1
|
Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 2000; 97:7124-9. [PMID: 10860979 PMCID: PMC16510 DOI: 10.1073/pnas.97.13.7124] [Citation(s) in RCA: 900] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 and related proteins are key regulators of apoptosis or programmed cell death implicated in human disease including cancer. We recently showed that cell-permeable Bcl-2 binding peptides could induce apoptosis of human myeloid leukemia in vitro and suppress its growth in severe combined immunodeficient mice. Here we report the discovery of HA14-1, a small molecule (molecular weight = 409) and nonpeptidic ligand of a Bcl-2 surface pocket, by using a computer screening strategy based on the predicted structure of Bcl-2 protein. In vitro binding studies demonstrated the interaction of HA14-1 with this Bcl-2 surface pocket that is essential for Bcl-2 biological function. HA14-1 effectively induced apoptosis of human acute myeloid leukemia (HL-60) cells overexpressing Bcl-2 protein that was associated with the decrease in mitochondrial membrane potential and activation of caspase-9 followed by caspase-3. Cytokine response modifier A, a potent inhibitor of Fas-mediated apoptosis, did not block apoptosis induced by HA14-1. Whereas HA14-1 strongly induced the death of NIH 3T3 (Apaf-1(+/+)) cells, it had little apoptotic effect on Apaf-1-deficient (Apaf-1(-/-)) mouse embryonic fibroblast cells. These data are consistent with a mechanism by which HA14-1 induces the activation of Apaf-1 and caspases, possibly by binding to Bcl-2 protein and inhibiting its function. The discovery of this cell-permeable molecule provides a chemical probe to study Bcl-2-regulated apoptotic pathways in vivo and could lead to the development of new therapeutic agents.
Collapse
|
research-article |
25 |
900 |
2
|
Xu T, Park SK, Venable JD, Wohlschlegel JA, Diedrich JK, Cociorva D, Lu B, Liao L, Hewel J, Han X, Wong CCL, Fonslow B, Delahunty C, Gao Y, Shah H, Yates JR. ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J Proteomics 2015; 129:16-24. [PMID: 26171723 DOI: 10.1016/j.jprot.2015.07.001] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/08/2015] [Accepted: 07/04/2015] [Indexed: 12/25/2022]
Abstract
ProLuCID, a new algorithm for peptide identification using tandem mass spectrometry and protein sequence databases has been developed. This algorithm uses a three tier scoring scheme. First, a binomial probability is used as a preliminary scoring scheme to select candidate peptides. The binomial probability scores generated by ProLuCID minimize molecular weight bias and are independent of database size. A modified cross-correlation score is calculated for each candidate peptide identified by the binomial probability. This cross-correlation scoring function models the isotopic distributions of fragment ions of candidate peptides which ultimately results in higher sensitivity and specificity than that obtained with the SEQUEST XCorr. Finally, ProLuCID uses the distribution of XCorr values for all of the selected candidate peptides to compute a Z score for the peptide hit with the highest XCorr. The ProLuCID Z score combines the discriminative power of XCorr and DeltaCN, the standard parameters for assessing the quality of the peptide identification using SEQUEST, and displays significant improvement in specificity over ProLuCID XCorr alone. ProLuCID is also able to take advantage of high resolution MS/MS spectra leading to further improvements in specificity when compared to low resolution tandem MS data. A comparison of filtered data searched with SEQUEST and ProLuCID using the same false discovery rate as estimated by a target-decoy database strategy, shows that ProLuCID was able to identify as many as 25% more proteins than SEQUEST. ProLuCID is implemented in Java and can be easily installed on a single computer or a computer cluster. This article is part of a Special Issue entitled: Computational Proteomics.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
383 |
3
|
Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA. Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 1998; 273:10261-9. [PMID: 9553078 DOI: 10.1074/jbc.273.17.10261] [Citation(s) in RCA: 382] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuregulins (i.e. neuregulin-1 (NRG1), also called neu differentiation factor, heregulin, glial growth factor, and acetylcholine receptor-inducing activity) are known to induce growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells. Unexpectedly, mice with loss of function mutations of NRG1 or of either of two of their cognate receptors, ErbB2 and ErbB4, die during midembryogenesis due to the aborted development of myocardial trabeculae in ventricular muscle. To examine the role of NRG and their receptors in developing and postnatal myocardium, we studied the ability of a soluble NRG1 (recombinant human glial growth factor 2) to promote proliferation, survival, and growth of isolated neonatal and adult rat cardiac myocytes. Both ErbB2 and ErbB4 receptors were found to be expressed by neonatal and adult ventricular myocytes and activated by rhGGF2. rhGGF2 (30 ng/ml) provoked an approximate 2-fold increase in embryonic cardiac myocyte proliferation. rhGGF2 also promoted survival and inhibited apoptosis of subconfluent, serum-deprived myocyte primary cultures and also induced hypertrophic growth in both neonatal and adult ventricular myocytes, which was accompanied by enhanced expression of prepro-atrial natriuretic factor and skeletal alpha-actin. Moreover, NRG1 mRNA could be detected in coronary microvascular endothelial cell primary cultures prepared from adult rat ventricular muscle. NRG1 expression in these cells was increased by endothelin-1, another locally acting cardiotropic peptide within the heart. The persistent expression of both a neuregulin and its cognate receptors in the postnatal and adult heart suggests a continuing role for neuregulins in the myocardial adaption to physiologic stress or injury.
Collapse
|
|
27 |
382 |
4
|
Han X, Holtzman DM, McKeel DW. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 2001; 77:1168-80. [PMID: 11359882 DOI: 10.1046/j.1471-4159.2001.00332.x] [Citation(s) in RCA: 378] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To explore the hypothesis that alterations in ethanolamine plasmalogen may be directly related to the severity of dementia in Alzheimer's disease (AD), we performed a systematic examination of plasmalogen content in cellular membranes of gray and white matter from different regions of human subjects with a spectrum of AD clinical dementia ratings (CDR) using electrospray ionization mass spectrometry (ESI/MS). The results demonstrate: (1) a dramatic decrease in plasmalogen content (up to 40 mol% of total plasmalogen) in white matter at a very early stage of AD (i.e. CDR 0.5); (2) a correlation of the deficiency in gray matter plasmalogen content with the AD CDR (i.e. approximately 10 mol% of deficiency at CDR 0.5 (very mild dementia) to approximately 30 mol% of deficiency at CDR 3 (severe dementia); (3) an absence of alterations of plasmalogen content and molecular species in cerebellar gray matter at any CDR despite dramatic alterations of plasmalogen content in cerebellar white matter. Alterations of ethanolamine plasmalogen content in two mouse models of AD, APP(V717F) and APPsw, were also examined by ESI/MS. A plasmalogen deficiency was present (up to 10 mol% of total plasmalogen at the age of 18 months) in cerebral cortices, but was absent in cerebella from both animal models. These results suggest plasmalogen deficiency may play an important role in the AD pathogenesis, particularly in the white matter, and suggest that altered plasmalogen content may contribute to neurodegeneration, synapse loss and synaptic dysfunction in AD.
Collapse
|
|
24 |
378 |
5
|
Han X, Bushweller JH, Cafiso DS, Tamm LK. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. NATURE STRUCTURAL BIOLOGY 2001; 8:715-20. [PMID: 11473264 DOI: 10.1038/90434] [Citation(s) in RCA: 369] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The N-terminal domain of the influenza hemagglutinin (HA) is the only portion of the molecule that inserts deeply into membranes of infected cells to mediate the viral and the host cell membrane fusion. This domain constitutes an autonomous folding unit in the membrane, causes hemolysis of red blood cells and catalyzes lipid exchange between juxtaposed membranes in a pH-dependent manner. Combining NMR structures determined at pHs 7.4 and 5 with EPR distance constraints, we have deduced the structures of the N-terminal domain of HA in the lipid bilayer. At both pHs, the domain is a kinked, predominantly helical amphipathic structure. At the fusogenic pH 5, however, the domain has a sharper bend, an additional 3(10)-helix and a twist, resulting in the repositioning of Glu 15 and Asp 19 relative to that at the nonfusogenic pH 7.4. Rotation of these charged residues out of the membrane plane creates a hydrophobic pocket that allows a deeper insertion of the fusion domain into the core of the lipid bilayer. Such an insertion mode could perturb lipid packing and facilitate lipid mixing between juxtaposed membranes.
