1
|
Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science 2014; 344:616-9. [DOI: 10.1126/science.1253150] [Citation(s) in RCA: 905] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
11 |
905 |
2
|
Fu Q, Li WX, Yao Y, Liu H, Su HY, Ma D, Gu XK, Chen L, Wang Z, Zhang H, Wang B, Bao X. Interface-Confined Ferrous Centers for Catalytic Oxidation. Science 2010; 328:1141-4. [DOI: 10.1126/science.1188267] [Citation(s) in RCA: 757] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
15 |
757 |
3
|
Bao X, Liu C, Fang J, Li X. Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr Res 2001; 332:67-74. [PMID: 11403089 DOI: 10.1016/s0008-6215(01)00075-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A polysaccharide isolated from spores of the fungus, Ganoderma lucidum, was found to be a complex glucan. On the basis of compositional and methylation analyses, periodate oxidation, Smith degradation, 1D and 2D NMR, and ESIMS experiments of the native polysaccharide and its degraded products, the polysaccharide was shown to have a backbone of beta-(1-->3)-linked D-glucopyranosyl residues, with branches of mono-, di- and oligosaccharide side chains substituting at the C-6 of the glucosyl residues in the main chain. Conformational analysis in aqueous solution and immunological activities of the native and degraded glucans were also investigated. The results suggested that the degree of substitution on the main chain and the length of side chains may be very important factors in determining the conformation and the biological activities of beta-(1-->3)-linked glucans.
Collapse
|
|
24 |
147 |
4
|
Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 1996; 62:4648-51. [PMID: 8953736 PMCID: PMC168291 DOI: 10.1128/aem.62.12.4648-4651.1996] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Thermus thermophilus xylA gene encoding xylose (glucose) isomerase was cloned and expressed in Saccharomyces cerevisiae under the control of the yeast PGK1 promoter. The recombinant xylose isomerase showed the highest activity at 85 degrees C with a specific activity of 1.0 U mg-1. A new functional metabolic pathway in S. cerevisiae with ethanol formation during oxygen-limited xylose fermentation was demonstrated. Xylitol and acetic acid were also formed during the fermentation.
Collapse
|
research-article |
29 |
146 |
5
|
Bao X, Lu C, Frangos JA. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler Thromb Vasc Biol 1999; 19:996-1003. [PMID: 10195928 DOI: 10.1161/01.atv.19.4.996] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three well-defined laminar flow profiles were created to distinguish the influence of a gradient in shear and steady shear on platelet-derived growth factor A (PDGF-A) and monocyte chemoattractant protein-1 (MCP-1) expression in human endothelial cells. The flow profiles (16 dyne/cm2 maximum shear stress) were ramp flow (shear stress smoothly transited at flow onset), step flow (shear stress abruptly applied at flow onset), and impulse flow (shear stress abruptly applied for 3 s only). Ramp flow induced only minor expression of PDGF-A and did not increase MCP-1 expression. Step flow increased PDGF-A and MCP-1 mRNA levels 3- and 2-fold at 1.5 hours, respectively, relative to ramp flow. In contrast, impulse flow increased PDGF-A and MCP-1 expression 6- and 7-fold at 1.5 hours, and these high levels were sustained for at least 4 hours. These results indicate that a temporal gradient in shear (impulse flow and the onset of step flow) and steady shear (ramp flow and the steady component of step flow) stimulates and diminishes the expression of PDGF-A and MCP-1, respectively. NO synthase inhibitor NG-amino-L-arginine (L-NAA) was found to markedly enhance MCP-1 and PDGF-A expression induced by step flow, but decrease their expression induced by impulse flow, in a dose-dependent manner. NO donor spermine-NONOate (SPR/NO) dose-dependently reduced the MCP-1 and PDGF-A expression induced by impulse flow. Moreover, impulse flow was found to stimulate sustained (4 hours) I kappa B-alpha degradation and egr-1 mRNA induction. L-NAA prevented I kappa B-alpha degradation, whereas SPR/NO increased I kappa B-alpha resynthesis 2 hours after impulse flow. Both L-NAA and SPR/NO inhibited the impulse flow inducibility of egr-1 4 hours after the flow stimulation. The results show that both NO induced by steady shear and NO donor inhibit temporal gradient in shear-induced MCP-1 and PDGF-A expression by downregulation of their respective transcription factors NF kappa B and egr-1, whereas NO induced by impulse flow stimulates MCP-1 and PDGF-A expression by upregulation of the transcription factors. The above findings suggest distinct roles of temporal gradient in shear and steady shear in atherogenesis in vivo.
