1
|
Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Péquignot E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999; 402:187-91. [PMID: 10647011 DOI: 10.1038/46052] [Citation(s) in RCA: 656] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The recessive autosomal disorder known as ICF syndrome (for immunodeficiency, centromere instability and facial anomalies; Mendelian Inheritance in Man number 242860) is characterized by variable reductions in serum immunoglobulin levels which cause most ICF patients to succumb to infectious diseases before adulthood. Mild facial anomalies include hypertelorism, low-set ears, epicanthal folds and macroglossia. The cytogenetic abnormalities in lymphocytes are exuberant: juxtacentromeric heterochromatin is greatly elongated and thread-like in metaphase chromosomes, which is associated with the formation of complex multiradiate chromosomes. The same juxtacentromeric regions are subject to persistent interphase self-associations and are extruded into nuclear blebs or micronuclei. Abnormalities are largely confined to tracts of classical satellites 2 and 3 at juxtacentromeric regions of chromosomes 1, 9 and 16. Classical satellite DNA is normally heavily methylated at cytosine residues, but in ICF syndrome it is almost completely unmethylated in all tissues. ICF syndrome is the only genetic disorder known to involve constitutive abnormalities of genomic methylation patterns. Here we show that five unrelated ICF patients have mutations in both alleles of the gene that encodes DNA methyltransferase 3B (refs 5, 6). Cytosine methylation is essential for the organization and stabilization of a specific type of heterochromatin, and this methylation appears to be carried out by an enzyme specialized for the purpose.
Collapse
|
|
26 |
656 |
2
|
Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L. Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 1996; 380:347-51. [PMID: 8598930 DOI: 10.1038/380347a0] [Citation(s) in RCA: 301] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ligand-gated ion channels are multi-subunit complexes where each subunit-type is encoded by several related genes. Heterologous expression of any one of the neuronal nicotinic acetylcholine receptors (nAChR) alpha-type subunits, either alone or with any beta-type subunit, typically yields functional nAChR channels. A striking exception is the nAChR alpha5 subunit: although apparently complexed with beta2 and beta4 nAChR subunits in neurons, and expressed in a subset of neurons within the central and peripheral nervous systems, heterologous expression of alpha5, either alone or with any beta-type subunit has failed to yield functional channels. We demonstrate here that alpha5 does participate in nAChRs expressed in hetrologous systems and in primary neurons, and further that alpha5 contributes to the lining of functionally unique nAChR channels, but only if coexpressed with both another alpha- and beta-type subunit. Furthermore, channels containing the alpha5 subunit are potently activated and desensitized by nanomolar concentrations of nicotine.
Collapse
|
|
29 |
301 |
3
|
Shafer WM, Qu X, Waring AJ, Lehrer RI. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 1998; 95:1829-33. [PMID: 9465102 PMCID: PMC19198 DOI: 10.1073/pnas.95.4.1829] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1997] [Accepted: 12/08/1997] [Indexed: 02/06/2023] Open
Abstract
We have previously described the antibacterial capacity of protegrin-1 (PG-1), a cysteine-rich, cationic peptide from porcine leukocytes, against Neisseria gonorrhoeae. We now report genetic and biochemical evidence that gonococcal susceptibility to the lethal action of PG-1 and other structurally unrelated antibacterial peptides, including a peptide (LL-37) that is expressed constitutively by human granulocytes and testis and inducibly by keratinocytes, is modulated by an energy-dependent efflux system termed mtr. These results indicate that such efflux systems may enable mucosal pathogens like gonococci to resist endogenous antimicrobial peptides that are thought to act during infection.
