1
|
D'Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med 1993; 178:1041-8. [PMID: 8102388 PMCID: PMC2191152 DOI: 10.1084/jem.178.3.1041] [Citation(s) in RCA: 1065] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Natural killer cell stimulatory factor or interleukin 12 (NKSF/IL-12) is a heterodimeric cytokine produced by monocytes/macrophages, B cells, and possibly other accessory cell types primarily in response to bacteria or bacterial products. NKSF/IL-12 mediates pleiomorphic biological activity on T and NK cells and, alone or in synergy with other inducers, is a powerful stimulator of interferon gamma (IFN-gamma) production. IL-10 is a potent inhibitor of monocyte-macrophage activation, that inhibits production of tumor necrosis factor alpha (TNF-alpha), IL-1 and also IFN-gamma from lymphocytes acting at the level of accessory cells. Because TNF-alpha and IL-1 are not efficient inducers of IFN-gamma, the mechanism by which IL-10 inhibits IFN-gamma production is not clear. In this paper, we show that IL-10 is a potent inhibitor of NKSF/IL-12 production from human peripheral blood mononuclear cells activated with Staphylococcus aureus or lipopolysaccharide (LPS). Both the production of the free NKSF/IL-12 p40 chain and the biologically active p70 heterodimer are blocked by IL-10. NKSF/IL-12 p40 chain mRNA accumulation is strongly induced by S. aureus or LPS and downregulated by IL-10, whereas the p35 mRNA is constitutively expressed and only minimally regulated by S. aureus, LPS, or IL-10. Although IL-10 is able to block the production of NKSF/IL-12, a powerful inducer of IFN-gamma both in vitro and in vivo, the mechanism of inhibition of IFN-gamma by IL-10 cannot be explained only on the basis of inhibition of NKSF/IL-12 because IL-10 can partially inhibit IFN-gamma production induced by NKSF/IL-12, and also, the IFN-gamma production in response to various stimuli in the presence of neutralizing antibodies to NKSF/IL-12. Our findings that antibodies against NKSF/IL-12, TNF-alpha, or IL-1 beta can significantly inhibit IFN-gamma production in response to various stimuli and that NKSF/IL-12 and IL-1 beta can overcome the IL-10-mediated inhibition of IFN-gamma, suggest that IL-10 inhibition of IFN-gamma production is primarily due to its blocking production from accessory cells of the IFN-gamma-inducer NKSF/IL-12, as well as the costimulating molecule IL-1 beta.
Collapse
|
research-article |
32 |
1065 |
2
|
Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 1995; 82:77-87. [PMID: 7541722 DOI: 10.1016/0092-8674(95)90054-3] [Citation(s) in RCA: 791] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Plasmodium falciparum-infected human erythrocytes evade host immunity by expression of a cell-surface variant antigen and receptors for adherence to endothelial cells. These properties have been ascribed to P. falciparum erythrocyte membrane protein 1 (PfEMP1), an antigenically diverse malarial protein of 200-350 kDa on the surface of parasitized erythrocytes (PEs). We describe the cloning of two related PfEMP1 genes from the Malayan Camp (MC) parasite strain. Antibodies generated against recombinant protein fragments of the genes were specific for MC strain PfEMP1 protein. These antibodies reacted only with the surface of MC strain PEs and blocked adherence of these cells to CD36 but without effect on adherence to thrombospondin. Multiple forms of the PfEMP1 gene are apparent in MC parasites. The molecular basis for antigenic variation in malaria and adherence of infected erythrocytes to host cells can now be pursued.