Collapse
|
|
26 |
143 |
6
|
Bao X, Muhler M, Schedel-Niedrig T, Schlögl R. Interaction of oxygen with silver at high temperature and atmospheric pressure: A spectroscopic and structural analysis of a strongly bound surface species. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:2249-2262. [PMID: 9986079 DOI: 10.1103/physrevb.54.2249] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
|
29 |
142 |
7
|
Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 1997; 48:218-24. [PMID: 9299780 DOI: 10.1007/s002530051041] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Saccharomyces cerevisiae was transformed with the Pichia stipitis CBS 6054 XYL1 and XYL2 genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) respectively. The XYL1 and XYL2 genes were placed under the control of the alcohol dehydrogenase 1 (ADH1) and phosphoglycerate kinase (PGK1) promoters in the yeast vector YEp24. Different vector constructions were made resulting in different specific activities of XR and XDH. The XR:XDH ratio (ratio of specific enzyme activities) of the transformed S. cerevisiae strains varied from 17.5 to 0.06. In order to enhance xylose utilisation in the XYL1-, XYL2-containing S. cerevisiae strains, the native genes encoding transketolase and transaldolase were also overexpressed. A strain with an XR:XDH ratio of 17.5 formed 0.82 g xylitol/g consumed xylose, whereas a strain with an XR:XDH ratio of 5.0 formed 0.58 g xylitol/g xylose. The strain with an XR:XDH ratio of 0.06, on the other hand, formed no xylitol and less glycerol and acetic acid compared with strains with the higher XR:XDH ratios. In addition, the strain with an XR:XDH ratio of 0.06 produced more ethanol than the other strains.
Collapse
|
|
28 |
129 |
8
|
Bao X, Duan J, Fang X, Fang J. Chemical modifications of the (1-->3)-alpha-D-glucan from spores of Ganoderma lucidum and investigation of their physicochemical properties and immunological activity. Carbohydr Res 2001; 336:127-40. [PMID: 11689183 DOI: 10.1016/s0008-6215(01)00238-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A linear (1-->3)-alpha-D-glucan was isolated from the spores of Ganoderma lucidum (Fr.) Karst. Six different functionalized derivatives of the (1-->3)-alpha-D-glucan-aminopropylated, hydroxyethylated, sulfated, carboxymethylated, carboxymethylated and sulfated, and benzylamidated-carboxymethylated-with varying degrees of substitution were synthesized. The structural features and physicochemical properties of all derivatives were investigated by means of chemical and spectral analyses, and their effects on lymphocyte proliferation and antibody production were tested in vitro and in vivo. In general, the structural and physicochemical properties, and lymphocyte proliferation activity of all samples varied with the functionalized groups and the degree of substitution. The results of immunological assays indicated that some modified derivatives had potent stimulating effects on lymphocyte proliferation and antibody production and the introduction of carboxymethyl group with low degree of substitution (DS<0.28) was the best choice on the improvement of the immunostimulating activity.
