse
|
Comparative Study |
24 |
280 |
9
|
Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001; 51:357-363. [PMID: 11321080 DOI: 10.1099/00207713-51-2-357] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actinomycete strain YIM 90002T (= CCTCC 99003T = CCRC 16284T) was isolated from a soil sample collected from a salt lake in the west of China. The aerial mycelium of this organism is well developed but not fragmented and, at maturity, forms short chains of spores. Spores in short chains are oval- to rod-shaped and have wrinkled surfaces. Substrate mycelium is branched with non-fragmenting hyphae and forms single oval to round spores borne on sporophores or dichotomously branching sporophores. Single spores have wrinkled surfaces. Single spores and spores in short chains are non-motile. Strain YIM 90002T contains meso-diaminopimelic acid, DD-diaminopimelic acid, glycine, lysine and aspartic acid in its cell wall and has glucose, galactose, ribose, xylose, arabinose and mannose as whole-cell sugars (no diagnostic sugars). The phospholipids are phosphatidylglycerol, phosphatidylinositol and phosphatidylethanolamine. The major menaquinones are MK-9(H6), MK-10(H2) and MK-10(H4). Phylogenetic data indicate that this strain belongs to the family Nocardiopsaceae. The morphological and physiological characteristics and chemotaxonomic and phylogenetic data for this strain differ from those of previously described actinomycetes. Therefore, a new genus, Streptimonospora, is proposed for this organism; the type species of the genus is Streptimonospora salina gen. nov., sp. nov., and the type strain of S. salina is strain YIM 90002T.
Collapse
|
|
24 |
254 |
10
|
Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis. THE PLANT CELL 1999; 11:2075-86. [PMID: 10559435 PMCID: PMC144118 DOI: 10.1105/tpc.11.11.2075] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The catalytic subunit of cellulose synthase is shown to be associated with the putative cellulose-synthesizing complex (rosette terminal complex [TC]) in vascular plants. The catalytic subunit domain of cotton cellulose synthase was cloned using a primer based on a rice expressed sequence tag (D41261) from which a specific primer was constructed to run a polymerase chain reaction that used a cDNA library from 24 days postanthesis cotton fibers as a template. The catalytic region of cotton cellulose synthase was expressed in Escherichia coli, and polyclonal antisera were produced. Colloidal gold coupled to goat anti-rabbit secondary antibodies provided a tag for visualization of the catalytic region of cellulose synthase during transmission electron microscopy. With a freeze-fracture replica labeling technique, the antibodies specifically localized to rosette TCs in the plasma membrane on the P-fracture face. Antibodies did not specifically label any structures on the E-fracture face. Significantly, a greater number of immune probes labeled the rosette TCs (i.e., gold particles were 20 nm or closer to the edge of the rosette TC) than did preimmune probes. These experiments confirm the long-held hypothesis that cellulose synthase is a component of the rosette TC in vascular plants, proving that the enzyme complex resides within the structure first described by freeze fracture in 1980. In addition, this study provides independent proof that the CelA gene is in fact one of the genes for cellulose synthase in vascular plants.
Collapse
|
research-article |
26 |
240 |
11
|
Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X, Bouman D, Li Y, Mehta PK, Nizetic D, Kaneko Y, Chan GC, Chan LC, Squire J, Scherer SW, Hitzler JK. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 2001; 28:220-1. [PMID: 11431691 DOI: 10.1038/90054] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
t(1;22) is the principal translocation of acute megakaryoblastic leukemias. Here we show this chromosomal rearrangement to result in the fusion of two novel genes, RNA-binding motif protein-15 (RBM15), an RNA recognition motif-encoding gene with homology to Drosophila spen, and Megakaryoblastic Leukemia-1 (MKL1), a gene encoding an SAP (SAF-A/B, Acinus and PIAS) DNA-binding domain.
Collapse
|
|
24 |
221 |
12
|
Abstract
The T cytoplasm of maize serves as a model for the nuclear restoration of cytoplasmic male sterility. The rf2 gene, one of two nuclear genes required for fertility restoration in male-sterile T-cytoplasm (cmsT) maize, was cloned. The protein predicted by the rf2 sequence is a putative aldehyde dehydrogenase, which suggests several mechanisms that might explain Rf2-mediated fertility restoration in cmsT maize. Aldehyde dehydrogenase may be involved in the detoxification of acetaldehyde produced by ethanolic fermentation during pollen development, may play a role in energy metabolism, or may interact with URF13, the mitochondrial protein associated with male sterility in cmsT maize.