Collapse
|
research-article |
27 |
298 |
4
|
Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, Rubie C, Hördt M, Towbin JA, Borggrefe M, Assmann G, Qu X, Somberg JC, Breithardt G, Oberti C, Funke H. KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet 1997; 17:267-8. [PMID: 9354783 DOI: 10.1038/ng1197-267] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
Letter |
28 |
281 |
5
|
Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E, Guccione E, Qu X, Chien M, Murty VV, Gaidano G, Inghirami G, Zhang P, Fischer S, Kalachikov SM, Russo J, Edelman I, Efstratiadis A, Dalla-Favera R. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 2001; 97:2098-104. [PMID: 11264177 DOI: 10.1182/blood.v97.7.2098] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletions of the 13q14 chromosome region are associated with B-cell chronic lymphocytic leukemia (B-CLL) and several other types of cancer, suggesting the presence of a tumor suppressor gene. In previous studies the minimal region of deletion (MDR) was mapped to a less than 300-kilobase (kb) interval bordered by the markers 173a12-82 and 138G4/1.3R. For the identification of the putative tumor suppressor gene, the entire MDR (approximately 347 kb) has been sequenced, and transcribed regions have been identified by exon trapping, EST-based full-length complementary DNA cloning, database homology searches, and computer-assisted gene prediction analyses. The MDR contains 2 pseudogenes and 3 transcribed genes: CAR, encoding a putative RING-finger containing protein; 1B4/Leu2, generating noncoding transcripts; and EST70/Leu1, probably representing another noncoding gene (longest open reading frame of 78 codons). These genes have been sequenced in 20 B-CLL cases with 13q14 hemizygous deletion, and no mutations were found. Moreover, no somatic variants were found in the entire MDR analyzed for nucleotide substitutions by a combination of direct sequencing and fluorescence-assisted mismatch analysis in 5 B-CLL cases displaying 13q14-monoallelic deletion. The nondeleted allele of the CAR and EST70/Leu1 genes was expressed in B-CLL specimens, including those with monoallelic loss, whereas no expression of 1B4/Leu2 was detectable in B-CLL, regardless of the 13q14 status. These results indicate that allelic loss and mutation of a gene within the MDR is an unlikely pathogenetic mechanism for B-CLL. However, haplo-insufficiency of one of the identified genes may contribute to tumorigenesis. (Blood. 2001;97:2098-2104)
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 13/ultrastructure
- DNA Mutational Analysis
- DNA, Complementary/genetics
- DNA, Neoplasm/genetics
- Expressed Sequence Tags
- Gene Expression Regulation, Leukemic
- Genes, Tumor Suppressor
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mice
- Molecular Sequence Data
- Proteins/genetics
- Pseudogenes
- RNA, Long Noncoding
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Sequence Deletion
- Transcription, Genetic
- Transferases
- Tumor Suppressor Proteins
Collapse
|
|
24 |
152 |
6
|
Qu X, Wirsén A, Albertsson AC. Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives. POLYMER 2000. [DOI: 10.1016/s0032-3861(99)00704-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
25 |
152 |
7
|
Cheng D, Chang CC, Qu X, Chang TY. Activation of acyl-coenzyme A:cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem 1995; 270:685-95. [PMID: 7822296 DOI: 10.1074/jbc.270.2.685] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes the conjugation of long chain fatty acid and cholesterol to form cholesteryl esters. It is an integral membrane protein located in the endoplasmic reticulum. Experiments performed in intact mammalian cells have shown that the rate of cholesteryl ester synthesis in intact cells, as well as the ACAT activity from cell extracts, are greatly activated by the addition of low density lipoprotein (LDL) or oxygenated sterols such as 25-hydroxycholesterol to the growth medium. However, the molecular mechanism(s) by which sterol(s) stimulate the ACAT activity remains to be elucidated. Recently, our laboratory reported the expression cloning of human ACAT cDNA (Chang, C. C. Y., Huh, H. Y., Cadigan, K. M., and Chang, T. Y. 1993) J. Biol. Chem. 268, 20747-20755). In the current study, we report the expression of human ACAT cDNA in insect Sf9 cells. Uninfected Sf9 cells do not express detectable ACAT-like activity. Infecting these cells with recombinant virus containing ACAT cDNA caused these cells to express high levels of ACAT protein and high levels of ACAT activity when assayed in vitro. The catalytic properties of ACAT expressed in these cells were found to be similar to those found in human tissue culture cells. The combination of high level of ACAT protein expression and the low level of cellular cholesterol content in the infected cells have provided us a novel opportunity to establish a simple cell-free system, whereby stimulation of ACAT by sterols can be readily demonstrated. Using this system, we have shown that cholesterol itself can serve as an ACAT activator in vitro, in addition to its role as an ACAT substrate. The current work provides the experimental basis to hypothesize that, inside mammalian cells, cholesterol itself may serve as a physiological regulator of ACAT.
Collapse
|
|
30 |
142 |
8
|
Qu X, Trent JO, Fokt I, Priebe W, Chaires JB. Allosteric, chiral-selective drug binding to DNA. Proc Natl Acad Sci U S A 2000; 97:12032-7. [PMID: 11027298 PMCID: PMC17289 DOI: 10.1073/pnas.200221397] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2000] [Indexed: 11/18/2022] Open
Abstract
The binding interactions of (-)-daunorubicin (WP900), a newly synthesized enantiomer of the anticancer drug (+)-daunorubicin, with right- and left-handed DNA, have been studied quantitatively by equilibrium dialysis, fluorescence spectroscopy, and circular dichroism. (+)-Daunorubicin binds selectively to right-handed DNA, whereas the enantiomeric WP900 ligand binds selectively to left-handed DNA. Further, binding of the enantiomeric pair to DNA is clearly chirally selective, and each of the enantiomers was found to act as an allosteric effector of DNA conformation. Under solution conditions that initially favored the left-handed conformation of [poly(dGdC)](2), (+)-daunorubicin allosterically converted the polynucleotide to a right-handed intercalated form. In contrast, under solution conditions that initially favored the right-handed conformation of [poly(dGdC)](2), WP900 converted the polynucleotide to a left-handed form. Molecular dynamics studies by using the amber force field resulted in a stereochemically feasible model for the intercalation of WP900 into left-handed DNA. The chiral selectivity observed for the DNA binding of the daunorubicin/WP900 enantiomeric pair is far greater than the selectivity previously reported for a variety of chiral metal complexes. These results open a new avenue for the rational design of potential anticancer agents that target left-handed DNA.