Collapse
|
|
24 |
124 |
9
|
Uttamsingh S, Bao X, Nguyen KT, Bhanot M, Gong J, Chan JLK, Liu F, Chu TT, Wang LH. Synergistic effect between EGF and TGF-beta1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene 2007; 27:2626-34. [PMID: 17982486 DOI: 10.1038/sj.onc.1210915] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transforming growth factor (TGF)-beta1 has a biphasic effect on rat intestinal epithelial (RIE) cells. By itself, TGF-beta1 functions as a tumor suppressor by inhibiting the growth, migration and invasion of RIE cells. We show in this study that in conjunction with epidermal growth factor (EGF), TGF-beta1 helped to augment migration, invasion and anchorage-independent growth (AIG) compared to that by EGF alone. EGF plus TGF-beta1 induced a dramatic morphological change characteristic of epithelial-mesenchymal transition (EMT). The mechanism for this enhanced effect of TGF-beta1 and EGF on oncogenic properties was explored by analysis of EGF- and TGF-beta1-mediated signaling pathways and complementary DNA arrays. TGF-beta1 augmented EGF-mediated signaling of mitogen-activated protein kinase (MAPK) and AKT by enhancing and prolonging the activation of the former and prolonging the activation of the latter. Inhibition of MAPK, but not phosphoinositide-3 kinase (PI3K), abolished TGF-beta1 plus EGF-induced EMT and downregulation of E-cadherin at mRNA and protein levels. By contrast, cell migration and invasion were sensitive to inhibition of either MAPK or PI3 kinase. TGF-beta1 plus EGF-induced AIG was significantly more resistant to inhibition of PI3K and MAPK compared to that induced by EGF alone. EGF and TGF-beta1 synergistically induced the expression of a series of proteases including matrix metalloproteinase (MMP) 1 (collagenase), MMP3, MMP9, MMP10, MMP14 and cathepsin. Among them, the expression of MMP1, MMP3, MMP9 and MMP10 was MAPK dependent. Inhibition of the MMPs or cathepsin significantly blocked EGF plus TGF-beta1-induced invasion, but had no effect on colony formation. Phospholipase C (PLC) and Cox2 induced by EGF plus TGF-beta1 also played a significant role in invasion, whereas PLC was also important for colony formation. Our study reveals specific signaling functions and induction of genes differentially required for enhanced effect of EGF- and TGF-beta1-induced oncogenic properties, and helps to explain the tumor-promoting effect of TGF-beta1 in human cancer with elevated expression or activation of TGF-beta1 and receptor protein tyrosine kinases.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
120 |
10
|
White CR, Haidekker M, Bao X, Frangos JA. Temporal Gradients in Shear, but Not Spatial Gradients, Stimulate Endothelial Cell Proliferation. Circulation 2001; 103:2508-13. [PMID: 11369693 DOI: 10.1161/01.cir.103.20.2508] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
—The effect of temporal and spatial gradients in shear on primary human endothelial cell (HUVEC) proliferation was investigated. The sudden-expansion flow chamber (SEFC) model was used to differentiate the effect of temporal gradients in shear from that of spatial gradients. With a sudden onset of flow, cells are exposed to both temporal and spatial gradients of shear. The temporal gradients can be eliminated by slowly ramping up the flow.
Methods and Results
—HUVEC proliferation in the SEFC remained unstimulated when the onset of flow was slowly ramped. Sudden onset of flow stimulated a 105% increase of HUVEC proliferation (relative to ramped onset) within the region of flow reattachment. To further separate temporal and spatial gradients, a conventional parallel-plate flow chamber was used. A single 0.5-second impulse of 10 dyne/cm
2
increased HUVEC proliferation 54±3% relative to control. When flow was slowly ramped over 30 seconds, HUVEC proliferation was not significantly different from controls. Steady laminar shear over 20 minutes inhibited HUVEC proliferation relative to controls regardless of step (36±8%) or ramp (21±5%) onsets of flow.
Conclusions
—The results indicate that temporal gradients in shear stress stimulate endothelial cell proliferation, whereas spatial gradients affect endothelial proliferation no differently than steady uniform shear stress.