Collapse
|
|
29 |
209 |
13
|
Powell MT, Hou DR, Perry MC, Cui X, Burgess K. Chiral imidazolylidine ligands for asymmetric hydrogenation of aryl alkenes. J Am Chem Soc 2001; 123:8878-9. [PMID: 11535106 DOI: 10.1021/ja016011p] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
24 |
192 |
14
|
Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater 2020; 9:e1901648. [PMID: 32352649 DOI: 10.1002/adhm.201901648] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.
Collapse
|
Review |
5 |
181 |
15
|
Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH, Reizer J. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 1995; 270:4822-39. [PMID: 7876255 DOI: 10.1074/jbc.270.9.4822] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two rpoN-linked delta Tn10-kan insertions suppress the conditionally lethal erats allele. One truncates rpoN while the second disrupts another gene (ptsN) in the rpoN operon and does not affect classical nitrogen regulation. Neither alter expression of era indicating that suppression is post-translational. Plasmid clones of ptsN prevent suppression by either disruption mutation indicating that this gene is important for lethality caused by erats. rpoN and six neighboring genes were sequenced and compared with sequences in the database. Two of these genes encode proteins homologous to Enzyme IIAFru and HPr of the phosphoenolpyruvate:sugar phosphotransferase system. We designate these proteins IIANtr (ptsN) and NPr (npr). Purified IIANtr and NPr exchange phosphate appropriately with Enzyme I, HPr, and Enzyme IIA proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Several sugars and tricarboxylic acid cycle intermediates inhibited growth of the ptsN disruption mutant on medium containing an amino acid or nucleoside base as a combined source of nitrogen, carbon, and energy. This growth inhibition was relieved by supplying the ptsN gene or ammonium salts but was not aleviated by altering levels of exogenously supplied cAMP. These results support our previous proposal of a novel mechanism linking carbon and nitrogen assimilation and relates IIANtr to the unknown process regulated by the essential GTPase Era.
Collapse
|
|
30 |
180 |
16
|
Klugherz BD, Jones PL, Cui X, Chen W, Meneveau NF, DeFelice S, Connolly J, Wilensky RL, Levy RJ. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat Biotechnol 2000; 18:1181-4. [PMID: 11062438 DOI: 10.1038/81176] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expandable intra-arterial stents are widely used for treating coronary disease. We hypothesized that local gene delivery could be achieved with the controlled release of DNA from a polymer coating on an expandable stent. Our paper reports the first successful transfection in vivo using a DNA controlled-release stent. Green fluorescent protein (GFP) plasmid DNA within emulsion-coated stents was efficiently expressed in cell cultures (7.9% +/- 0.7% vs. 0.6% +/- 0.2% control, p < 0.001) of rat aortic smooth muscle cells. In a series of pig stent-angioplasty studies, GFP expression was observed in all coronary arteries (normal, nondiseased) in the DNA-treated group, but not in control arteries. GFP plasmid DNA in the arterial wall was confirmed by PCR, and GFP presence in the pig coronaries was confirmed by immunohistochemistry. Thus, DNA-eluting stents are capable of arterial transfection, and could be useful as delivery systems for candidate vectors for gene therapy of cardiovascular diseases.
Collapse
|
|
25 |
178 |
17
|
Cui X, De Vivo I, Slany R, Miyamoto A, Firestein R, Cleary ML. Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet 1998; 18:331-7. [PMID: 9537414 DOI: 10.1038/ng0498-331] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several proteins that contribute to epigenetic mechanisms of gene regulation contain a characteristic motif of unknown function called the SET (Suvar3-9, Enhancer-of-zeste, Trithorax) domain. We have demonstrated that SET domains mediate highly conserved interactions with a specific family of proteins that display similarity with dual-specificity phosphatases (dsPTPases). These include myotubularin, the gene of which is mutated in a subset of patients with X-linked myotubular myopathy, and Sbf1, a newly isolated homologue of myotubularin. In contrast with myotubularin, Sbf1 lacks a functional catalytic domain which dephosphorylates phospho-tyrosine and serine-containing peptides in vitro. Competitive interference of endogenous SET domain-dsPTPase interactions by forced expression of Sbf1 induced oncogenic transformation of NIH 3T3 fibroblasts and impaired the in vitro differentiation of C2 myoblast cells. We conclude that myotubularin-type phosphatases link SET-domain containing components of the epigenetic regulatory machinery with signalling pathways involved in growth and differentiation.
Collapse
|
|
27 |
169 |
18
|
Eyles DW, Feron F, Cui X, Kesby JP, Harms LH, Ko P, McGrath JJ, Burne THJ. Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 2009; 34 Suppl 1:S247-S257. [PMID: 19500914 DOI: 10.1016/j.psyneuen.2009.04.015] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/07/2009] [Accepted: 04/26/2009] [Indexed: 01/24/2023]
Abstract
There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that vitamin D acts as a neurosteroid with direct effects on brain development.