Collapse
|
research-article |
25 |
131 |
9
|
Wang ME, Tejpal N, Qu X, Yu J, Okamoto M, Stepkowski SM, Kahan BD. Immunosuppressive effects of FTY720 alone or in combination with cyclosporine and/or sirolimus. Transplantation 1998; 65:899-905. [PMID: 9565092 DOI: 10.1097/00007890-199804150-00007] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We examined the ability of FTY720, a novel immunosuppressant that prolongs the survival of allografts in experimental animal models, to potentiate the immunosuppressive effects of cyclosporine (CsA) and/or sirolimus (SRL) in vitro and in vivo. METHODS FTY720 alone (10-5000 ng/ml) or in combination with other drugs was added to human peripheral blood lymphocytes (PBLs) undergoing stimulation in vitro with phytohemagglutinin (PHA) or OKT3 monoclonal antibody. The combination index (CI) values were calculated to evaluate the nature of the interactions between FTY720 and CsA and/or SRL: CI values <1 reflect synergistic, CI=1, additive, and CI>1, antagonistic interactions. In addition, Wistar Furth (RT1u) rat recipients of Buffalo (RT1b) heart allografts were treated with FTY720 alone or in combination with other agents. FTY720 alone was also tested to block small bowel or liver allograft rejection in rats. RESULTS FTY720 alone produced only modest inhibition of the proliferation of human PBL stimulated with PHA or OKT3 monoclonal antibody. In combination with CsA or SRL, however, FTY720 produced synergistic effects, namely, CI values of 0.58 and 0.36, respectively. A 14-day course of FTY720 (0.05-8.0 mg/kg/day) by oral gavage prolonged heart allograft survival in dose-dependent fashion. Although a 14-day oral course of CsA (1.0 mg/kg/day) alone was ineffective (mean survival time=7.0+/-0.7 vs. 6.4+/-0.6 days in treated vs. untreated hosts), treatment with a combination of 1.0 mg/kg/day CsA and 0.1 mg/kg/day FTY720 extended allograft survival to 62.4+/-15.6 days (P<0.001; CI=0.15). Similarly, a 14-day oral course of 0.08 mg(kg/day SRL alone was ineffective (6.8+/-0.6 days; NS), but the combination of SRL with 0.5 mg/kg/day FTY720 extended the mean survival time to 34.4+/-8.8 days (CI=0.28). The CsA/SRL (0.5/0.08 mg/kg/day) combination acted synergistically with FTY720 (0.1 mg/kg/day) to prolong heart survivals to >60 days (CI=0.18). CONCLUSIONS FTY720 potentiates the immunosuppressive effects of CsA and/or SRL both in vitro (by inhibiting of T-cell proliferative response) and in vivo (by inhibiting allograft rejection).
Collapse
|
|
27 |
91 |
10
|
Kalachikov S, Migliazza A, Cayanis E, Fracchiolla NS, Bonaldo MF, Lawton L, Jelenc P, Ye X, Qu X, Chien M, Hauptschein R, Gaidano G, Vitolo U, Saglio G, Resegotti L, Brodjansky V, Yankovsky N, Zhang P, Soares MB, Russo J, Edelman IS, Efstratiadis A, Dalla-Favera R, Fischer SG. Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics 1997; 42:369-77. [PMID: 9205107 DOI: 10.1006/geno.1997.4747] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Frequent deletions and loss of heterozygosity in a segment of chromosome 13 (13q14) in cases of B-cell chronic lymphocytic leukemia (CLL) have suggested that this malignancy is caused by inactivation of an unknown tumor suppressor gene located in this region. Toward the identification of the putative CLL tumor suppressor, we have constructed a high-resolution physical map of YAC, PAC, and cosmid contigs covering 600 kb of the 13q14 genomic region. In addition to densely positioned genetic markers and STSs, this map was further annotated by localization of 32 transcribed sequences (ESTs) using a combination of exon trapping, direct cDNA selection, sample sequencing of cosmids and PACs, and homology searches. On the basis of these mapping data, allelic loss analyses at 13q14 using CLL tumor samples allowed narrowing of the genomic segment encompassing the putative CLL gene to <300 kb. Twenty-three ESTs located within this minimally deleted region are candidate exons for the CLL-associated tumor suppressor gene.