Collapse
|
|
30 |
791 |
3
|
Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, Dzialo R, Trinchieri G. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 1996; 183:147-57. [PMID: 8551218 PMCID: PMC2192398 DOI: 10.1084/jem.183.1.147] [Citation(s) in RCA: 533] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Interleukin (IL) 12 is a proinflammatory cytokine produced by phagocytic cells, B cells, and other antigen-presenting cells that modulates adaptive immune responses by favoring the generation of T helper type 1 cells. IL-12 mediates some of its physiological activities by acting as a potent inducer of interferon (IFN) gamma production by T and natural killer cells. IFN-gamma enhances the ability of the phagocytic cells to produce IL-12 and other proinflammatory cytokines. Thus, IL-12-induced IFN-gamma acts in a positive feedback loop that represents an important amplifying mechanism in the inflammatory response to infections. We show here that IFN-gamma enhances IL-12 production mostly by priming phagocytic cells for lipopolysaccharide (LPS)-induced transcription of the IL-12 p40 gene, which encodes the heavy chain of the IL-12 heterodimer; furthermore, IFN-gamma directly induces transcription of the IL-12 p35 gene, which encodes the light chain of IL-12, and has at least an additive effect with LPS stimulation in inducing its transcription. The priming effect of IFN-gamma on the LPS-induced p40 gene transcription requires preincubation of the cells with IFN-gamma for at least 8 h to obtain a maximal effect. The priming effect of IFN-gamma for IL-12 production is predominantly at the transcriptional level for both the p40 and the p35 gene, and no evidence for a major role of posttranscriptional or translational mechanisms was found. A 3.3-kb human IL-12 p40 promoter construct transfected into cell lines recapitulated the tissue specificity of the endogenous gene, being silent in two human T cell lines, constitutively active in two human Epstein-Barr virus-positive B lymphoblastoid cell lines, and LPS inducible in the human THP-1 and mouse RAW264.7 monocytic cell lines. Because the RAW264.7 cell line is easily transfectable and regulates the endogenous IL-12 p40 gene in response to IFN-gamma or LPS similarly to human monocytes, it was used for analysis of the regulation of the cloned human IL-12 p40 promoter. A requirement for the region between -222 and -204 in both LPS responsiveness and IFN-gamma priming was established. This region contains an ets consensus sequence that was shown to mediate activation of the promoter by IFN-gamma and LPS, as well as by a cotransfected ets-2. The -222 construct was also regulated in a tissue-specific manner. Two other elements, IRF-1 located at -730 to -719, and NF-IL6 at -520 to -512, were also studied by deletion analysis, which did not result in decreased response to IFN-gamma and LPS stimulation.
Collapse
|
research-article |
29 |
533 |
4
|
Ma X, Ehrhardt DW, Margolin W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 1996; 93:12998-3003. [PMID: 8917533 PMCID: PMC24035 DOI: 10.1073/pnas.93.23.12998] [Citation(s) in RCA: 384] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GEP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ-GFP or with FtsA-GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ-GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ-GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA-GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring.
Collapse
|
research-article |
29 |
384 |
5
|
Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 1998; 101:2790-9. [PMID: 9637713 PMCID: PMC508870 DOI: 10.1172/jci1325] [Citation(s) in RCA: 381] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hydrophilic bile salt ursodeoxycholic acid (UDCA) protects against the membrane-damaging effects associated with hydrophobic bile acids. This study was undertaken to (a) determine if UDCA inhibits apoptosis from deoxycholic acid (DCA), as well as from ethanol, TGF-beta1, Fas ligand, and okadaic acid; and to (b) determine whether mitochondrial membrane perturbation is modulated by UDCA. DCA induced significant hepatocyte apoptosis in vivo and in isolated hepatocytes determined by terminal transferase-mediated dUTP-digoxigenin nick end-labeling assay and nuclear staining, respectively (P < 0.001). Apoptosis in isolated rat hepatocytes increased 12-fold after incubation with 0.5% ethanol (P < 0.001). HuH-7 cells exhibited increased apoptosis with 1 nM TGF-beta1 (P < 0. 001) or DCA at >/= 100 microM (P < 0.001), as did Hep G2 cells after incubation with anti-Fas antibody (P < 0.001). Finally, incubation with okadaic acid induced significant apoptosis in HuH-7, Saos-2, Cos-7, and HeLa cells. Coadministration of UDCA with each of the apoptosis-inducing agents was associated with a 50-100% inhibition of apoptotic changes (P < 0.001) in all the cell types. Also, UDCA reduced the mitochondrial membrane permeability transition (MPT) in isolated mitochondria associated with both DCA and phenylarsine oxide by > 40 and 50%, respectively (P < 0.001). FACS(R) analysis revealed that the apoptosis-inducing agents decreased the mitochondrial transmembrane potential and increased reactive oxygen species production (P < 0.05). Coadministration of UDCA was associated with significant prevention of mitochondrial membrane alterations in all cell types. The results suggest that UDCA plays a central role in modulating the apoptotic threshold in both hepatocytes and nonliver cells, and inhibition of MPT is at least one pathway by which UDCA protects against apoptosis.
Collapse
|
research-article |
27 |
381 |
6
|
Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 1999; 179:325-35. [PMID: 10228951 DOI: 10.1002/(sici)1097-4652(199906)179:3<325::aid-jcp10>3.0.co;2-x] [Citation(s) in RCA: 357] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Down-regulation of the transforming growth factor-beta (TGF-beta) signaling system is a strategy for preventing scarring during wound healing. Human corneal and limbal fibroblasts were cultured on the stromal matrix side of preserved human amniotic membrane. The levels of TGF-beta1, beta2, and beta3 and TGF-beta type II receptor transcripts and TGF-beta1 and beta2 proteins were suppressed as early as 8 hr and more dramatically at 24 hr after contact with an amniotic membrane. This suppressive effect was accompanied by down-regulation of alpha-smooth muscle actin, EDA spliced form of fibronectin, and integrin alpha5. It persisted even when challenged by 10 ng/ml TGF-beta1. In contrast with their counterparts grown on plastic or in collagen gel, such suppression in amniotic membrane cultures remained complete after 1 week of culturing. Cells cultured on amniotic membrane showed significantly reduced [3H]-thymidine incorporation compared to cells cultured on plastic and displayed no DNA fragmentation. These results reveal a novel mechanism by which the TGF-beta signaling system, DNA synthesis, and subsequent myofibroblast differentiation can be suppressed by an amnionic membrane matrix. This action explains in part the antiscarring results of amniotic membrane transplantation used for ocular surface reconstruction, a surgical technique applicable to other subspecialties. It may also explain in part why fetal wound healing is scarless.
