1
|
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspock U, Aspock H, Bartel D, Blanke A, Berger S, Bohm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schutte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X. Phylogenomics resolves the timing and pattern of insect evolution. Science 2014; 346:763-7. [DOI: 10.1126/science.1257570] [Citation(s) in RCA: 1672] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
11 |
1672 |
2
|
Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A 2000; 97:6728-33. [PMID: 10841570 PMCID: PMC18719 DOI: 10.1073/pnas.97.12.6728] [Citation(s) in RCA: 791] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A new type of self-assembling peptide (sapeptide) scaffolds that serve as substrates for neurite outgrowth and synapse formation is described. These peptide-based scaffolds are amenable to molecular design by using chemical or biotechnological syntheses. They can be tailored to a variety of applications. The sapeptide scaffolds are formed through the spontaneous assembly of ionic self-complementary beta-sheet oligopeptides under physiological conditions, producing a hydrogel material. The scaffolds can support neuronal cell attachment and differentiation as well as extensive neurite outgrowth. Furthermore, they are permissive substrates for functional synapse formation between the attached neurons. That primary rat neurons form active synapses on such scaffold surfaces in situ suggests these scaffolds could be useful for tissue engineering applications. The buoyant sapeptide scaffolds with attached cells in culture can be transported readily from one environment to another. Furthermore, these peptides did not elicit a measurable immune response or tissue inflammation when introduced into animals. These biological materials created through molecular design and self assembly may be developed as a biologically compatible scaffold for tissue repair and tissue engineering.
Collapse
|
research-article |
25 |
791 |
3
|
Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 2001; 286:944-53. [PMID: 11509059 DOI: 10.1001/jama.286.8.944] [Citation(s) in RCA: 571] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Several nutrients have been shown to influence immunologic and inflammatory responses in humans. Whether these effects translate into an improvement in clinical outcomes in critically ill patients remains unclear. OBJECTIVE To examine the relationship between enteral nutrition supplemented with immune-enhancing nutrients and infectious complications and mortality rates in critically ill patients. DATA SOURCES The databases of MEDLINE, EMBASE, Biosis, and CINAHL were searched for articles published from 1990 to 2000. Additional data sources included the Cochrane Controlled Trials Register from 1990 to 2000, personal files, abstract proceedings, and relevant reference lists of articles identified by database review. STUDY SELECTION A total of 326 titles, abstracts, and articles were reviewed. Primary studies were included if they were randomized trials of critically ill or surgical patients that evaluated the effect of enteral nutrition supplemented with some combination of arginine, glutamine, nucleotides, and omega-3 fatty acids on infectious complication and mortality rates compared with standard enteral nutrition, and included clinically important outcomes, such as mortality. DATA EXTRACTION Methodological quality of individual studies was scored and necessary data were abstracted in duplicate and independently. DATA SYNTHESIS Twenty-two randomized trials with a total of 2419 patients compared the use of immunonutrition with standard enteral nutrition in surgical and critically ill patients. With respect to mortality, immunonutrition was associated with a pooled risk ratio (RR) of 1.10 (95% confidence interval [CI], 0.93-1.31). Immunonutrition was associated with lower infectious complications (RR, 0.66; 95% CI, 0.54-0.80). Since there was significant heterogeneity across studies, we examined several a priori subgroup analyses. We found that studies using commercial formulas with high arginine content were associated with a significant reduction in infectious complications and a trend toward a lower mortality rate compared with other immune-enhancing diets. Studies of surgical patients were associated with a significant reduction in infectious complication rates compared with studies of critically ill patients. In studies of critically ill patients, studies with a high-quality score were associated with increased mortality and a significant reduction in infectious complication rates compared with studies with a low-quality score. CONCLUSION Immunonutrition may decrease infectious complication rates but it is not associated with an overall mortality advantage. However, the treatment effect varies depending on the intervention, the patient population, and the methodological quality of the study.
Collapse
|
Meta-Analysis |
24 |
571 |
4
|
Vinson JA, Su X, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:5315-21. [PMID: 11714322 DOI: 10.1021/jf0009293] [Citation(s) in RCA: 521] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The free and bound phenols have been measured in 20 fruits commonly consumed in the American diet. Phenols were measured colorimetrically using the Folin-Ciocalteu reagent with catechin as the standard after correction for ascorbic acid contribution. On a fresh weight basis, cranberry had the highest total phenols, and was distantly followed by red grape. Free and total phenol quality in the fruits was analyzed by using the inhibition of lower density lipoprotein oxidation promoted by cupric ion. Ascorbate had only a minor contribution to the antioxidants in fruits with the exception of melon, nectarine, orange, white grape, and strawberry. The fruit extracts' antioxidant quality was better than the vitamin antioxidants and most pure phenols, suggesting synergism among the antioxidants in the mixture. Using our assay, fruits had significantly better quantity and quality of phenol antioxidants than vegetables. Fruits, specifically apples and cranberries, have phenol antioxidants that can enrich lower density lipoproteins and protect them from oxidation. The average per capita consumption of fruit phenols in the U.S. is estimated to be 255 mg/day of catechin equivalents.