Collapse
|
|
28 |
91 |
11
|
Abstract
The hydration changes that accompany the DNA binding of five intercalators (ethidium, propidium, proflavine, daunomycin, and 7-aminoactinomycin D) were measured by the osmotic stress method with use of the osmolytes betaine, sucrose, and triethylene glycol. Water uptake was found to accompany complex formation for all intercalators except ethidium. The difference in the number of bound water molecules between the complex and the free reactants (Deltan(w)) was different for each intercalator. The values found for Deltan(w) were the following: propidium, +6; daunomycin, +18; proflavine, +30; and 7-aminoactinomycin D, +32. For ethidium binding to DNA a value of Deltan(w) = +0.25(+/-0.3) was found, indicating that within experimental error no water was released or taken up upon complex formation. Intercalation association constants measured in D2O were found to increase relative to values measured in H2O for all compounds except ethidium. A positive correlation between the ratio of binding constants (K(D2O)/K(H2O)) and Deltan(w) was found. These combined studies identify water as an important thermodynamic participant in the formation of certain intercalation complexes.
Collapse
|
|
24 |
90 |
12
|
Qu X, Seale JP, Donnelly R. Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats - effects of feeding. J Endocrinol 1999; 162:207-14. [PMID: 10425458 DOI: 10.1677/joe.0.1620207] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanisms of insulin resistance in the obese Zucker rat have not been clearly established but increased diacylglycerol-protein kinase C (DAG-PKC) signalling has been associated with decreased glucose utilisation in states of insulin resistance and non-insulin-dependent diabetes mellitus. The purpose of this study was to characterise tissue- and isoform-selective differences in DAG-PKC signalling in insulin-sensitive tissues from obese Zucker rats, and to assess the effects of feeding on DAG-PKC pathways. Groups of male obese (fa/fa, n=24) and lean (fa/-, n=24) Zucker rats were studied after baseline measurements of fasting serum glucose, triglycerides, insulin and oral glucose tolerance tests. Liver, epididymal fat and soleus muscle samples were obtained from fed and overnight-fasted rats for measurements of DAG, PKC activity and individual PKC isoforms in cytosol and membrane fractions. Obese rats were heavier (488+/-7 vs 315+/-9 g) with fasting hyperglycaemia (10.5+/-0.8 vs 7.7+/-0.1 mM) and hyperinsulinaemia (7167+/-363 vs 251+/-62 pM) relative to lean controls. In fasted rats, PKC activity in the membrane fraction of liver was significantly higher in the obese group (174+/-16 vs 108+/-12 pmol/min/mg protein, P<0.05) but there were no differences in muscle and fat. The fed state was associated with increased DAG levels and threefold higher PKC activity in muscle tissue of obese rats, and increased expression of the major muscle isoforms, PKC-theta and PKC-epsilon: e.g. PKC activity in the membrane fraction of muscle from obese animals was 283+/-42 (fed) vs 107+/-20 pmol/min/mg protein (fasting) compared with 197+/-27 (fed) and 154+/-21 pmol/min/mg protein (fasting) in lean rats. In conclusion, hepatic PKC activity is higher in obese rats under basal fasting conditions and feeding-induced activation of DAG-PKC signalling occurs selectively in muscle of obese (fa/fa) rats due to increased DAG-mediated activation and/or synthesis of PKC-theta and PKC-epsilon. These changes in PKC are likely to exacerbate the hyperglycaemia and hypertriglyceridaemia associated with obesity-induced diabetes.
Collapse
|
|
26 |
88 |
13
|
Yuan T, Cui X, Liu X, Qu X, Sun J. Highly Tough, Stretchable, Self-Healing, and Recyclable Hydrogels Reinforced by in Situ-Formed Polyelectrolyte Complex Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00053] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
|
6 |
86 |
14
|
Gao R, Kong C, Huang L, Li H, Qu X, Liu Z, Lan P, Wang J, Qin H. Mucosa-associated microbiota signature in colorectal cancer. Eur J Clin Microbiol Infect Dis 2017; 36:2073-2083. [PMID: 28600626 DOI: 10.1007/s10096-017-3026-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to explore the gut microbiota profiles of colorectal cancer (CRC) patients and to examine the relationship between gut microbiota and other key molecular factors involved in CRC tumorigenesis. In this study, a 16S rDNA sequencing platform was used to identify possible differences in the microbiota signature between CRC and adjacent normal mucosal tissue. Differences in the microbiota composition in different anatomical colorectal tumor sites and their potential association with KRAS mutation were also explored. In this study, the number of Firmicutes and Actinobacteria decreased, while the number of Fusobacteria increased in the gut of CRC patients. In addition, at the genus level, Fusobacterium was identified as the key contributor to CRC tumorigenesis. In addition, a different distribution of gut microbiota in ascending and descending colon cancer samples was observed. Lipopolysaccharide biosynthesis-associated microbial genes were enriched in tumor tissues. Our study suggests that specific mucosa-associated microbiota signature and function are significantly changed in the gut of CRC patients, which may provide insight into the progression of CRC. These findings could also be of value in the creation of new prevention and treatment strategies for this type of cancer.