Collapse
|
|
26 |
357 |
7
|
Chehimi J, Starr SE, Frank I, D'Andrea A, Ma X, MacGregor RR, Sennelier J, Trinchieri G. Impaired interleukin 12 production in human immunodeficiency virus-infected patients. J Exp Med 1994; 179:1361-6. [PMID: 7908324 PMCID: PMC2191451 DOI: 10.1084/jem.179.4.1361] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMC) from human immunodeficiency virus (HIV)-infected patients, asymptomatic or with acquired immunodeficiency virus, produced 10-fold less interleukin 12 (IL-12) free heavy chain and fivefold less biologically active IL-12 heterodimer than PBMC from uninfected healthy donors when challenged in vitro with the common human pathogen Staphylococcus aureus. In contrast, PBMC from HIV-infected individuals and uninfected control donors produced similar levels of tumor necrosis factor alpha, IL-1 beta, and IL-10, and PBMC from HIV-infected individuals produced three- to fourfold more IL-6 compared with PBMC from uninfected control donors. The defect in IL-12 production is not due to hyperproduction of IL-10, a cytokine exerting an autocrine-negative feedback on IL-12 production, but was directly related to HIV infection, as suggested by the reduced ability of monocytes infected in vitro with HIV to produce IL-12. IL-12 deficiency may be an important component of the immunodeficiency associated with HIV infection.
Collapse
|
research-article |
31 |
344 |
8
|
Song CL, Wang YL, Cheng P, Jiang YP, Li W, Zhang T, Li Z, He K, Wang L, Jia JF, Hung HH, Wu C, Ma X, Chen X, Xue QK. Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor. Science 2011; 332:1410-3. [DOI: 10.1126/science.1202226] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
14 |
333 |
9
|
Liu C, Ma X, Jiang X, Wilson SJ, Hofstra CL, Blevitt J, Pyati J, Li X, Chai W, Carruthers N, Lovenberg TW. Cloning and pharmacological characterization of a fourth histamine receptor (H(4)) expressed in bone marrow. Mol Pharmacol 2001; 59:420-6. [PMID: 11179434 DOI: 10.1124/mol.59.3.420] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histamine is a multifunctional hormone that regulates smooth muscle contraction in the airways, acid secretion in the gut, and neurotransmitter release in the central nervous system through three well characterized receptor subtypes, H(1), H(2), H(3), respectively. As part of a directed effort to discover novel G-protein-coupled receptors through homology searching of genomic databases, we identified a partial clone (GPCR105) that had significant homology to the recently identified histamine H(3) receptor cDNA. Expression of the full-length human GPCR105 in cells confers the ability to bind [(3)H]histamine with high affinity (K(D) = 5 nM). GPCR105 is pharmacologically similar to the histamine H(3) receptor in that it binds many of the known H(3) agonists and antagonists, albeit with a different rank order of affinity/potency. GPCR105 does not bind (i.e., K(D) > 10 microM) all tested H(1) and H(2) receptor antagonists such as diphenhydramine, loratadine, ranitidine, and cimetidine, but has modest affinity for the H(2) receptor agonist, dimaprit (377 nM). Whereas the H(3) receptor is expressed almost exclusively in nervous tissues, GPRC105 is expressed primarily in bone marrow and eosinophils. Together, these data demonstrate that GPCR105 is a novel histamine receptor structurally and pharmacologically related to the H(3) receptor. However, its unique expression profile and physiological role suggest that GPCR105 is a fourth histamine receptor subtype (H(4)) and may be a therapeutic target for the regulation of immune function, particularly with respect to allergy and asthma.