Collapse
|
|
24 |
521 |
5
|
Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 1995; 16:1385-93. [PMID: 8590765 DOI: 10.1016/0142-9612(95)96874-y] [Citation(s) in RCA: 446] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new class of ionic self-complementary oligopeptides is described, two members of which have been designated RAD16 and EAK16. These oligopeptides consist of regular repeats of alternating ionic hydrophilic and hydrophobic amino acids and associate to form stable beta-sheet structures in water. The addition of buffers containing millimolar amounts of monovalent salts or the transfer of a peptide solution into physiological solutions results in the spontaneous assembly of the oligopeptides into a stable, macroscopic membranous matrix. The matrix is composed of ordered filaments which form porous enclosures. A variety of mammalian cell types are able to attach to both RAD16 and EAK16 membranous matrices. These matrices provide a novel experimental system for analysing mechanisms of in vitro cell attachment and may have applications in in vivo studies of tissue regeneration, tissue transplantation and would healing.
Collapse
|
|
30 |
446 |
6
|
Rao J, Su X. A Survey of Automated Web Service Composition Methods. LECTURE NOTES IN COMPUTER SCIENCE 2005. [DOI: 10.1007/978-3-540-30581-1_5] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
|
20 |
368 |
7
|
Su X, Kirkman LA, Fujioka H, Wellems TE. Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell 1997; 91:593-603. [PMID: 9393853 DOI: 10.1016/s0092-8674(00)80447-x] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chloroquine resistance in a P. falciparum cross maps as a Mendelian trait to a 36 kb segment of chromosome 7. This segment harbors cg2, a gene encoding a unique approximately 330 kDa protein with complex polymorphisms. A specific set of polymorphisms in 20 chloroquine-resistant parasites from Asia and Africa, in contrast with numerous differences in 21 sensitive parasites, suggests selection of a cg2 allele originating in Indochina over 40 years ago. One chloroquine-sensitive clone exhibited this allele, suggesting another resistance component. South American parasites have cg2 polymorphisms consistent with a separate origin of resistance. CG2 protein is found at the parasite periphery, a site of chloroquine transport, and in association with hemozoin of the digestive vacuole, where chloroquine inhibits heme polymerization.
Collapse
|
|
28 |
259 |
8
|
Su X, Ferdig MT, Huang Y, Huynh CQ, Liu A, You J, Wootton JC, Wellems TE. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 1999; 286:1351-3. [PMID: 10558988 DOI: 10.1126/science.286.5443.1351] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic investigations of malaria require a genome-wide, high-resolution linkage map of Plasmodium falciparum. A genetic cross was used to construct such a map from 901 markers that fall into 14 inferred linkage groups corresponding to the 14 nuclear chromosomes. Meiotic crossover activity in the genome proved high (17 kilobases per centimorgan) and notably uniform over chromosome length. Gene conversion events and spontaneous microsatellite length changes were evident in the inheritance data. The markers, map, and recombination parameters are facilitating genome sequence assembly, localization of determinants for such traits as virulence and drug resistance, and genetic studies of parasite field populations.
Collapse
|
Comment |
26 |
252 |
9
|
Kamat S, Su X, Ballarini R, Heuer AH. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 2000; 405:1036-40. [PMID: 10890440 DOI: 10.1038/35016535] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural composite materials are renowned for their mechanical strength and toughness: despite being highly mineralized, with the organic component constituting not more than a few per cent of the composite material, the fracture toughness exceeds that of single crystals of the pure mineral by two to three orders of magnitude. The judicious placement of the organic matrix, relative to the mineral phase, and the hierarchical structural architecture extending over several distinct length scales both play crucial roles in the mechanical response of natural composites to external loads. Here we use transmission electron microscopy studies and beam bending experiments to show that the resistance of the shell of the conch Strombus gigas to catastrophic fracture can be understood quantitatively by invoking two energy-dissipating mechanisms: multiple microcracking in the outer layers at low mechanical loads, and crack bridging in the shell's tougher middle layers at higher loads. Both mechanisms are intimately associated with the so-called crossed lamellar microarchitecture of the shell, which provides for 'channel' cracking in the outer layers and uncracked structural features that bridge crack surfaces, thereby significantly increasing the work of fracture, and hence the toughness, of the material. Despite a high mineral content of about 99% (by volume) of aragonite, the shell of Strombus gigas can thus be considered a 'ceramic plywood' and can guide the biomimetic design of tough, lightweight structures.