Collapse
|
Journal Article |
8 |
84 |
15
|
Stepkowski SM, Napoli KL, Wang ME, Qu X, Chou TC, Kahan BD. Effects of the pharmacokinetic interaction between orally administered sirolimus and cyclosporine on the synergistic prolongation of heart allograft survival in rats. Transplantation 1996; 62:986-94. [PMID: 8878394 DOI: 10.1097/00007890-199610150-00018] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oral administration, but not continuous intravenous infusion, of sirolimus (SRL) in combination with cyclosporine (CsA) produces a pharmacokinetic interaction, namely increases in the whole blood trough concentrations of SRL ([SRL(WB)]) and CsA ([CsA(WB)]). The effects of this pharmacokinetic interaction on the synergism between SRL and CsA was examined in Wistar Furth (RT1u) recipients of Buffalo (RT1b) heart allografts. A 14-day course of oral SRL produced dose-dependent prolongation of heart allografts: in untreated controls, 0.5 mg/kg SRL per day extended the mean survival time (MST) from 6.4+/-0.5 days to 12.3+/-3.8 days (P<0.05); SRL at 1.0 mg/kg per day prolonged the MST to 18.0+/-5.5 days (P<0.01); at 2.0 mg/kg SRL per day, MST was extended to 52.5+/-13.2 days (P<0.01); and 4.0 mg/kg SRL per day prolonged MST to 90.0+/-41.1 days (P<0.01). Comparison of the in vivo effects after oral versus continuous intravenous SRL administration suggested that the oral bioavailability of SRL is less than 10%. Combinations of oral SRL and CsA synergistically prolonged heart allograft survival, as documented by combination index values of 0.01-0.64 (combination index <1 indicates synergistic interaction). In rats treated with dual drug combinations, CsA increased the bioavailability of SRL by two- to elevenfold, and SRL increased the bioavailability of CsA by two- to threefold, thereby significantly decreasing the oral effective dose (ED) values for each drug. The ED50 for SRL alone is 2.4 mg/kg per day, which produces an average [SRL(WB)] of 13.2 ng/ml. The ED50 for CsA alone is 8.0 mg/kg per day, which produces an average [CsA(WB)] of 1642 ng/ml. However, when the two drugs are combined, the ED50 effect is achieved with only 0.34 mg/kg SRL per day ([SRL(WB)]=1.1 ng/ml) and 2.1 mg/kg CsA per day ([CsA(WB)] =326 ng/ml). Individually, 0.34 mg/kg SRL per day produces an ED9 with an average [SRL(WB)] of 0.6 ng/ml, and 2.1 mg/kg CsA per day produces an ED22 with an average [CsA(WB)] of 174 ng/ml. Thus, the pharmacokinetic interaction between oral SRL and CsA contributes to the in vivo synergism between the two drugs.
Collapse
|
|
29 |
74 |
16
|
Hribar KC, Finlay D, Ma X, Qu X, Ondeck MG, Chung PH, Zanella F, Engler AJ, Sheikh F, Vuori K, Chen SC. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. LAB ON A CHIP 2015; 15:2412-8. [PMID: 25900329 PMCID: PMC4439309 DOI: 10.1039/c5lc00159e] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propagation. Here, we used a continuous 3D projection printing approach - with an important modification of nonlinear exposure - to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
72 |
17
|
Cheng Q, Zhou Y, Liu Z, Zhang L, Song G, Guo Z, Wang W, Qu X, Zhu Y, Yang D. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:419-29. [PMID: 25255693 DOI: 10.1111/plb.12267] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 09/09/2014] [Indexed: 05/25/2023]
Abstract
As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1.