Collapse
|
|
24 |
112 |
11
|
Li X, Ward C, Thien F, Bish R, Bamford T, Bao X, Bailey M, Wilson JW, Haydn Walters E. An antiinflammatory effect of salmeterol, a long-acting beta(2) agonist, assessed in airway biopsies and bronchoalveolar lavage in asthma. Am J Respir Crit Care Med 1999; 160:1493-9. [PMID: 10556111 DOI: 10.1164/ajrccm.160.5.9811052] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The addition of long-acting beta(2) agonists to inhaled corticosteroid (ICS) therapy in symptomatic patients with asthma improves clinical status more than increasing the dose of ICS. It has been suggested that these benefits could be at the cost of an increase in airway inflammation, but few histopathological studies have been performed in the relevant group. In a double-blind, parallel-group, placebo-controlled study, we randomly assigned 50 symptomatic patients with asthma who were receiving ICS (range, 100 -500 microgram/d) to 12 wk of supplementary treatment with salmeterol (50 microgram twice daily) or fluticasone (100 microgram twice daily) or placebo. Bronchial biopsies and BAL were obtained from 45 patients before and after treatment and analyzed. After treatment with salmeterol there was no deterioration of airway inflammation as assessed by mast cells, lymphocytes, or macrophages in BAL or biopsies, but rather a significant fall in EG1-positive eosinophils in the lamina propria (from a median 18.3 to 7.6 cells/mm, p = 0.01), which was not seen after treatment with fluticasone. The only cellular effect of added fluticasone was a decrease in BAL lymphocyte activation. There was a concurrent improvement in clinical status, more marked with salmeterol than with increased ICS. Thus, adding salmeterol to ICS is not associated with increased "allergic" airway inflammation, but conversely with a complementary antieosinophil effect.
Collapse
|
Clinical Trial |
26 |
111 |
12
|
|
|
34 |
87 |
13
|
Wang HJ, Cunnold DM, Bao X. A critical analysis of Stratospheric Aerosol and Gas Experiment ozone trends. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96jd00581] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
29 |
87 |
14
|
Barrett RT, Bao X, Miselis RR, Altschuler SM. Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology 1994; 107:728-37. [PMID: 8076758 DOI: 10.1016/0016-5085(94)90120-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND/AIMS Brain stem premotor neurons control swallowing through contacts with both afferent neurons and motoneurons. The location and connectivity of premotor neurons innervating the esophagus was determined using pseudorabies virus. METHODS In 30 rats, viral injections were made into either the cervical or subdiaphragmatic esophagus, cricothyroid muscle, or stomach. After a 48-62-hour survival, brain sections were processed immunocytochemically for the virus. RESULTS Neuronal labeling was limited to the compact formation of the nucleus ambiguus for survivals of 48-54 hours. At 57-62-hour survivals, virus-labeled second-order neurons (premotor neurons) were localized to the central subnucleus of nucleus of the solitary tract. Injections in the cricothyroid muscle and stomach resulted in distinct patterns of motoneuronal labeling in the nucleus ambiguus and dorsal motor nucleus and premotor neuronal labeling in the nucleus of the solitary tract. CONCLUSIONS Virus-labeled premotor neurons in the nucleus of the solitary tract occurred as a result of retrograde transport of the virus from the nucleus ambiguus because no viral antigen was present in the tractus solitarius. The esophagus is controlled by a central circuit whereby esophageal vagal afferents terminate on premotor neurons in the central subnucleus that in turn innervate esophageal motoneurons in the nucleus ambiguus.