Collapse
|
|
24 |
325 |
10
|
Sun Y, Ma X, Zhou D, Vacek I, Sun AM. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 1996; 98:1417-22. [PMID: 8823307 PMCID: PMC507568 DOI: 10.1172/jci118929] [Citation(s) in RCA: 314] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Porcine pancreatic islets were microencapsulated in alginate-polylysine-alginate capsules and transplanted intraperitoneally into nine spontaneously diabetic monkeys. After one, two, or three transplants of 3-7 x 10(4) islets per recipient, seven of the monkeys became insulin independent for periods ranging from 120 to 804 d with fasting blood glucose levels in the normoglycemic range. Glucose clearance rates in the transplant recipients were significantly higher than before the graft administration and the insulin secretion during glucose tolerance tests was significantly higher compared with pretransplant tests. Porcine C-peptide was detected in all transplant recipients throughout their period of normoglycemia while none was found before the graft administration. Hemoglobin A1C levels dropped significantly within 2 mo after transplantation. While ketones were detected in the urine of all recipients before the graft administration, all experimental animals became ketone free 2 wk after transplantation. Capsules recovered from two recipients 3 mo after the restoration of normoglycemia were found physically intact with enclosed islets clearly visible. The capsules were free of cellular overgrowth. Examination of internal organs of two of the animals involved in our transplantation studies for the duration of 2 yr revealed no untoward effect of the extended presence of the microcapsules.
Collapse
|
research-article |
29 |
314 |
11
|
Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV, Cheng JQ. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 2000; 19:2324-30. [PMID: 10822383 DOI: 10.1038/sj.onc.1203598] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that AKT2, a member of protein kinase B family, is activated by a number of growth factors via Ras and PI 3-kinase signaling pathways. Here, we report the frequent activation of AKT2 in human primary ovarian cancer and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase (PI 3-kinase)/Akt pathway. In vitro AKT2 kinase assay analyses in 91 ovarian cancer specimens revealed elevated levels of AKT2 activity (>3-fold) in 33 cases (36.3%). The majority of tumors displaying activated AKT2 were high grade and stages III and IV. Immunostaining and Western blot analyses using a phospho-ser-473 Akt antibody that detects the activated form of AKT2 (AKT2 phosphorylated at serine-474) confirmed the frequent activation of AKT2 in ovarian cancer specimens. Phosphorylated AKT2 in tumor specimens localized to the cell membrane and cytoplasm but not the nucleus. To address the mechanism of AKT2 activation, we measured in vitro PI 3-kinase activity in 43 ovarian cancer specimens, including the 33 cases displaying elevated AKT2 activation. High levels of PI 3-kinase activity were observed in 20 cases, 15 of which also exhibited AKT2 activation. The remaining five cases displayed elevated AKT1 activation. Among the cases with elevated AKT2, but not PI 3-kinase activity (18 cases), three showed down-regulation of PTEN protein expression. Inhibition of PI 3-kinase/AKT2 by wortmannin or LY294002 induces apoptosis in ovarian cancer cells exhibiting activation of the PI 3-kinase/AKT2 pathway. These findings demonstrate for the first time that activation of AKT2 is a common occurrence in human ovarian cancer and that PI 3-kinase/Akt pathway may be an important target for ovarian cancer intervention.
Collapse
|
|
25 |
284 |
12
|
D'Andrea A, Ma X, Aste-Amezaga M, Paganin C, Trinchieri G. Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production. J Exp Med 1995; 181:537-46. [PMID: 7836910 PMCID: PMC2191875 DOI: 10.1084/jem.181.2.537] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The production of cytokines in monocytes/macrophages is regulated by several different cytokines that have activating or inhibitory effects. Interleukin (IL)-10, IL-4, IL-13, and transforming growth factor (TGF)-beta are usually considered to be the most important macrophage-deactivating factors, with inhibitory effects on cytokine production. Unlike IL-10 and TGF-beta, which appear to act as downmodulators of many phagocytic cell functions, the mode of action of IL-4 and IL-13 is more complex. Addition of IL-4 and IL-13 to peripheral blood mononuclear cell (PBMC) cultures inhibited production of IL-12, tumor necrosis factor (TNF)-alpha, IL-10, and IL-1 beta induced by lipopolysaccharide (LPS) or Staphylococcus aureus added simultaneously with the cytokines. However, pretreatment of PBMC with IL-4 or IL-13 for > or = 20 h enhanced the production of IL-12 and TNF-alpha in response to LPS or S. aureus several fold in these cells; this IL-4-induced priming for the two cytokines was inhibited by anti-IL-4 neutralizing antibodies. IL-4 priming also enhanced the accumulation of IL-12 and TNF-alpha mRNA induced by LPS and S. aureus. The enhanced accumulation of transcripts for the IL-12 p35 and p40 chains by IL-4 priming was reflected in enhanced secretion of both the IL-12 free p40 chain and the p70 heterodimer. These results suggest an unexpected complexity in the regulatory role of IL-4 and IL-13 in immune responses.