Collapse
|
|
10 |
67 |
18
|
Li J, Qu X, Schmidt AM. Sp1-binding elements in the promoter of RAGE are essential for amphoterin-mediated gene expression in cultured neuroblastoma cells. J Biol Chem 1998; 273:30870-8. [PMID: 9812979 DOI: 10.1074/jbc.273.47.30870] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor for AGE (RAGE) and the polypeptide amphoterin are highly expressed and co-localized in neurons of the developing central nervous system of the rat. In vitro, the interaction of amphoterin with neuronal RAGE induces neurite outgrowth. We tested the hypothesis that interaction of amphoterin with neuronal cells enhances RAGE expression, thereby providing a mechanism by which amphoterin-mediated regulation of RAGE might contribute to promotion of neurite growth and spreading. Incubation of cultured neuroblastoma cells with amphoterin resulted in increased transcription and translation of RAGE, a process largely inhibited in the presence of anti-RAGE IgG but not by nonimmune IgG. To begin to delineate molecular mechanisms underlying these findings, we identified multiple putative binding elements within the 5'-flanking region of the RAGE gene for Sp1, a transcription factor that has been critically linked to the process of normal development. DNase I footprinting and electrophoretic mobility shift assays demonstrated multiple functional Sp1-binding sites within the region -245 to -40 of the RAGE promoter. Transient transfection of cultured SK-N-SH neuroblastoma cells with chimeric 5'-deletion constructs linked to luciferase reporter revealed that the region containing Sp1-binding elements did not contribute uniquely to basal expression of the RAGE gene. Simultaneous mutation of the multiple Sp1-binding elements in this region did not affect basal promoter function; however, promoter responsiveness to amphoterin was markedly attenuated. These results point to Sp1-dependent mechanisms underlying amphoterin-mediated increases in RAGE expression in neuroblastoma cells and further link amphoterin-RAGE interaction to development of the nervous system.
Collapse
|
|
27 |
65 |
19
|
Wei L, Wang M, Qu X, Mah A, Xiong X, Harris AGC, Phillips LK, Martinez OM, Krams SM. Differential expression of microRNAs during allograft rejection. Am J Transplant 2012; 12:1113-23. [PMID: 22300508 PMCID: PMC3461331 DOI: 10.1111/j.1600-6143.2011.03958.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MicrorRNA are small noncoding RNA molecules that regulate the posttranscriptional expression of target genes. In addition to being involved in many biologic processes, microRNAs are important regulators in innate and adaptive immune responses. Distinct sets of expressed microRNAs are found in different cell types and tissues and aberrant expression of microRNAs is associated with many disease states. MicroRNA expression was examined in a model of heterotopic heart transplantation by microarray analyses and a unique profile was detected in rejecting allogeneic transplants (BALB/c → C57BL/6) as compared to syngeneic transplants (C57BL/6 → C57BL/6). The microRNA miR-182 was significantly increased in rejecting cardiac allografts and in mononuclear cells that infiltrate the grafts. Forkhead box (FOX) proteins are a family of important transcription factors and FOXO1 is a target of miR-182. As miR-182 increases after transplant, there is a concomitant posttranscriptional decrease in FOXO1 expression in heart allografts that is localized to both the cardiomyocytes and CD3(+) T cells. The microRNA miR-182 is significantly increased in both peripheral blood mononuclear cells and plasma during graft rejection suggesting potential as a biomarker of graft status. Our results identify microRNAs that may regulate alloimmune responses and graft outcomes.
Collapse
|
research-article |
13 |
65 |
20
|
Troncoso P, Stepkowski SM, Wang ME, Qu X, Chueh SC, Clark J, Kahan BD. Prophylaxis of acute renal allograft rejection using FTY720 in combination with subtherapeutic doses of cyclosporine. Transplantation 1999; 67:145-51. [PMID: 9921811 DOI: 10.1097/00007890-199901150-00024] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND In rodent transplant models, FTY720 exerts a synergistic affect with cyclosporine (CsA) to prolong allograft survival. The present experiments sought to test this combination in subhuman primates. METHODS Cynomolgus monkeys were transplanted with kidney allografts that were incompatible in mixed lymphocyte culture reactions. The animals were treated with daily intramuscular injections of CsA using doses selected to maintain whole blood trough concentrations at therapeutic values between 40 and 200 ng/ml. The 4 experimental groups included CsA without or with 0.1, 0.3, or 1 mg/kg/day FTY720 delivered daily by intravenous bolus injection. Therapeutic effects were suggested both by the graft histology of biopsy within the first 10 posttransplant days and by the length of host survival. RESULTS Whereas recipients treated with CsA alone rejected kidney allografts at a median survival time of 8.5 days (n=4), those treated with either 0.1 or 0.3 mg/kg/day FTY720 in addition to CsA showed significant prolongation of kidney allograft survival to 71 days (n=3; P<0.04) or 63 days (n=5; P<0.05), respectively. The hosts in the 1.0 mg/kg/day FTY720 group survived 48 days, with 2 of 5 recipients succumbing at 9 or 17 days postgraft, suggesting possible complications caused by overimmunosuppression. Biopsies of the 0.1 mg/kg/day FTY720 group on posttransplant day 7 documented mild to moderate rejection (grade I), indicated by multiple focal areas of tubular destruction. The histology results of transplants in the 0.3 or 1 mg/kg/day FTY720 group showed only minimal interstitial inflammatory infiltrates (borderline grade), with no evidence of tubular or arterial damage. Serum creatinine values among the animals in the 0.1 mg/kg/day FTY720 group showed increases in 2 of 3 recipients by day 20 and in the third by day 41 postgraft. Among the 0.3 mg/kg/day FTY720 group, 3 of 5 recipients maintained baseline creatinine values to 45 days postgraft; 1 recipient had stable kidney function for 120 days postgraft. CONCLUSIONS Addition of FTY720 therapy to a subtherapeutic CsA immunosuppressive regimen delays the rejection of renal allografts in subhuman primates.