Collapse
|
|
31 |
84 |
15
|
Yin M, Ren X, Zhang X, Luo Y, Wang G, Huang K, Feng S, Bao X, Huang K, He X, Liang P, Wang Z, Tang H, He J, Zhang B. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene 2014; 34:691-703. [PMID: 24469051 DOI: 10.1038/onc.2013.597] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/10/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022]
Abstract
The tumor suppressor p53, nuclear factor-κB (NF-κB) and reactive oxygen species (ROS) have crucial roles in tumorigenesis, although the mechanisms of cross talk between these factors remain largely unknown. Here we report that miR-506 upregulation occurs in 83% of lung cancer patients (156 cases), and its expression highly correlates with ROS. Ectopic expression of miR-506 inhibits NF-κB p65 expression, induces ROS accumulation and then activates p53 to suppress lung cancer cell viability, but not in normal cells. Interestingly, p53 promotes miR-506 expression level, indicating that miR-506 mediates cross talk between p53, NF-κB p65 and ROS. Furthermore, we demonstrated that miR-506 mimics inhibited tumorigenesis in vivo, implicating that miR-506 might be a potential therapeutic molecule for selective killing of lung cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
79 |
16
|
Torres J, Palmela C, Brito H, Bao X, Ruiqi H, Moura-Santos P, Pereira da Silva J, Oliveira A, Vieira C, Perez K, Itzkowitz SH, Colombel JF, Humbert L, Rainteau D, Cravo M, Rodrigues CM, Hu J. The gut microbiota, bile acids and their correlation in primary sclerosing cholangitis associated with inflammatory bowel disease. United European Gastroenterol J 2017; 6:112-122. [PMID: 29435321 DOI: 10.1177/2050640617708953] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Background Patients with primary sclerosing cholangitis associated with inflammatory bowel disease (PSC-IBD) have a very high risk of developing colorectal neoplasia. Alterations in the gut microbiota and/or gut bile acids could account for the increase in this risk. However, no studies have yet investigated the net result of cholestasis and a potentially altered bile acid pool interacting with a dysbiotic gut flora in the inflamed colon of PSC-IBD. Aim The aim of this study was to compare the gut microbiota and stool bile acid profiles, as well as and their correlation in patients with PSC-IBD and inflammatory bowel disease alone. Methods Thirty patients with extensive colitis (15 with concomitant primary sclerosing cholangitis) were prospectively recruited and fresh stool samples were collected. The microbiota composition in stool was profiled using bacterial 16S rRNA sequencing. Stool bile acids were assessed by high-performance liquid chromatography tandem mass spectrometry. Results The total stool bile acid pool was significantly reduced in PSC-IBD. Although no major differences were observed in the individual bile acid species in stool, their overall combination allowed a good separation between PSC-IBD and inflammatory bowel disease. Compared with inflammatory bowel disease alone, PSC-IBD patients demonstrated a different gut microbiota composition with enrichment in Ruminococcus and Fusobacterium genus compared with inflammatory bowel disease. At the operational taxonomic unit level major shifts were observed within the Firmicutes (73%) and Bacteroidetes phyla (17%). Specific microbiota-bile acid correlations were observed in PSC-IBD, where 12% of the operational taxonomic units strongly correlated with stool bile acids, compared with only 0.4% in non-PSC-IBD. Conclusions Patients with PSC-IBD had distinct microbiota and microbiota-stool bile acid correlations as compared with inflammatory bowel disease. Whether these changes are associated with, or may predispose to, an increased risk of colorectal neoplasia needs to be further clarified.
Collapse
|
Journal Article |
8 |
78 |
17
|
Bao X, Clark CB, Frangos JA. Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43. Am J Physiol Heart Circ Physiol 2000; 278:H1598-605. [PMID: 10775139 DOI: 10.1152/ajpheart.2000.278.5.h1598] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of a temporal gradient in shear and steady shear on the activity of extracellular signal-regulated protein kinases 1 and 2 (ERK1/ERK2), c-fos, and connexin43 (Cx43) in human endothelial cells was investigated. Three laminar flow profiles (16 dyn/cm(2)), including impulse flow (shear stress abruptly applied for 3 s), ramp flow (shear stress smoothly transitioned at flow onset), and step flow (shear stress abruptly applied at flow onset) were utilized. Relative to static controls, impulse flow stimulated the phosphorylation of ERK1/ERK2 8.5- to 7.5-fold, respectively at 10 min, as well as the mRNA expression of c-fos 51-fold at 30 min, and Cx43 8-fold at 90 min. These high levels of mRNA expression were sustained for at least 4 h. In contrast, ramp flow was unable to significantly induce gene expression and even inhibited the activation of ERK1/ERK2. Step flow, which contains both a sharp temporal gradient in shear stress and a steady shear component, elicited only moderate and transient responses, indicating the distinct role of these fluid shear stimuli in endothelial signal transduction. The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 inhibited impulse flow-induced c-fos and Cx43 mRNA expression. Thus these findings implicate the involvement of ERK1/ERK2, c-fos, and Cx43 in the signaling pathway induced by the temporal gradient in shear.