Collapse
|
research-article |
30 |
273 |
13
|
Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res 2000; 14:333-8. [PMID: 10925397 DOI: 10.1002/1099-1573(200008)14:5<333::aid-ptr584>3.0.co;2-d] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A phase I dose-escalating clinical trial of andrographolide from Andrographis paniculata was conducted in 13 HIV positive patients and five HIV uninfected, healthy volunteers. The objectives were primarily to assess safety and tolerability and secondarily to assess effects on plasma virion HIV-1 RNA levels and CD4(+) lymphocyte levels. No subjects used antiretroviral medications during the trial. Those with liver or renal abnormalities were excluded. The planned regimen was 5 mg/kg bodyweight for 3 weeks, escalating to 10 mg/kg bodyweight for 3 weeks, and to 20 mg/kg bodyweight for a final 3 weeks. The trial was interrupted at 6 weeks due to adverse events including an anaphylactic reaction in one patient. All adverse events had resolved by the end of observation. A significant rise in the mean CD4(+) lymphocyte level of HIV subjects occurred after administration of 10 mg/kg andrographolide (from a baseline of 405 cells/mm(3) to 501 cells/mm(3); p = 0.002). There were no statistically significant changes in mean plasma HIV-1 RNA levels throughout the trial. Andrographolide may inhibit HIV-induced cell cycle dysregulation, leading to a rise in CD4(+) lymphocyte levels in HIV-1 infected individuals.
Collapse
|
Clinical Trial |
25 |
233 |
14
|
Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X, Gri G, Wysocka M, Kim JE, Liu L, Liao F, Farber JM, Pestka S, Trinchieri G, Lee WM. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 1998; 9:25-34. [PMID: 9697833 DOI: 10.1016/s1074-7613(00)80585-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Expression of a dominant negative mutant IFNgammaR1 in murine SCK and K1735 tumor cells rendered them relatively unresponsive to IFNgamma in vitro and more tumorigenic and less responsive to IL-12 therapy in vivo. IL-12 induced histologic evidence of ischemic damage only in IFNgamma-responsive tumors, and in vivo Matrigel vascularization assays revealed that while IFNgamma-responsive and -unresponsive tumor cells induced angiogenesis equally well, IL-12 and its downstream mediator IFNgamma only inhibited angiogenesis induced by the responsive cells. IL-12 induced angiogenesis inhibitory activity in the responsive cells, which may be attributable to production of the chemokine IP-10. Thus, IL-12 and IFNgamma inhibit tumor growth by inducing tumor cells to generate antiangiogenic activity.
Collapse
|
|
27 |
228 |
15
|
Tang Y, Bian Z, Zhao L, Liu Y, Liang S, Wang Q, Han X, Peng Y, Chen X, Shen L, Qiu D, Li Z, Ma X. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol 2011; 166:281-90. [PMID: 21985374 DOI: 10.1111/j.1365-2249.2011.04471.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mechanisms associated with the progression of simple steatosis to non-alcoholic fatty liver disease (NAFLD) remain undefined. Regulatory T cells (T(regs)) play a critical role in regulating inflammatory processes in non-alcoholic steatohepatitis (NASH) and because T helper type 17 (Th17) functionally oppose T(reg)-mediated responses, this study focused on characterizing the role of Th17 cells using a NAFLD mouse model. C57BL/6 mice were fed either a normal diet (ND) or high fat (HF) diet for 8 weeks. Mice in the HF group had a significantly higher frequency of liver Th17 cells compared to ND-fed mice. Neutralization of interleukin (IL)-17 in HF mice ameliorated lipopolysaccharide (LPS)-induced liver injury reflected by decreased serum alanine aminotransferase (ALT) levels and reduced inflammatory cell infiltrates in the liver. In vitro, HepG2 cells cultured in the presence of free fatty acids (FFA; oleic acid and palmitic acid) for 24 h and IL-17 developed steatosis via insulin-signalling pathway interference. IL-17 and FFAs synergized to induce IL-6 production by HepG2 cells and murine primary hepatocytes which, in combination with transforming growth factor (TGF-β), expanded Th17 cells. It is likely that a similar process occurs in NASH patients, as there were significant levels of IL-17(+) cell infiltrates in NASH patient livers. The hepatic expression of Th17 cell-related genes [retinoid-related orphan receptor gamma (ROR)γt, IL-17, IL-21 and IL-23] was also increased significantly in NASH patients compared to healthy controls. Th17 cells and IL-17 were associated with hepatic steatosis and proinflammatory response in NAFLD and facilitated the transition from simple steatosis to steatohepatitis. Strategies designed to alter the balance between Th17 cells and T(regs) should be explored as a means of preventing progression to NASH and advanced liver diseases in NAFLD patients.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
221 |
16
|
Ma X, Margolin W. Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 1999; 181:7531-44. [PMID: 10601211 PMCID: PMC94211 DOI: 10.1128/jb.181.24.7531-7544.1999] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, FtsZ is required for the recruitment of the essential cell division proteins FtsA and ZipA to the septal ring. Several C-terminal deletions of E. coli FtsZ, including one of only 12 amino acids that removes the highly conserved C-terminal core domain, failed to complement chromosomal ftsZ mutants when expressed on a plasmid. To identify key individual residues within the core domain, six highly conserved residues were replaced with alanines. All but one of these mutants (D373A) failed to complement an ftsZ chromosomal mutant. Immunoblot analysis demonstrated that whereas I374A and F377A proteins were unstable in the cell, L372A, D373A, P375A, and L378A proteins were synthesized at normal levels, suggesting that they were specifically defective in some aspect of FtsZ function. In addition, all four of the stable mutant proteins were able to localize and form rings at potential division sites in chromosomal ftsZ mutants, implying a defect in a function other than localization and multimerization. Because another proposed function of FtsZ is the recruitment of FtsA and ZipA, we tested whether the C-terminal core domain was important for interactions with these proteins. Using two different in vivo assays, we found that the 12-amino-acid truncation of FtsZ was defective in binding to FtsA. Furthermore, two point mutants in this region (L372A and P375A) showed weakened binding to FtsA. In contrast, ZipA was capable of binding to all four stable point mutants in the FtsZ C-terminal core but not to the 12-amino-acid deletion.