Collapse
|
|
24 |
369 |
6
|
Han X, Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 1994; 91:10635-9. [PMID: 7938005 PMCID: PMC45076 DOI: 10.1073/pnas.91.22.10635] [Citation(s) in RCA: 298] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was utilized for the structural determination and quantitative analysis of individual phospholipid molecular species from subpicomole amounts of human erythrocyte plasma membrane phospholipids. The sensitivity of ESI-MS was 2-3 orders of magnitude greater than that achievable with fast-atom bombardment mass spectrometry (FAB-MS). Phospholipid structure determination and quantitative analysis with ESI-MS can be performed directly from chloroform extracts of biologic samples, obviating the need for prior chromatographic separation of phospholipid classes which has been necessary in FAB-MS phospholipid analyses. Furthermore, ESI-MS is uncomplicated by differential fragmentation of molecular ions and idiosyncratic surface desorption, allowing the quantitation of phospholipids with coefficients of determination (r2) > 0.99 and accuracies > 95%. More than 50 human erythrocyte plasma membrane phospholipid constituents were identified by direct ESI-MS analysis of chloroform extracts of plasma membranes derived from the equivalent of < 1 microliter of whole blood. The major ethanolamine glycerophospholipid subclass in erythrocyte plasma membranes was plasmenylethanolamine that was highly enriched in polyunsaturated fatty acids at the sn-2 position. Collectively, these results demonstrate that ESI-MS of phospholipids is an enabling strategy for the direct structural determination and quantitative analysis of subpicomole amounts of phospholipids from biologic samples.
Collapse
|
research-article |
31 |
298 |
7
|
Bertoni G, Trevisi E, Han X, Bionaz M. Effects of Inflammatory Conditions on Liver Activity in Puerperium Period and Consequences for Performance in Dairy Cows. J Dairy Sci 2008; 91:3300-10. [DOI: 10.3168/jds.2008-0995] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
17 |
296 |
8
|
Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han X, Weng Y, Perlick HA, Dietz HC, Ter-Avanesyan MD, Peltz SW. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev 1998; 12:1665-77. [PMID: 9620853 PMCID: PMC316864 DOI: 10.1101/gad.12.11.1665] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1998] [Accepted: 04/01/1998] [Indexed: 02/07/2023]
Abstract
The nonsense-mediated mRNA decay pathway is an example of an evolutionarily conserved surveillance pathway that rids the cell of transcripts that contain nonsense mutations. The product of the UPF1 gene is a necessary component of the putative surveillance complex that recognizes and degrades aberrant mRNAs. Recent results indicate that the Upf1p also enhances translation termination at a nonsense codon. The results presented here demonstrate that the yeast and human forms of the Upf1p interact with both eukaryotic translation termination factors eRF1 and eRF3. Consistent with Upf1p interacting with the eRFs, the Upf1p is found in the prion-like aggregates that contain eRF1 and eRF3 observed in yeast [PSI+] strains. These results suggest that interaction of the Upf1p with the peptidyl release factors may be a key event in the assembly of the putative surveillance complex that enhances translation termination, monitors whether termination has occurred prematurely, and promotes degradation of aberrant transcripts.