Collapse
|
|
25 |
241 |
10
|
Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M, Shen Y, Yu G, Liu J, Xie H, Gucev ZS, Liu S, Yang N, Al-Kateb H, Chen J, Zhang J, Hauser N, Zhang T, Tasic V, Liu P, Su X, Pan X, Liu C, Wang L, Shen J, Shen J, Chen Y, Zhang T, Zhang J, Choy KW, Wang J, Wang Q, Li S, Zhou W, Guo J, Wang Y, Zhang C, Zhao H, An Y, Zhao Y, Wang J, Liu Z, Zuo Y, Tian Y, Weng X, Sutton VR, Wang H, Ming Y, Kulkarni S, Zhong TP, Giampietro PF, Dunwoodie SL, Cheung SW, Zhang X, Jin L, Lupski JR, Qiu G, Zhang F. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med 2015; 372:341-50. [PMID: 25564734 PMCID: PMC4326244 DOI: 10.1056/nejmoa1406829] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Congenital scoliosis is a common type of vertebral malformation. Genetic susceptibility has been implicated in congenital scoliosis. METHODS We evaluated 161 Han Chinese persons with sporadic congenital scoliosis, 166 Han Chinese controls, and 2 pedigrees, family members of which had a 16p11.2 deletion, using comparative genomic hybridization, quantitative polymerase-chain-reaction analysis, and DNA sequencing. We carried out tests of replication using an additional series of 76 Han Chinese persons with congenital scoliosis and a multicenter series of 42 persons with 16p11.2 deletions. RESULTS We identified a total of 17 heterozygous TBX6 null mutations in the 161 persons with sporadic congenital scoliosis (11%); we did not observe any null mutations in TBX6 in 166 controls (P<3.8×10(-6)). These null alleles include copy-number variants (12 instances of a 16p11.2 deletion affecting TBX6) and single-nucleotide variants (1 nonsense and 4 frame-shift mutations). However, the discordant intrafamilial phenotypes of 16p11.2 deletion carriers suggest that heterozygous TBX6 null mutation is insufficient to cause congenital scoliosis. We went on to identify a common TBX6 haplotype as the second risk allele in all 17 carriers of TBX6 null mutations (P<1.1×10(-6)). Replication studies involving additional persons with congenital scoliosis who carried a deletion affecting TBX6 confirmed this compound inheritance model. In vitro functional assays suggested that the risk haplotype is a hypomorphic allele. Hemivertebrae are characteristic of TBX6-associated congenital scoliosis. CONCLUSIONS Compound inheritance of a rare null mutation and a hypomorphic allele of TBX6 accounted for up to 11% of congenital scoliosis cases in the series that we analyzed. (Funded by the National Basic Research Program of China and others.).
Collapse
|
Multicenter Study |
10 |
231 |
11
|
Anderson RC, Su X, Bogdan GJ, Fenton J. A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 2000; 28:E60. [PMID: 10871383 PMCID: PMC102745 DOI: 10.1093/nar/28.12.e60] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2000] [Revised: 04/07/2000] [Accepted: 04/15/2000] [Indexed: 11/14/2022] Open
Abstract
A highly integrated monolithic device was developed that automatically carries out a complex series of molecular processes on multiple samples. The device is capable of extracting and concentrating nucleic acids from milliliter aqueous samples and performing microliter chemical amplification, serial enzymatic reactions, metering, mixing and nucleic acid hybridization. The device, which is smaller than a credit card, can manipulate over 10 reagents in more than 60 sequential operations and was tested for the detection of mutations in a 1.6 kb region of the HIV genome from serum samples containing as few as 500 copies of the RNA. The elements in this device are readily linked into complex, flexible and highly parallel analysis networks for high throughput sample preparation or, conversely, for low cost portable DNA analysis instruments in point-of-care medical diagnostics, environmental testing and defensive biological agent detection.
Collapse
|
research-article |
25 |
178 |
12
|
Wakabayashi S, Pang T, Su X, Shigekawa M. A novel topology model of the human Na(+)/H(+) exchanger isoform 1. J Biol Chem 2000; 275:7942-9. [PMID: 10713111 DOI: 10.1074/jbc.275.11.7942] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane topology of the human Na(+)/H(+) exchanger isoform 1 (NHE1) was assessed by substituted cysteine accessibility analysis. Eighty-three cysteine residues were individually introduced into a functional cysteineless NHE1, and these mutants were expressed in the exchanger-deficient PS120 cells. The topological disposition of introduced cysteines was determined by labeling with a biotinylated maleimide in the presence or absence of preincubation with the membrane-impermeable sulfhydryl reagent, 2-trimethylammoniumethyl-methanethiosulfonate in streptolysin O-permeabilized or nonpermeabilized cells. We proposed a new model for the topology of NHE1 that is significantly different from the model derived from hydropathy analysis. In this model, NHE1 is composed of 12 transmembrane segments (TMs) with the N and C termini located in the cytosol. The large, last extracellular loop in the membrane domain of the original model was suggested to comprise an intracellular loop, a new transmembrane segment (TM11), and an extracellular loop in the new model. Interestingly, cysteines at 183 and 184 and at 324 and 325 mapped to intracellular loops connecting TMs 4 and 5 (IL2) and TMs 8 and 9 (IL4), respectively, were accessible to sulfhydryl reagents from the outside. Furthermore, exchange activities of two mutants, R180C and Q181C, within IL2 were markedly inhibited by external MTSET. These data suggest that part of IL2 or IL4 may be located in a pore-lining region that is accessible from either side of the membrane and involved in ion transport.