Collapse
|
research-article |
26 |
209 |
17
|
Cassatella MA, Meda L, Gasperini S, D'Andrea A, Ma X, Trinchieri G. Interleukin-12 production by human polymorphonuclear leukocytes. Eur J Immunol 1995; 25:1-5. [PMID: 7843218 DOI: 10.1002/eji.1830250102] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human polymorphonuclear leukocytes (PMN) stimulated by lipopolysaccharide (LPS) produce interleukin-12 (IL-12). Both the free IL-12 p40 chain and minute amounts of the biologically active IL-12 p70 heterodimers are produced by PMN. Interferon-gamma (IFN-gamma) enhanced the LPS-induced secretion of both the free IL-12 p40 chain and the p70 heterodimer by approximately fivefold. As observed for other IL-12-producing cell types, the ratio of free p40 chain to p70 heterodimer secreted by LPS-stimulated PMN was approximately 20:1. LPS induced a 100-fold increase of IL-12 p40 mRNA, but had minimal effect on p35 mRNA accumulation. IFN-gamma enhanced the LPS-induced accumulation of p40 mRNA and directly induced a several-fold increase in the accumulation of p35 mRNA. Therefore, the combined effect of LPS and IFN-gamma induced sufficient expression of both p40 and p35 to attain production of the biologically active p70 heterodimer at physiologically relevant concentrations. The ratio between p40 and p35 mRNA abundance in PMN stimulated with both LPS and IFN-gamma was approximately 200:1, explaining the secretion of the free p40 chain in much higher concentrations than the p70 heterodimer. IL-10, an inhibitor of the production of various cytokines in PMN, also suppressed IL-12 mRNA accumulation and secretion by PMN. Because of the important immunoregulatory function of IL-12, in particular induction of IFN-gamma production and facilitation of T helper cell type 1 response, the ability of PMN to produce IL-12 suggests that neutrophils may play an active role in the regulatory interaction between innate resistance and adaptive immunity.
Collapse
|
|
30 |
204 |
18
|
Yehuda R, Southwick S, Giller EL, Ma X, Mason JW. Urinary catecholamine excretion and severity of PTSD symptoms in Vietnam combat veterans. J Nerv Ment Dis 1992; 180:321-5. [PMID: 1583475 DOI: 10.1097/00005053-199205000-00006] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, we replicated and extended our previous findings of increased 24-hour urinary catecholamine excretion in posttraumatic stress disorder (PTSD). Dopamine, norepinephrine, and epinephrine concentrations were measured in 22 male patients with PTSD (14 inpatients and eight outpatients) and in 16 nonpsychiatric normal males. The PTSD inpatients showed significantly higher excretion of all three catecholamines compared with both outpatients with PTSD and normal controls. Dopamine and norepinephrine, but not epinephrine, levels were significantly correlated with severity of PTSD symptoms in the PTSD group as a whole. In particular, these catecholamines seemed related to intrusive symptoms. None of the catecholamines were correlated with severity of depression. The findings support the hypothesis of an enhanced sympathetic nervous system activation in PTSD, and suggest that increased sympathetic arousal may be closely linked to severity of certain PTSD symptom clusters.