Collapse
|
research-article |
27 |
278 |
9
|
Balligand JL, Kobzik L, Han X, Kaye DM, Belhassen L, O'Hara DS, Kelly RA, Smith TW, Michel T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 1995; 270:14582-6. [PMID: 7540173 DOI: 10.1074/jbc.270.24.14582] [Citation(s) in RCA: 268] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide synthase (NOS) isoforms are discovered in an increasing variety of cell types with different roles in signaling. The inducible NOS (i.e. iNOS or NOS II) is expressed in cardiac myocytes in response to specific cytokines. Independent of iNOS induction, however, receptor-dependent signaling is modulated by a constitutive nitric oxide (NO) synthase isoform in these cells (Balligand, J. L., Kelly, R.A., Marsden, P.A., Smith, T. W., and Michel, T. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 347-351). We now show that cardiac myocytes constitutively express the endothelial isoform of NO synthase (ecNOS or NOS III). Transcripts for NOS III were detected by Northern blot in myocyte extracts using as a probe a polymerase chain reaction-generated cDNA amplified with isoform and species-specific primers. In subcellular fractionation experiments, a calcium-sensitive NO synthase activity was present primarily in the particulate fraction, coinciding with the distribution of NOS III analyzed by protein immunoblotting. The localization of NOS III within cardiac myocytes was further demonstrated by immunohistochemistry. The functional role of NOS III was explored by analyzing the effects of NOS inhibitors on single myocyte L-type calcium current and contractility. Inhibition of NOS blocked the attenuation by carbamylcholine of the increases in both parameters induced by beta-adrenergic stimulation. We conclude that NO-dependent parasympathetic signaling is mediated by NOS III in cardiac myocytes.
Collapse
|
|
30 |
268 |
10
|
Han X, Gross RW. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 2001; 295:88-100. [PMID: 11476549 DOI: 10.1006/abio.2001.5178] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herein we describe a rapid, simple, and reliable method for the quantitative analysis and molecular species fingerprinting of triacylglycerides (TAG) directly from chloroform extracts of biological samples. Previous attempts at direct TAG quantitation by positive-ion electrospray ionization mass spectrometry (ESI/MS) were confounded by the presence of overlapping peaks from choline glycerophospholipids requiring chromatographic separation of lipid extracts prior to ESI/MS analyses. By exploiting the rapid loss of phosphocholine from choline glycerophospholipids, in conjunction with neutral-loss scanning for individual fatty acids, overlapping peaks in the ESI mass spectrum were deconvoluted generating a detailed molecular species fingerprint of individual TAG molecular species directly from chloroform extracts of biological samples. This method readily detects as little as 0.1 pmol of each TAG molecular species from chloroform extracts and is linear over a 1000-fold dynamic range. The sensitivity of individual TAG molecular species to ESI/MS/MS analyses correlated with the unsaturation index and inversely correlated with total aliphatic chain length of TAG. An algorithm was developed which identifies sensitivity factors, thereby allowing the rapid quantitation and molecular species fingerprinting of TAG molecular species directly from chloroform extracts of biological samples.
Collapse
|
|
24 |
260 |
11
|
Tang Y, Bian Z, Zhao L, Liu Y, Liang S, Wang Q, Han X, Peng Y, Chen X, Shen L, Qiu D, Li Z, Ma X. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol 2011; 166:281-90. [PMID: 21985374 DOI: 10.1111/j.1365-2249.2011.04471.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mechanisms associated with the progression of simple steatosis to non-alcoholic fatty liver disease (NAFLD) remain undefined. Regulatory T cells (T(regs)) play a critical role in regulating inflammatory processes in non-alcoholic steatohepatitis (NASH) and because T helper type 17 (Th17) functionally oppose T(reg)-mediated responses, this study focused on characterizing the role of Th17 cells using a NAFLD mouse model. C57BL/6 mice were fed either a normal diet (ND) or high fat (HF) diet for 8 weeks. Mice in the HF group had a significantly higher frequency of liver Th17 cells compared to ND-fed mice. Neutralization of interleukin (IL)-17 in HF mice ameliorated lipopolysaccharide (LPS)-induced liver injury reflected by decreased serum alanine aminotransferase (ALT) levels and reduced inflammatory cell infiltrates in the liver. In vitro, HepG2 cells cultured in the presence of free fatty acids (FFA; oleic acid and palmitic acid) for 24 h and IL-17 developed steatosis via insulin-signalling pathway interference. IL-17 and FFAs synergized to induce IL-6 production by HepG2 cells and murine primary hepatocytes which, in combination with transforming growth factor (TGF-β), expanded Th17 cells. It is likely that a similar process occurs in NASH patients, as there were significant levels of IL-17(+) cell infiltrates in NASH patient livers. The hepatic expression of Th17 cell-related genes [retinoid-related orphan receptor gamma (ROR)γt, IL-17, IL-21 and IL-23] was also increased significantly in NASH patients compared to healthy controls. Th17 cells and IL-17 were associated with hepatic steatosis and proinflammatory response in NAFLD and facilitated the transition from simple steatosis to steatohepatitis. Strategies designed to alter the balance between Th17 cells and T(regs) should be explored as a means of preventing progression to NASH and advanced liver diseases in NAFLD patients.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