Collapse
|
|
26 |
64 |
21
|
Tammam J, Ware C, Efferson C, O'Neil J, Rao S, Qu X, Gorenstein J, Angagaw M, Kim H, Kenific C, Kunii K, Leach KJ, Nikov G, Zhao J, Dai X, Hardwick J, Scott M, Winter C, Bristow L, Elbi C, Reilly JF, Look T, Draetta G, Van der Ploeg L, Kohl NE, Strack PR, Majumder PK. Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumour effects in mouse models of T-cell leukaemia. Br J Pharmacol 2009; 158:1183-95. [PMID: 19775282 DOI: 10.1111/j.1476-5381.2009.00389.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE gamma-Secretase inhibitors (GSIs) block NOTCH receptor cleavage and pathway activation and have been under clinical evaluation for the treatment of malignancies such as T-cell acute lymphoblastic leukaemia (T-ALL). The ability of GSIs to decrease T-ALL cell viability in vitro is a slow process requiring >8 days, however, such treatment durations are not well tolerated in vivo. Here we study GSI's effect on tumour and normal cellular processes to optimize dosing regimens for anti-tumour efficacy. EXPERIMENTAL APPROACH Inhibition of the Notch pathway in mouse intestinal epithelium was used to evaluate the effect of GSIs and guide the design of dosing regimens for xenograft models. Serum Abeta(40) and Notch target gene modulation in tumours were used to evaluate the degree and duration of target inhibition. Pharmacokinetic and pharmacodynamic correlations with biochemical, immunohistochemical and profiling data were used to demonstrate GSI mechanism of action in xenograft tumours. KEY RESULTS Three days of >70% Notch pathway inhibition was sufficient to provide an anti-tumour effect and was well tolerated. GSI-induced conversion of mouse epithelial cells to a secretory lineage was time- and dose-dependent. Anti-tumour efficacy was associated with cell cycle arrest and apoptosis that was in part due to Notch-dependent regulation of mitochondrial homeostasis. CONCLUSIONS AND IMPLICATIONS Intermittent but potent inhibition of Notch signalling is sufficient for anti-tumour efficacy in these T-ALL models. These findings provide support for the use of GSI in Notch-dependent malignancies and that clinical benefits may be derived from transient but potent inhibition of Notch.
Collapse
|
Journal Article |
16 |
63 |
22
|
Mao H, Zhang L, Yang Y, Zuo W, Bi Y, Gao W, Deng B, Sun J, Shao Q, Qu X. New Insights of CTLA-4 into Its Biological Function in Breast Cancer. Curr Cancer Drug Targets 2010; 10:728-36. [DOI: 10.2174/156800910793605811] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 05/18/2010] [Indexed: 11/22/2022]
|
|
15 |
63 |
23
|
Qu X, Wan C, Becker HC, Zhong D, Zewail AH. The anticancer drug-DNA complex: femtosecond primary dynamics for anthracycline antibiotics function. Proc Natl Acad Sci U S A 2001; 98:14212-7. [PMID: 11724924 PMCID: PMC64661 DOI: 10.1073/pnas.241509698] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2001] [Indexed: 11/18/2022] Open
Abstract
The anthracycline-DNA complex, which is a potent agent for cancer chemotherapy, has a unique intercalating molecular structure with preference to the GC bases of DNA, as shown by Rich's group in studies of single-crystal x-ray diffraction. Understanding cytotoxicity and its photoenhancement requires the unraveling of the dynamics under the solution-phase, physiological condition. Here we report our first study of the primary processes of drug function. In a series of experiments involving the drug (daunomycin and adriamycin) in water, the drug-DNA complexes, the complexes with the four nucleotides (dGTP, dATP, dCTP, and dTTP), and the drug-apo riboflavin-binding protein, we show the direct involvement of molecular oxygen and DNA base-drug charge-separation-the rates for the reduction of the drug and dioxygen indicate the crucial role of drug/base/O(2) in the efficient and catalytic redox cycling. These dynamical steps, and the subsequent reactions of the superoxide product(s), can account for the photoenhanced function of the drug in cells, and potentially for the cell death.