Collapse
|
|
33 |
202 |
19
|
Gust D, Moore TA, Moore AL, Lee SJ, Bittersmann E, Luttrull DK, Rehms AA, Degraziano JM, Ma XC, Gao F, Belford RE, Trier TT. Efficient Multistep Photoinitiated Electron Transfer in a Molecular Pentad. Science 1990; 248:199-201. [PMID: 17740135 DOI: 10.1126/science.248.4952.199] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A synthetic five-part molecular device has been prepared that uses a multistep electron transfer strategy similar to that of photosynthetic organisms to capture light energy and convert it to chemical potential in the form of long-lived charge separation. It consists of two covalently linked porphyrin moieties, one containing a zinc ion (P(Zn)) and the other present as the free base (P). The metailated porphyrin bears a carotenoid polyene (C) and the other a diquinone species (Q(A)-Q(B)). Excitation of the free-base porphyrin in a chloroform solution of the pentad yields an initial charge-separated state, C-P(Zn)-P(.+).-Q(A)(-)-Q(B), with a quantum yield of 0.85. Subsequent electron transfer steps lead to a final charge-separated state, C(.+)-P(Zn)-P-Q(A)-Q(B)(.-), which is formed with an overall quantum yield of 0.83 and has a lifetime of 55 microseconds. Irradiation of the free-base form of the pentad, C-P-P-Q(A)-Q(B), gives a similar charge-separated state with a lower quantum yield (0.15 in dichloromethane), although the lifetime is increased to approximately 340 microseconds. The artificial photosynthetic system preserves a significant fraction ( approximately 1.0 electron volt) of the initial excitation energy (1.9 electron volts) in the long-lived, charge-separated state.
Collapse
|
|
35 |
202 |
20
|
Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, Downing RJ, Dzierzak E. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 2000; 13:423-31. [PMID: 11070161 DOI: 10.1016/s1074-7613(00)00042-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The AML1:CBFbeta transcription factor complex is essential for definitive hematopoiesis. Null mutations in mouse AML1 result in midgestational lethality with a complete lack of fetal liver hematopoiesis. While the cell autonomous nature and expression pattern of AML1 suggest an intrinsic role for this transcription factor in the developing hematopoietic system, no direct link to a functional cell type has been made. Here, we examine the consequences of AML1 loss in hematopoietic stem cells (HSC) of the mouse embryo. We demonstrate an absolute requirement for AML1 in functional HSCs. Moreover, haploinsufficiency results in a dramatic change in the temporal and spatial distribution of HSCs, leading to their early appearance in the normal position in the aorta-gonad-mesonephros region and also in the yolk sac.
Collapse
|
|
25 |
200 |
21
|
Rodrigues CM, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ. Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ 1999; 6:842-54. [PMID: 10510466 DOI: 10.1038/sj.cdd.4400560] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The hydrophilic bile salt ursodeoxycholic acid (UDCA) is a potent inhibitor of apoptosis. In this paper, we further characterize the mechanism by which UDCA inhibits apoptosis induced by deoxycholic acid, okadaic acid and transforming growth factor beta1 in primary rat hepatocytes. Our data indicate that coincubation of cells with UDCA and each of the apoptosis-inducing agents was associated with an approximately 80% inhibition of nuclear fragmentation (P<0.001). Moreover, UDCA prevented mitochondrial release of cytochrome c into the cytoplasm by 70 - 75% (P<0.001), thereby, inhibiting subsequent activation of DEVD-specific caspases and cleavage of poly(ADP-ribose) polymerase. Each of the apoptosis-inducing agents decreased mitochondrial transmembrane potential and increased mitochondrial-associated Bax protein levels. Coincubation with UDCA was associated with significant inhibition of these mitochondrial membrane alterations. The results suggest that the mechanism by which UDCA inhibits apoptosis involves an interplay of events in which both depolarization and channel-forming activity of the mitochondrial membrane are inhibited.
Collapse
|
|
26 |
191 |
22
|
Na SY, Kang BY, Chung SW, Han SJ, Ma X, Trinchieri G, Im SY, Lee JW, Kim TS. Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFkappaB. J Biol Chem 1999; 274:7674-80. [PMID: 10075655 DOI: 10.1074/jbc.274.12.7674] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) increases the production of interleukin-12 (IL-12) from mouse macrophages via a kappaB site within the IL-12 p40 promoter. In this study, we found that retinoids inhibit this LPS-stimulated production of IL-12 in a dose-dependent manner. The NFkappaB components p50 and p65 bound retinoid X receptor (RXR) in a ligand-independent manner in vitro, and the interaction interfaces involved the p50 residues 1-245, the p65 residues 194-441, and the N-terminal A/B/C domains of RXR. Activation of macrophages by LPS resulted in markedly enhanced binding activities to the kappaB site, which significantly decreased upon addition of retinoids, as demonstrated by the electrophoretic mobility shift assays. In cotransfections of CV-1 and HeLa cells, RXR also inhibited the NFkappaB transactivation in a ligand-dependent manner, whereas a mutant RXR lacking the AF2 transactivation domain, which serves as ligand-dependent binding sites for transcription integrators SRC-1 and p300, was without any effect. In addition, coexpression of increasing amounts of SRC-1 or p300 relieved the retinoid-mediated inhibition of the NFkappaB transactivation. From these results, we propose that retinoid-mediated suppression of the IL-12 production from LPS-activated macrophages may involve both inhibition of the NFkappaB-DNA interactions and competitive recruitment of transcription integrators between NFkappaB and RXR.