221 |
12
|
Han X, Gross RW. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1995; 6:1202-10. [PMID: 24214071 DOI: 10.1016/1044-0305(95)00568-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/1995] [Revised: 06/26/1995] [Accepted: 07/08/1995] [Indexed: 05/21/2023]
Abstract
The remarkable sensitivity of electrospray ionization was exploited to achieve great increases in the sensitivity of tandem mass spectrometric analyses of phospholipids derived from both synthetic and biologic sources. Herein, we demonstrate that (1) product-ion spectra after electrospray ionization can be obtained easily by utilizing ≤ 5 pmol of phospholipid with a mass-selected window of less than 2 mass units, (2) the low energy inherent in the electrospray ionization method facilitates analysis of labile molecular ions that are not easily detected with the relatively high energy employed during fast-atom bombardment desorption, and (3) collision-induced dissociation of precursor ions generated from electrospray ionization often resulted in novel product-ion patterns. Collectively, these results underscore the utility of electrospray ionization tandem mass spectroscopy for the structural determination of diminutive amounts of phospholipids.
Collapse
|
|
30 |
203 |
13
|
Hao S, Cui L, Jiang D, Han X, Ren Y, Jiang J, Liu Y, Liu Z, Mao S, Wang Y, Li Y, Ren X, Ding X, Wang S, Yu C, Shi X, Du M, Yang F, Zheng Y, Zhang Z, Li X, Brown DE, Li J. A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength. Science 2013; 339:1191-4. [DOI: 10.1126/science.1228602] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
12 |
202 |
14
|
Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, Lindberg FP, Vignery A. CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem 2000; 275:37984-92. [PMID: 10964914 DOI: 10.1074/jbc.m002334200] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The macrophage fusion receptor (MFR), also called P84/BIT/SIRPalpha/SHPS-1, is a transmembrane glycoprotein that belongs to the superfamily of immunoglobulins. Previously, we showed that MFR expression is highly induced at the onset of fusion in macrophages, and that MFR appears to play a role in macrophage-macrophage adhesion/fusion leading to multinucleation. The recent finding that IAP/CD47 acts as a ligand for MFR led us to hypothesize that it interacts with CD47 at the onset of cell-cell fusion. CD47 is a transmembrane glycoprotein, which, like MFR, belongs to the superfamily of immunoglobulins. We show that macrophages express the hemopoietic form of CD47, the expression of which is induced at the onset of fusion, but to a lower level than MFR. A glutathione S-transferase CD47 fusion protein engineered to contain the extracellular domain of CD47, binds macrophages, associates with MFR, and prevents multinucleation. CD47 and MFR associate via their amino-terminal immunoglobulin variable domain. Of the nine monoclonal antibodies raised against the extracellular domain of CD47, three block fusion, as well as MFR-CD47 interaction, whereas the others have no effect. Together, these data suggest that CD47 is involved in macrophage multinucleation by virtue of interacting with MFR during adhesion/fusion.
Collapse
|
|
25 |
180 |
15
|
Han X, Shimoni Y, Giles WR. An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol 1994; 476:309-14. [PMID: 7913969 PMCID: PMC1160442 DOI: 10.1113/jphysiol.1994.sp020132] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cholinergic modulation of heart rate in isolated spontaneously beating single cells from the rabbit sino-atrial node was investigated by measuring transmembrane ionic currents using the nystatin-perforated patch whole-cell voltage-clamp technique. Carbamylcholine (CCh), a stable analogue of acetylcholine (ACh), significantly inhibited L-type calcium currents (Ica(L) which had been augmented by beta-adrenergic stimulation. In addition, CCh activated a potassium outward current (IK(ACh)). Both effects were blocked by atropine. The possible involvement of nitric oxide (NO) in these responses was evaluated by inhibiting NO synthesis. In the presence of NG-monomethyl-L-arginine (L-NMMA, 100 microM) or nitro-L-arginine methyl ester (L-NAME, 1 mM), two specific inhibitors of nitric oxide synthase (NOS), CCh no longer inhibited ICa(L). IK(ACh) could still be activated. Co-incubation of cells in L-NAME or in L-NMMA with arginine (the endogenous substrate of NOS) restored the CCh-induced attenuation of ICa(L), indicating that L-NAME or L-NMMA did not interfere directly with the muscarinic action of CCh on ICa(L). Effects of the NO-releasing agent molsidomine (SIN-1) on CCh-induced changes in ICa(L) were also investigated. After ICa(L) had been augmented by beta-adrenergic stimulation, SIN-1 (0.1 mM) inhibited ICa(L); however, SIN-1 had no further inhibitory effect after a maximal CCh concentration had been applied. These findings suggest that NO generation is an obligatory process in cholinergic inhibition of ICa(L) in mammalian cardiac pacemaker tissue.