Collapse
|
|
25 |
77 |
18
|
Altschuler SM, Bao X, Miselis RR. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat. J Comp Neurol 1994; 342:538-50. [PMID: 8040364 DOI: 10.1002/cne.903420404] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The tracer, cholera toxin-horseradish peroxidase, was used to determine the dendritic architecture and organization of hypoglossal motoneurons in the rat. In 22 animals, the tracer was injected unilaterally into either the geniohyoid, genioglossus, hyoglossus, or styloglossus muscle. Within the hypoglossal nucleus, motoneurons innervating the extrinsic tongue muscles were functionally organized. Geniohyoid and genioglossus motoneurons were located within the ventrolateral and ventromedial subnuclei, respectively, while hyoglossus and styloglossus motoneurons were located within the dorsal subnucleus. Motoneurons located in all subnuclear divisions were found to have extensive dendrites that extended laterally into the adjacent reticular formation and medially to the ependyma. Less extensive extranuclear dendritic projections were found in the dorsal vagal complex and median raphe. Prominent rostrocaudal and mediolateral dendritic bundling was evident within the ventral subnuclei and dorsal subnucleus, respectively. Dendritic projections were also found extending inter- and intrasubnuclearly with a distinct pattern for each muscle. These data suggest that the varied and extensive dendritic arborizations of hypoglossal motoneurons provide the potential for a wide range of afferent contacts for, and interactions among, motoneurons that could contribute to the modulation of their activity. Specifically, the prominent dendritic bundling may provide an anatomic substrate whereby motoneurons innervating a specific muscle receive and integrate similar afferent input and are thus modulated as a functional unit. In contrast, the extensive intermingling of both inter- and intrasubnuclear dendrites within the hypoglossal nucleus may provide a mechanism for the coordination of different muscles, acting synergistically or antagonistically to produce a tongue movement.
Collapse
|
|
31 |
76 |
19
|
Bao X, Lu C, Frangos JA. Mechanism of temporal gradients in shear-induced ERK1/2 activation and proliferation in endothelial cells. Am J Physiol Heart Circ Physiol 2001; 281:H22-9. [PMID: 11406464 DOI: 10.1152/ajpheart.2001.281.1.h22] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the current study was to investigate the intracellular signaling cascade that leads to temporal gradients in shear (TGS)-induced endothelial cell proliferation, with a focus on the involvement of extracellular signal-regulated kinases 1 and 2 (ERK1/2). With the use of well-defined pulsatile, impulse, step, and ramp laminar flow profiles, we found that TGS (impulse flow and pulsatile flow) induced an enhanced and sustained (>30 min) phosphorylation of ERK1/2 relative to step flow (which contains a step increase in shear followed by steady shear), whereas steady shear (ramp flow) alone downregulated activated ERK1/2. Nitric oxide (NO) was found to mediate both the stimulatory effect of TGS and the inhibitory effect of steady shear on endothelial ERK1/2 phosphorylation. Reactive oxygen species (ROS) were also demonstrated to be associated with TGS-induced ERK1/2 phosphorylation. Both G(q/11) and G(i3) were necessary for the activation of ERK1/2 by TGS. Finally, the TGS-induced endothelial proliferative response was abolished by ERK1/2 inhibition. Our study demonstrated the essential role of G proteins, NO, and ROS in TGS-dependent ERK1/2 activation and proliferative response in vascular endothelial cells.