Collapse
|
|
25 |
168 |
13
|
Su X, Zhan P, Gavine PR, Morgan S, Womack C, Ni X, Shen D, Bang YJ, Im SA, Ho Kim W, Jung EJ, Grabsch HI, Kilgour E. FGFR2 amplification has prognostic significance in gastric cancer: results from a large international multicentre study. Br J Cancer 2014; 110:967-75. [PMID: 24457912 PMCID: PMC3929881 DOI: 10.1038/bjc.2013.802] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/05/2013] [Accepted: 12/02/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In preclinical gastric cancer (GC) models, FGFR2 amplification was associated with increased tumour cell proliferation and survival, and drugs targeting this pathway are now in clinical trials. METHODS FGFR2 FISH was performed on 961 GCs from the United Kingdom, China and Korea, and the relationship with clinicopathological data and overlap with HER2 amplification were analysed. RESULTS The prevalence of FGFR2 amplification was similar between the three cohorts (UK 7.4%, China 4.6% and Korea 4.2%), and intratumoral heterogeneity was observed in 24% of FGFR2 amplified cases. FGFR2 amplification was associated with lymph node metastases (P<0.0001). FGFR2 amplification and polysomy were associated with poor overall survival (OS) in the Korean (OS: 1.83 vs 6.17 years, P=0.0073) and UK (OS: 0.45 vs 1.9 years, P<0.0001) cohorts, and FGFR2 amplification was an independent marker of poor survival in the UK cohort (P=0.0002). Co-amplification of FGFR2 and HER2 was rare, and when high-level amplifications did co-occur these were detected in distinct areas of the tumour. CONCLUSION A similar incidence of FGFR2 amplification was found in Asian and UK GCs and was associated with lymphatic invasion and poor prognosis. This study also shows that HER2 and FGFR2 amplifications are mostly exclusive.
Collapse
|
Multicenter Study |
11 |
149 |
14
|
Zhou T, Cheng J, Yang P, Wang Z, Liu C, Su X, Bluethmann H, Mountz JD. Inhibition of Nur77/Nurr1 leads to inefficient clonal deletion of self-reactive T cells. J Exp Med 1996; 183:1879-92. [PMID: 8666944 PMCID: PMC2192482 DOI: 10.1084/jem.183.4.1879] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Nur77/Nurr1 family of DNA binding proteins has been reported to be required for the signal transduction of CD3/T cell receptor (TCR)-mediated apoptosis in T cell hybridomas. To determine the role of this family of DNA-binding proteins in thymic clonal deletion, transgenic (Tg) mice bearing a dominant negative mutation were produced. The transgene consisted of a truncated Nur77 (deltaNur77) gene encoding the DNA-binding domain of Nur77 ligated to a TCR-beta enhancer resulting in early expression in thymocytes. Apoptosis of CD4+CD8+ thymocytes mediated by CD3/TCR signaling was greatly inhibited in the deltaNur77 Tg mice, compared with non-Tg littermates, after treatment with anti-CD3 or anti-TCR antibody in vivo and in vitro. Clonal deletion of self-reactive T cells was investigated in deltaNur77-Db/HY TCR-alpha/beta double Tg mice. There was a five-fold increase in the total number of thymocytes expressing self-reactive Db/HY TCR-alpha/beta in the deltaNur77-TCR-alpha/beta double Tg male mice. Deficient clonal deletion of self-reactive thymocytes was demonstrated by a 10-fold increase in the CD4+CD8+ thymocytes that expressed Tg TCR-alpha/beta. There was an eightfold increase in the CD8+, Db/HY TCR-alpha/beta T cells in the lymph nodes (LN) of delta Nur77-Db/HY TCR-alpha/beta double Tg compared with Db/HY TCR-alpha/beta Tg male mice. In spite of defective clonal deletion, the T cells expressing the Tg TCR were functionally anergic. In vivo analysis revealed increased activation and apoptosis of T cells associated with increased expression of Fas and Fas ligand in LN of deltaNur77-Db/HY TCR-alpha/beta double male mice. These results indicate that inhibition of Nur77/Nurr1 DNA binding in T cells leads to inefficient thymic clonal deletion, but T cell tolerance is maintained by Fas-dependent clonal deletion in LN and spleen.