Collapse
|
|
26 |
187 |
23
|
Barg S, Ma X, Eliasson L, Galvanovskis J, Göpel SO, Obermüller S, Platzer J, Renström E, Trus M, Atlas D, Striessnig J, Rorsman P. Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells. Biophys J 2001; 81:3308-23. [PMID: 11720994 PMCID: PMC1301788 DOI: 10.1016/s0006-3495(01)75964-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The association of L-type Ca(2+) channels to the secretory granules and its functional significance to secretion was investigated in mouse pancreatic B cells. Nonstationary fluctuation analysis showed that the B cell is equipped with <500 alpha1(C) L-type Ca(2+) channels, corresponding to a Ca(2+) channel density of 0.9 channels per microm(2). Analysis of the kinetics of exocytosis during voltage-clamp depolarizations revealed an early component that reached a peak rate of 1.1 pFs(-1) (approximately 650 granules/s) 25 ms after onset of the pulse and is completed within approximately 100 ms. This component represents a subset of approximately 60 granules situated in the immediate vicinity of the L-type Ca(2+) channels, corresponding to approximately 10% of the readily releasable pool of granules. Experiments involving photorelease of caged Ca(2+) revealed that the rate of exocytosis was half-maximal at a cytoplasmic Ca(2+) concentration of 17 microM, and concentrations >25 microM are required to attain the rate of exocytosis observed during voltage-clamp depolarizations. The rapid component of exocytosis was not affected by inclusion of millimolar concentrations of the Ca(2+) buffer EGTA but abolished by addition of exogenous L(C753-893), the 140 amino acids of the cytoplasmic loop connecting the 2(nd) and 3(rd) transmembrane region of the alpha1(C) L-type Ca(2+) channel, which has been proposed to tether the Ca(2+) channels to the secretory granules. In keeping with the idea that secretion is determined by Ca(2+) influx through individual Ca(2+) channels, exocytosis triggered by brief (15 ms) depolarizations was enhanced 2.5-fold by the Ca(2+) channel agonist BayK8644 and 3.5-fold by elevating extracellular Ca(2+) from 2.6 to 10 mM. Recordings of single Ca(2+) channel activity revealed that patches predominantly contained no channels or many active channels. We propose that several Ca(2+) channels associate with a single granule thus forming a functional unit. This arrangement is important in a cell with few Ca(2+) channels as it ensures maximum usage of the Ca(2+) entering the cell while minimizing the influence of stochastic variations of the Ca(2+) channel activity.
Collapse
|
research-article |
24 |
187 |
24
|
Ma X, Fan PX, Li LS, Qiao SY, Zhang GL, Li DF. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J Anim Sci 2013; 90 Suppl 4:266-8. [PMID: 23365351 DOI: 10.2527/jas.50965] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Postweaning diarrhea is one of the most common causes of morbidity and mortality in weanling piglets. Feeding sodium butyrate to weanling piglets decreased the incidence of diarrhea, but the mechanism has not been fully elucidated. The present study was to evaluate the effect of sodium butyrate on diarrhea in relation to wound healing of intestinal barrier using IPEC-J2 cell model. Cultured cells were scratched to induce wound and then were treated with 4 mM sodium butyrate. The results showed that supplementation of the cells with sodium butyrate significantly promoted the process of wound healing, indicating the protective effects of butyrate on the intestinal mucosa. Butyrate treatment enhanced mRNA expression of the intestinal mucosal tight junction proteins occludin and zonula occluden protein-1 (P < 0.05), which suggested that the promotion of wound healing by butyrate is related to the maintenance of the function of the intestinal barrier. In addition, in the butyrate-treated group, intestinal total superoxide dismutase and glutathione peroxidase (P < 0.05), two of the main antioxidant enzymes, as well as glutathione (P < 0.05), one of the nonenzymatic antioxidant components, were enhanced whereas the malondialdehyde level, a marker of free radical mediated lipid peroxidation injury, was decreased (P < 0.05) compared with the control group. Collectively, these results indicate that dietary sodium butyrate might, at least partly, play an important role in recovering the intestinal tight junctions having a positive effect on maintaining the gut integrity.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
186 |
25
|
Zhang J, Chang CZ, Tang P, Zhang Z, Feng X, Li K, Wang LL, Chen X, Liu C, Duan W, He K, Xue QK, Ma X, Wang Y. Topology-Driven Magnetic Quantum Phase Transition in Topological Insulators. Science 2013; 339:1582-6. [DOI: 10.1126/science.1230905] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
12 |
179 |