Collapse
|
|
24 |
70 |
20
|
Bao X, Zhang J, Huang G, Yan J, Xu C, Dou Z, Sun C, Zhang H. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis 2021; 12:215. [PMID: 33637686 PMCID: PMC7910460 DOI: 10.1038/s41419-021-03505-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
Collapse
|
Review |
4 |
69 |
21
|
Bao X, Focke M, Pollard M, Ohlrogge J. Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:39-50. [PMID: 10792819 DOI: 10.1046/j.1365-313x.2000.00712.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The principal supply of carbon precursors for fatty acid synthesis in leaf tissue has been a much debated topic, with some experiments suggesting a direct supply from the C3 products of photosynthetic carbon fixation and colleagues suggesting the utilization of free acetate (for which concentrations in leaves in the range of 0.05-1.4 mM have been reported). To address this issue we first reassessed the in vivo rate of fatty acid synthesis using a new method, that of [13C]carbon dioxide labeling of intact Arabidopsis plants with the subsequent analysis of fatty acids by gas chromatography-mass spectrometry (GC-MS). This method gave an average value of 2.3 mmoles carbon atoms h-1 mg chlorophyll-1 for photosynthetic tissues. The method was extended by isotopic dilution analysis to measure the rate of fatty acid synthesis in the dark. There was negligible fatty acid synthesis (< 5% of the rate in the light) in the dark. In addition, the method allowed an estimate of the absolute rate of fatty acid degradation of about 4% of the total fatty acid content per day. With the in vivo rate of fatty acid synthesis in the light defined, if the bulk tissue acetate concentration available for fatty acid synthesis is 1 mM, this acetate pool can sustain fatty acid synthesis for approximately 60 min. When the leaves of Arabidopsis, barley and pea were given a 5 min pulse of [14C]carbon dioxide, the label rapidly appeared in fatty acids with a lag phase of less than 2-3 min. Continuous labeling with [14C]carbon dioxide, for up to 1 h, showed a similar result. Furthermore, 14C-label in free acetate was less than 5% of that in fatty acids. In conclusion, these data suggest that either the bulk pool of acetate is not involved in fatty acid synthesis or the concentration of acetate must be less than 0.05 mM under strong illumination.
Collapse
|
|
25 |
62 |
22
|
Bao X, Muhler M, Pettinger B, Uchida Y, Lehmpfuhl G, Schl�gl R, Ertl G. The effect of water on the formation of strongly bound oxygen on silver surfaces. Catal Letters 1995. [DOI: 10.1007/bf00806112] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
30 |
61 |
23
|
Bao X, Lehmpfuhl G, Weinberg G, Schlögl R, Ertl G. Variation of the morphology of silver surfaces by thermal and catalytic etching. ACTA ACUST UNITED AC 1992. [DOI: 10.1039/ft9928800865] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
33 |
55 |
24
|
Liang C, Peng H, Bao X, Nie L, Yao S. Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine. Analyst 1999; 124:1781-5. [PMID: 10746309 DOI: 10.1039/a905112k] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bio-mimic bulk acoustic wave (BAW) sensor was fabricated by coating the caffeine (CAF) template molecular imprinting polymer (MIP). This sensor exhibited high selectivity and a sensitive mass response to CAF. The response range of the sensor was between 5.0 x 10(-9) and 1.0 x 10(-4) M with a detection limit of 5.0 x 10(-9) M at pH 8.0. Recoveries were 96.1-105.6%. Influencing factors were investigated in detail and optimized. When employed to detect real samples, the proposed method proved to be a convenient method with the advantages of high sensitivity, good selectivity and ease of handling.
Collapse
|
|
26 |
54 |
25
|
Lu Y, Ma D, Xu Z, Tian Z, Bao X, Lin L. A high coking-resistance catalyst for methane aromatization. Chem Commun (Camb) 2001:2048-9. [PMID: 12240158 DOI: 10.1039/b105853n] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Steaming-dealuminated HZSM-5-supported molybdenum catalysts have been found to be high coking-resistance catalysts for methane aromatization reactions; compared with conventional catalysts, they give a much higher selectivity towards aromatics.
Collapse
|
|
24 |
54 |