Collapse
MESH Headings
- Animals
- Apoptosis
- Base Sequence
- CD3 Complex
- CD4-Positive T-Lymphocytes
- CD8-Positive T-Lymphocytes
- Clonal Deletion
- Cytotoxicity, Immunologic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Lymphocyte Activation
- Lymphocyte Depletion
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Molecular Sequence Data
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Receptors, Antigen, T-Cell
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Self Tolerance
- Sequence Deletion
- T-Lymphocyte Subsets
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
|
research-article |
29 |
132 |
15
|
Pang T, Su X, Wakabayashi S, Shigekawa M. Calcineurin homologous protein as an essential cofactor for Na+/H+ exchangers. J Biol Chem 2001; 276:17367-72. [PMID: 11350981 DOI: 10.1074/jbc.m100296200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na+/H+ exchangers (NHEs) comprise a family of transporters that catalyze cell functions such as regulation of the pH and volume of a cell and epithelial absorption of Na+ and bicarbonate. Ubiquitous calcineurin B homologous protein (CHP or p22) is co-localized and co-immunoprecipitated with expressed NHE1, NHE2, or NHE3 independently of its myristoylation and Ca2+ binding, and its binding site was identified as the juxtamembrane region within the carboxyl-terminal cytoplasmic domain of exchangers. CHP binding-defective mutations of NHE1-3 or CHP depletion by injection of the competitive CHP-binding region of NHE1 into Xenopus oocytes resulted in a dramatic reduction (>90%) in the Na+/H+ exchange activity. The data suggest that CHP serves as an essential cofactor, which supports the physiological activity of NHE family members.
Collapse
|
Research Support, Non-U.S. Gov't |
24 |
128 |
16
|
Abstract
The organization of collagen fibrils differs in woven bone and lamellar bone, and it reflects certain aspects of the nature of the mineral crystals associated with them. In order to investigate the morphology and distribution of apatite crystals in woven bone, mineralized collagen fibrils and isolated crystals from the mid-diaphyses of human fetal femurs were observed with scanning and transmission electron microscopy and high-resolution electron microscopy. A number of features of woven bone were observed for the first time by these means. Similar to mature crystals from lamellar bone, the apatite crystals in woven bone are also platelet-shaped. However, most likely because of a high rate of old bone resorption and new bone formation in woven material, the average crystal dimensions are considerably smaller than those of mature crystals in lamellar bone. Apatite crystals were noted on the surface of collagen fibrils in woven bone. In densely packed woven bone, the periodicity of mineral deposited on individual fibrils is in registration over many fibrils. In addition to their association with collagen surfaces, crystals also appear distributed in both extrafibrillar and intrafibrillar collagen regions. In both cases, the minerals are crystalline and defect-free. These characteristics provide insight into the spatial and temporal relation between collagen and mineral that is the basis for the structure and organization of the mineral comprising human woven bone.
Collapse
|
|
22 |
115 |
17
|
Abstract
The objective of this study was to examine the antinociceptive effects of peripherally restricted kappa-opioid receptor agonists (ORAs) in a rat model of inflammatory bowel disease produced by intracolonic instillation of trinitrobenzine sulfonic acid (TNBS). Antinociceptive effects of mu-(morphine) and kappa-ORAs (EMD 61,753 and ICI 204,488) were evaluated in a behavioral model of visceral nociception. The effects of these agonists and a delta-ORA (SNC 80) on responses of pelvic nerve afferent fibers innervating the colon were also tested. In the behavioral study, systemic injections of morphine and both kappa-ORAs dose-dependently inhibited the visceromotor response to colorectal distension in rats with uninflamed or inflamed colons. The inhibitory effects of kappa-ORAs, but not morphine, were significantly greater in rats with colons inflamed 4 days previously by TNBS. A mu-receptor-selective dose (30 microg/kg) of naloxone methiodide (NLXM) blocked the inhibitory effect of morphine, but not of EMD 61,753. In the single-fiber study, neither morphine nor the delta-ORA SNC 80 attenuated the responses of pelvic nerve afferent fibers, whereas kappa-ORAs dose-dependently inhibited responses of pelvic nerve afferent fibers with significantly greater potency in the inflamed colon. Pretreatment with a non-opioid receptor-selective dose (2 mg/kg) of NLXM produced a rightward shift in the dose-response function of EMD 61,753. The greater potency of kappa-ORAs in the TNBS-inflamed condition suggests a peripheral upregulation of kappa-opioid receptors in colonic inflammation.