Collapse
|
Review |
16 |
168 |
19
|
Liu F, Cui X, Horner HT, Weiner H, Schnable PS. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. THE PLANT CELL 2001; 13:1063-78. [PMID: 11340182 PMCID: PMC135560 DOI: 10.1105/tpc.13.5.1063] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2000] [Accepted: 03/04/2001] [Indexed: 05/18/2023]
Abstract
Some plant cytoplasms express novel mitochondrial genes that cause male sterility. Nuclear genes that disrupt the accumulation of the corresponding mitochondrial gene products can restore fertility to such plants. The Texas (T) cytoplasm mitochondrial genome of maize expresses a novel protein, URF13, which is necessary for T cytoplasm-induced male sterility. Working in concert, functional alleles of two nuclear genes, rf1 and rf2, can restore fertility to T cytoplasm plants. Rf1 alleles, but not Rf2 alleles, reduce the accumulation of URF13. Hence, Rf2 differs from typical nuclear restorers in that it does not alter the accumulation of the mitochondrial protein necessary for T cytoplasm-induced male sterility. This study established that the rf2 gene encodes a soluble protein that accumulates in the mitochondrial matrix. Three independent lines of evidence establish that the RF2 protein is an aldehyde dehydrogenase (ALDH). The finding that T cytoplasm plants that are homozygous for the rf2-R213 allele are male sterile but accumulate normal amounts of RF2 protein that lacks normal mitochondrial (mt) ALDH activity provides strong evidence that rf2-encoded mtALDH activity is required to restore male fertility to T cytoplasm maize. Detailed genetic analyses have established that the rf2 gene also is required for anther development in normal cytoplasm maize. Hence, it appears that the rf2 gene was recruited recently to function as a nuclear restorer. ALDHs typically have very broad substrate specificities. Indeed, the RF2 protein is capable of oxidizing at least three aldehydes. Hence, the specific metabolic pathway(s) within which the rf2-encoded mtALDH acts remains to be discovered.
Collapse
|
research-article |
24 |
159 |
20
|
Cui XL, Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci U S A 1997; 94:3771-6. [PMID: 9108053 PMCID: PMC20516 DOI: 10.1073/pnas.94.8.3771] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1996] [Accepted: 02/10/1997] [Indexed: 02/04/2023] Open
Abstract
In kidney epithelial cells, arachidonic acid and other fatty acids are important signal transduction molecules for G protein-coupled receptors. We now demonstrate that arachidonic acid induced a time- and dose-dependent activation of JNK, a member of the mitogen-activated protein kinase family, as assessed by phosphorylation of the transcription factor ATF-2. Increments in JNK activity were detectable at 5 microM arachidonic acid and plateaued at 30 microM. Activation was specific to arachidonic acid and linoleic acid, since other fatty acids of the n - 3 and n - 6 series and/or various degrees of saturation were without effect. Specific inhibitors of cyclooxygenase-, lipoxygenase-, and cytochrome P450-dependent metabolism did not affect arachidonic acid-induced JNK activity. We further demonstrated that the free radical scavenger N-acetylcysteine blocked arachidonic acid-induced JNK activation, while H(2)O(2), a reactive oxidative molecule, activated JNK in a dose-dependent manner, providing additional support for a redox mechanism. Moreover, arachidonic acid activated NADPH oxidase (EC 1.6.-.-, EC 1.6.99.-) in a dose-dependent manner, and the potency of superoxide generation paralleled that of JNK activation by other fatty acids. We conclude that in kidney epithelial cells arachidonic acid activates JNK by means of NADPH oxidase and superoxide generation, independent of eicosanoid biosynthesis.
Collapse
|
research-article |
28 |
141 |
21
|
Li X, Routt SM, Xie Z, Cui X, Fang M, Kearns MA, Bard M, Kirsch DR, Bankaitis VA. Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth. Mol Biol Cell 2000; 11:1989-2005. [PMID: 10848624 PMCID: PMC14898 DOI: 10.1091/mbc.11.6.1989] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24-65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro. Yet, SFH proteins sharing low primary sequence similarity with Sec14p (i.e., Sfh2p, Sfh3p, Sfh4p, and Sfh5p) represent novel phosphatidylinositol transfer proteins (PITPs) that exhibit phosphatidylinositol- but not phosphatidylcholine-transfer activity in vitro. Moreover, increased expression of Sfh2p, Sfh4p, or Sfh5p rescues sec14-associated growth and secretory defects in a phospholipase D (PLD)-sensitive manner. Several independent lines of evidence further demonstrate that SFH PITPs are collectively required for efficient activation of PLD in vegetative cells. These include a collective requirement for SFH proteins in Sec14p-independent cell growth and in optimal activation of PLD in Sec14p-deficient cells. Consistent with these findings, Sfh2p colocalizes with PLD in endosomal compartments. The data indicate that SFH gene products cooperate with "bypass-Sec14p" mutations and PLD in a complex interaction through which yeast can adapt to loss of the essential function of Sec14p. These findings expand the physiological repertoire of PITP function in yeast and provide the first in vivo demonstration of a role for specific PITPs in stimulating activation of PLD.