Collapse
|
research-article |
24 |
59 |
24
|
Zhang X, Yu Z, Yu M, Qu X. Alcohol consumption and hip fracture risk. Osteoporos Int 2015; 26:531-42. [PMID: 25266483 DOI: 10.1007/s00198-014-2879-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/27/2014] [Indexed: 01/22/2023]
Abstract
SUMMARY The present meta-analysis shows that a nonlinear association between alcohol consumption and the risk of hip fracture was observed. Light alcohol consumption was inversely significantly associated with hip fracture risk, whereas heavy alcohol consumption was associated with an elevated hip fracture risk. INTRODUCTION Previous studies examining the association between alcohol consumption and the risk of hip fracture have reported conflicting findings. Therefore, we conducted a meta-analysis of prospective cohort studies to assess the association between alcohol consumption and the risk of hip fracture. METHODS PubMed and EMBASE were searched for prospective cohort studies on the relationship between alcohol consumption and the risk of hip fractures. Relative risks (RR) with 95% confidence intervals (CI) were derived using random-effects models throughout the whole analysis. RESULTS Eighteen prospective cohort studies were included with 3,730,424 participants and 26,168 hip fracture cases. Compared with non-drinkers, the pooled RR of hip fractures for alcohol consumption was 1.03 (95% CI, 0.91-1.15), with high heterogeneity between studies (P<0.001, I2=72.6%). A nonlinear relationship between alcohol consumption and the risk of hip fracture was identified (P nonlinearity=0.003). Compared with non-drinkers, the pooled RRs of hip fractures were 0.88 (95% CI, 0.83-0.89) for light alcohol consumption (0.01-12.5 g/day), 1.00 (95% CI, 0.85-1.14) for moderate alcohol consumption (12.6-49.9 g/day), and 1.71 (95% CI, 1.41-2.01) for heavy alcohol consumption (≥50 g/day). CONCLUSIONS There was no evidence of publication bias. In conclusion, a nonlinear association between alcohol consumption and the risk of hip fracture was observed in this meta-analysis. Further, light alcohol consumption was inversely significantly associated with hip fracture risk, whereas heavy alcohol consumption was associated with an elevated hip fracture risk.
Collapse
|
Meta-Analysis |
10 |
58 |
25
|
Bi H, Li S, Qu X, Wang M, Bai X, Xu Z, Ao X, Jia Z, Jiang X, Yang Y, Wu H. DEC1 regulates breast cancer cell proliferation by stabilizing cyclin E protein and delays the progression of cell cycle S phase. Cell Death Dis 2015; 6:e1891. [PMID: 26402517 PMCID: PMC4650443 DOI: 10.1038/cddis.2015.247] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Breast cancer that is accompanied by a high level of cyclin E expression usually exhibits poor prognosis and clinical outcome. Several factors are known to regulate the level of cyclin E during the cell cycle progression. The transcription factor DEC1 (also known as STRA13 and SHARP2) plays an important role in cell proliferation and apoptosis. Nevertheless, the mechanism of its role in cell proliferation is poorly understood. In this study, using the breast cancer cell lines MCF-7 and T47D, we showed that DEC1 could inhibit the cell cycle progression of breast cancer cells independently of its transcriptional activity. The cell cycle-dependent timing of DEC1 overexpression could affect the progression of the cell cycle through regulating the level of cyclin E protein. DEC1 stabilized cyclin E at the protein level by interacting with cyclin E. Overexpression of DEC1 repressed the interaction between cyclin E and its E3 ligase Fbw7α, consequently reducing the level of polyunbiquitinated cyclin E and increased the accumulation of non-ubiquitinated cyclin E. Furthermore, DEC1 also promoted the nuclear accumulation of Cdk2 and the formation of cyclin E/Cdk2 complex, as well as upregulating the activity of the cyclin E/Cdk2 complex, which inhibited the subsequent association of cyclin A with Cdk2. This had the effect of prolonging the S phase and suppressing the growth of breast cancers in a mouse xenograft model. These events probably constitute the essential steps in DEC1-regulated cell proliferation, thus opening up the possibility of a protein-based molecular strategy for eliminating cancer cells that manifest a high-level expression of cyclin E.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
57 |