Collapse
|
|
26 |
107 |
18
|
Su X, Li X, Li J, Liu M, Lei F, Tan X, Li P, Luo W. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chem 2014; 171:292-7. [PMID: 25308672 DOI: 10.1016/j.foodchem.2014.09.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
Core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs), in which a Rhodamine B-imprinted layer was coated on Fe3O4 NPs. were synthesized. First, Fe3O4 NPs were prepared by a coprecipitation method. Then, amino-modified Fe3O4 NPs (Fe3O4@SiO2-NH2) was prepared. Finally, the MIPs were coated on the Fe3O4@SiO2-NH2 surface by the copolymerization with functional monomer, acrylamide, using a cross-linking agent, ethylene glycol dimethacrylate; an initiator, azobisisobutyronitrile and a template molecule, Rhodamine B. The Fe3O4@MIPs were characterized using a scanning electron microscope, Fourier transform infrared spectrometer, vibrating sample magnetometer, and re-binding experiments. The Fe3O4@MIPs showed a fast adsorption equilibrium, a highly improved imprinting capacity, and significant selectivity; they could be used as a solid-phase extraction material and detect illegal addition Rhodamine B in food. A method was developed for the selective isolation and enrichment of Rhodamine B in food samples with recoveries in the range 78.47-101.6% and the relative standard deviation was <2%.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
104 |
19
|
Liao L, Yang X, Su X, Hu C, Zhu X, Yang N, Chen X, Shi S, Shi S, Jin Y. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis 2013; 4:e600. [PMID: 23598412 PMCID: PMC3641352 DOI: 10.1038/cddis.2013.130] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the process of aging, especially for postmenopausal females, the cell lineage commitment of mesenchymal stem cells (MSCs) shift to adipocyte in bone marrow, resulting in osteoporosis. However, the cell-intrinsic mechanism of this cell lineage commitment switch is poorly understood. As the post-transcription regulation by microRNAs (miRNAs) has a critical role in MSCs differentiation and bone homeostasis, we performed comprehensive miRNAs profiling and found miR-705 and miR-3077-5p were significantly enhanced in MSCs from osteoporosis bone marrow. Both miR-705 and miR-3077-5p acted as inhibitors of MSCs osteoblast differentiation and promoters of adipocyte differentiation, by targeting on the 3'untranslated region (3'UTR) of HOXA10 and RUNX2 mRNA separately. Combined inhibition of miR-705 and miR-3077-5p rescued the cell lineage commitment disorder of MSCs through restoring HOXA10 and RUNX2 protein level. Furthermore, we found excessive TNFα and reactive oxygen species caused by estrogen deficiency led to the upregulation of both miRNAs through NF-κB pathway. In conclusion, our findings showed that redundant miR-705 and miR-3077-5p synergistically mediated the shift of MSCs cell lineage commitment to adipocyte in osteoporosis bone marrow, providing new insight into the etiology of osteoporosis at the post-transcriptional level. Moreover, the rescue of MSCs lineage commitment disorder by regulating miRNAs expression suggested a novel potential therapeutic target for osteoporosis as well as stem cell-mediated regenerative medicine.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
104 |
20
|
Sengupta JN, Su X, Gebhart GF. Kappa, but not mu or delta, opioids attenuate responses to distention of afferent fibers innervating the rat colon. Gastroenterology 1996; 111:968-80. [PMID: 8831591 DOI: 10.1016/s0016-5085(96)70064-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS Discomfort and pain are the principal conscious sensations that arise from the viscera, and both are increased in frequency and intensity in patients with a functional bowel disorder. Visceral receptors, perhaps sensitized, may contribute to these altered sensations. The aim of this study was to evaluate the effects of opioid receptor-selective agonists on afferent fibers innervating the colon. METHODS Mechanosensitive pelvic nerve afferent fibers were recorded from the decentralized S1 dorsal root in anesthetized rats. The effects of opioid agonists, given intra-arterially, were studied based on the fiber's responses to noxious colorectal distention (CRD) (80 mm Hg, 30 seconds). RESULTS A total of 115 distention-sensitive fibers innervating the colon were studied, including 32 that were studied after colonic inflammation with 2.5% acetic acid. Neither mu-(morphine and fentanyl) nor delta- ([D-Pen2, D-Pen5]enkephalin- and SNC-80) opioid receptor agonists affected responses to CRD. In contrast, kappa- (U-50,488 and fedotozine) opioid receptor agonists dose-dependently attenuated responses to CRD. Acetic acid sensitized about half of the fibers studied, but neither the potency nor the efficacy of U-50, 488 or FDZ were changed after colonic inflammation. CONCLUSIONS These results suggest a role for peripheral kappa-opioid receptors in the modulation of visceral nociception.