Collapse
|
research-article |
25 |
132 |
22
|
Cui X, Pelekanos M, Liu PY, Burne THJ, McGrath JJ, Eyles DW. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience 2013; 236:77-87. [PMID: 23352937 DOI: 10.1016/j.neuroscience.2013.01.035] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 01/12/2023]
Abstract
There is growing evidence that vitamin D is a neuroactive steroid capable of regulating multiple pathways important for both brain development and mature brain function. In particular, there is evidence from rodent models that prenatal vitamin D deficiency alters the development of dopaminergic pathways and this disruption is associated with altered behavior and neurochemistry in the adult brain. Although the presence of the vitamin D receptor (VDR) has been noted in the human substantia nigra, there is a lack of direct evidence showing that VDR is present in dopaminergic cells. Here we confirm that the VDR is present in the nucleus of tyrosine hydroxylase (TH)-positive neurons in both the human and rat substantia nigra, and it emerges early in development in the rat, between embryonic day 12 (E12) and E15. Consistent evidence based on immunohistochemistry, real-time PCR and western blot confirmed a pattern of increasing VDR expression in the rat midbrain until weaning. The nuclear expression of VDR in TH-positive neurons during critical periods of brain development suggests that alterations in early life vitamin D status may influence the orderly development of dopaminergic neurons.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
132 |
23
|
Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chem Rev 2020; 120:10662-10694. [DOI: 10.1021/acs.chemrev.9b00812] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
5 |
125 |
24
|
Han B, Bhowmick N, Qu Y, Chung S, Giuliano AE, Cui X. FOXC1: an emerging marker and therapeutic target for cancer. Oncogene 2017; 36:3957-3963. [PMID: 28288141 PMCID: PMC5652000 DOI: 10.1038/onc.2017.48] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
The Forkhead box C1 (FOXC1) transcription factor is involved in normal embryonic development and regulates the development and function of many organs. Most recently, a large body of literature has shown that FOXC1 plays a critical role in tumor development and metastasis. Clinical studies have demonstrated that elevated FOXC1 expression is associated with poor prognosis in many cancer subtypes, such as basal-like breast cancer (BLBC). FOXC1 is highly and specifically expressed in BLBC as opposed to other breast cancer subtypes. Its functions in breast cancer have been extensively explored. This review will summarize current knowledge on the function and regulation of FOXC1 in tumor development and progression with a focus on BLBC as well as the implications of these new findings in cancer diagnosis and treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
116 |
25
|
Tang J, Cui X, Caranasos TG, Hensley MT, Vandergriff AC, Hartanto Y, Shen D, Zhang H, Zhang J, Cheng K. Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction. ACS NANO 2017; 11:9738-9749. [PMID: 28929735 PMCID: PMC5656981 DOI: 10.1021/acsnano.7b01008] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/01/2017] [Indexed: 05/20/2023]
Abstract
Stem cell transplantation is currently implemented clinically but is limited by low retention and engraftment of transplanted cells and the adverse effects of inflammation and immunoreaction when allogeneic or xenogeneic cells are used. Here, we demonstrate the safety and efficacy of encapsulating human cardiac stem cells (hCSCs) in thermosensitive poly(N-isopropylacrylamine-co-acrylic acid) or P(NIPAM-AA) nanogel in mouse and pig models of myocardial infarction (MI). Unlike xenogeneic hCSCs injected in saline, injection of nanogel-encapsulated hCSCs does not elicit systemic inflammation or local T cell infiltrations in immunocompetent mice. In mice and pigs with acute MI, injection of encapsulated hCSCs preserves cardiac function and reduces scar sizes, whereas injection of hCSCs in saline has an adverse effect on heart healing. In conclusion, thermosensitive nanogels can be used as a stem cell carrier: the porous and convoluted inner structure allows nutrient, oxygen, and secretion diffusion but can prevent the stem cells from being attacked by immune cells.
Collapse
|
research-article |
8 |
114 |