Collapse
|
|
29 |
101 |
21
|
Su X, Gebhart GF. Mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat are polymodal in character. J Neurophysiol 1998; 80:2632-44. [PMID: 9819269 DOI: 10.1152/jn.1998.80.5.2632] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This report describes the chemical and thermal sensitivity of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat. A total of 51 fibers in the S1 dorsal root, identified by electrical stimulation of the pelvic nerve, were studied. An approximately 7 cm length of descending colon was isolated in situ to permit intracolonic perfusion and distension with Krebs solution. Reproducibility of responses to repetitive colorectal distension (CRD, 40 mmHg, 30 s, every 4 min) was documented. All fibers gave monotonic, incrementing responses to graded CRD (5 to 60 mmHg). Increases (n = 6) or decreases (n = 6) in pH of the perfusate failed to produce any change in resting activity or responses to CRD. Infusion of bile salts increased the resting activity of 6/6 fibers in a concentration-dependent manner, but did not affect the magnitude of responses to CRD. After intracolonic instillation of an inflammatory soup (bradykinin 10(-5) M, PGE2 10(-5) M, serotonin 10(-5) M, histamine 10(-5) M and KCl 10(-3) M), 13/22 fibers exhibited sensitization of responses to CRD. Seventy-three percent of 45 fibers tested responded to intracolonic perfusion of heated Krebs solution. The estimated threshold for response was 45 degreesC and response magnitude increased with the temperature. A smaller proportion (30%) of 37 fibers tested responded to intracolonic perfusion of cold Krebs solution. The estimated threshold for response was 28 degreesC. Of 36 fibers tested, 8 were activated by both heat and cold; typically, fibers activated by heat did not respond to cold. In a sample of 26 fibers tested for response to all three modalities of stimulation, 11 responded to mechanical, chemical and thermal stimuli; the remaining 15 responded to mechanical and either chemical or thermal stimulation. Changes in intracolonic pressure in response to chemical and thermal stimuli were also evaluated. Inflammatory soup and bile salts did not change intracolonic pressure; heat and cold produced a modest decrease and increase in muscle tension, respectively. These results document that mechanosensitive pelvic nerve afferent fibers are also chemosensitive and/or thermosensitive, supporting the notion that visceral mechanoreceptors in general are likely polymodal in character.
Collapse
|
|
27 |
101 |
22
|
Su X, Zhou T, Wang Z, Yang P, Jope RS, Mountz JD. Defective expression of hematopoietic cell protein tyrosine phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis. Immunity 1995; 2:353-62. [PMID: 7536621 DOI: 10.1016/1074-7613(95)90143-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein tyrosine dephosphorylation after Fas cross-linking occurred in Fas apoptosis-sensitive CEM-6 cells but not in Fas apoptosis-resistant MOLT-4 cells, and apoptosis in the CEM-6 cells could be inhibited by the protein tyrosine phosphatase inhibitor, pervanadate. The time course and level of dephosphorylation were correlated with increased hematopoietic cell protein tyrosine phosphatase (HCP) activity, but not with the activity of two other tyrosine phosphatases. The level of expression of HCP was correlated with Fas apoptosis function in eleven human and murine Fas-positive lymphoid cell lines. Expression of recombinant HCP in the MOLT-4 cell line converted this Fas apoptosis-resistant cell line to Fas apoptosis sensitive. HCP-mutant mev/mev mice exhibited increased expression of Fas but decreased Fas-mediated apoptosis function in lymphoid organs after anti-mouse Fas antibody treatment in vivo. Thus, HCP-mediated protein dephosphorylation is involved in the delivery of the Fas apoptosis signal in lymphoid cells.
Collapse
|
|
30 |
100 |
23
|
Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 2015; 6:e1851. [PMID: 26247736 PMCID: PMC4558512 DOI: 10.1038/cddis.2015.221] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) emerge as important regulators of stem cell lineage commitment and bone development. MiRNA-26a (miR-26a) is one of the important miRNAs regulating osteogenic differentiation of both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (ADSCs). However, miR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs, suggesting distinct post-transcriptional regulation of tissue-specific MSC differentiation. However, the molecular basis is largely unknown. Here, we report that the function of miR-26a is largely depended on the intrinsic signaling regulation network of MSCs. Using bioinformatics and functional assay, we confirmed that miR-26a potentially targeted on GSK3β and Smad1 to regulate Wnt and BMP signaling pathway. Overall comparative analysis revealed that Wnt signaling was enhanced more potently and played a more important role than BMP signaling in osteogenic differentiation of BMSCs, whereas BMP pathway was more essential for promoting osteogenic differentiation of ADSCs. The distinct activation pattern and role of signaling pathways determined that miR-26a majorly targeted on GSK3β to activate Wnt signaling for promoting osteogenic differentiation of BMSCs, whereas it inhibited Smad1 to suppress BMP signaling for interfering with the osteogenic differentiation of ADSCs. Taken together, our study demonstrated that BMSCs and ADSCs applied different signaling pathway to facilitate their osteogenic differentiation, which determined the inverse function of miR-26a. The distinct transcriptional regulation and post-transcriptional regulation network suggested the intrinsic molecular differences between tissue-specific MSCs and the complexity in MSC research and MSC-based cell therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
95 |
24
|
Liu YJ, Shen D, Yin X, Gavine P, Zhang T, Su X, Zhan P, Xu Y, Lv J, Qian J, Liu C, Sun Y, Qian Z, Zhang J, Gu Y, Ni X. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma. Br J Cancer 2014; 110:1169-78. [PMID: 24518603 PMCID: PMC3950883 DOI: 10.1038/bjc.2014.61] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/24/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background: Gastric cancer (GC) is a leading cause of cancer deaths worldwide. Since the approval
of trastuzumab, targeted therapies are emerging as promising treatment options for the
disease. This study aimed to explore the molecular segmentation of several known
therapeutics targets, human epidermal growth factor receptor 2 (HER2), MET and
fibroblast growth factor receptor 2 (FGFR2), within GC using clinically approved or
investigational kits and scoring criteria. Knowledge of how these markers are segmented
in the same cohort of GC patients could improve future clinical trial designs. Methods: Using immunohistochemistry (IHC) and FISH methods, overexpression and amplification of
HER2, FGFR2 and MET were profiled in a cohort of Chinese GC samples. The correlations
between anti-tumour sensitivity and the molecular segments of HER2, MET and FGFR2
alterations were further tested in a panel of GC cell lines and the patient-derived GC
xenograft (PDGCX) model using the targeted inhibitors. Results: Of 172 GC patients, positivity for HER2, MET and FGFR2 alternations was found in 23
(13.4%), 21 (12.2%) and 9 (5.2%) patients, respectively. Positivity
for MET was found in 3 of 23 HER2-positive GC patients. Co-positivity for FGFR2 and MET
was found in 1 GC patient, and amplification of the two genes was found in different
tumour cells. Our study in a panel of GC cell lines showed that in most cell lines,
amplification or high expression of a particular molecular marker was mutually exclusive
and in vitro sensitivity to the targeted agents lapatinib, PD173074 and
crizotinib was only observed in cell lines with the corresponding high expression of the
drugs' target protein. SGC031, an MET-positive PDGCX mouse model, responded to
crizotinib but not to lapatinib or PD173074. Conclusions: Human epidermal growth factor receptor 2, MET and FGFR2 oncogenic driver alterations
(gene amplification and overexpression) occur in three largely distinct molecular
segments in GC. A significant proportion of HER2-negative patients may potentially
benefit from MET- or FGFR2-targeted therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
87 |
25
|
Su X, Hu Q, Kristan JM, Costa C, Shen Y, Gero D, Matis LA, Wang Y. Significant role for Fas in the pathogenesis of autoimmune diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2523-32. [PMID: 10679090 DOI: 10.4049/jimmunol.164.5.2523] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Programmed cell death represents an important pathogenic mechanism in various autoimmune diseases. Type I diabetes mellitus (IDDM) is a T cell-dependent autoimmune disease resulting in selective destruction of the beta cells of the islets of Langerhans. beta cell apoptosis has been associated with IDDM onset in both animal models and newly diagnosed diabetic patients. Several apoptotic pathways have been implicated in beta cell destruction, including Fas, perforin, and TNF-alpha. Evidence for Fas-mediated lysis of beta cells in the pathogenesis of IDDM in nonobese diabetic (NOD) mice includes: 1) Fas-deficient NOD mice bearing the lpr mutation (NOD-lpr/lpr) fail to develop IDDM; 2) transgenic expression of Fas ligand (FasL) on beta cells in NOD mice may result in accelerated IDDM; and 3) irradiated NOD-lpr/lpr mice are resistant to adoptive transfer of diabetes by cells from NOD mice. However, the interpretation of these results is complicated by the abnormal immune phenotype of NOD-lpr/lpr mice. Here we present novel evidence for the role of Fas/FasL interactions in the progression of NOD diabetes using two newly derived mouse strains. We show that NOD mice heterozygous for the FasL mutation gld, which have reduced functional FasL expression on T cells but no lymphadenopathy, fail to develop IDDM. Further, we show that NOD-lpr/lpr mice bearing the scid mutation (NOD-lpr/lpr-scid/scid), which eliminates the enhanced FasL-mediated lytic activity induced by Fas deficiency, still have delayed onset and reduced incidence of IDDM after adoptive transfer of diabetogenic NOD spleen cells. These results provide evidence that Fas/FasL-mediated programmed cell death plays a significant role in the pathogenesis of autoimmune diabetes.
Collapse
|
|
25 |
83 |