Collapse
|
research-article |
31 |
170 |
16
|
Bower WA, Nainan OV, Han X, Margolis HS. Duration of viremia in hepatitis A virus infection. J Infect Dis 2000; 182:12-7. [PMID: 10882576 DOI: 10.1086/315701] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1999] [Revised: 03/24/2000] [Indexed: 01/13/2023] Open
Abstract
The duration of viremia and time course for development of IgM antibodies were determined prospectively in natural and experimental hepatitis A virus (HAV) infection. Serial serum samples from HAV-infected men (n=13) and experimentally infected chimpanzees (n=5) were examined by nested reverse-transcriptase polymerase chain reaction analysis to detect HAV RNA and by ELISA to detect IgM antibodies to HAV. Among infected humans, HAV RNA was detected an average of 17 days before the alanine aminotransferase peak, and viremia persisted for an average of 79 days after the liver enzyme peak. The average duration of viremia was 95 days (range, 36-391 days). Results were similar in chimpanzees. In addition, HAV RNA was detected in serum of humans and chimpanzees several days before IgM antibodies to HAV were detected. These results indicate that adults with HAV infection are viremic for as long as 30 days before the onset of symptoms and that the duration of viremia may be longer than previously described.
Collapse
|
|
25 |
166 |
17
|
DeMattos RB, Brendza RP, Heuser JE, Kierson M, Cirrito JR, Fryer J, Sullivan PM, Fagan AM, Han X, Holtzman DM. Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem Int 2001; 39:415-25. [PMID: 11578777 DOI: 10.1016/s0197-0186(01)00049-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The varepsilon4 allele of apolipoprotein E (apoE) is a genetic risk factor for Alzheimer's disease (AD). In order to gain a better understanding of the molecular mechanisms by which apoE and possibly other apolipoproteins produced in the central nervous system (CNS) influence AD pathogenesis, we have purified and characterized the two most abundant apolipoproteins produced in the CNS, apoE and apoJ. We purified apoE and apoJ from primary cultures of mouse astrocytes, which were derived from transgenic mice expressing human apoE isoforms in the absence of mouse apoE. Utilizing antibody affinity columns, we were able to purify both human apoE3 and apoE4, as well as mouse apoJ-containing lipoproteins. Astrocyte-secreted human apoE was present in high density-like lipoproteins of three predominant sizes ranging from 8 to 15 nm in diameter. Mouse apoJ was in particles between 10 and 17 nm in diameter with a peak size range of approximately 11 nm. ApoE and apoJ were in distinct lipoproteins. Utilization of quick-freeze, deep-etch electron microscopy revealed the apoE particles were discs while the apoJ particles were smaller and more irregular in appearance. The lipid composition of apoE particles was very different from those containing apoJ. ApoE-particles contained a similar mass of apoE and lipid, with cholesterol and phospholipid being about equal in mass per particle. ApoJ-particles were relatively lipid poor (three parts protein, one part lipid), with phospholipids being much more abundant than cholesterol. Detailed characterization of phospholipid composition by electrospray ionization mass spectrometry analysis revealed ethanolamine glycerophospholipids to be the most abundant phospholipid present in both apoE and apoJ particles. Analysis of cerebrospinal fluid from apoE3 and apoE4 transgenic mice revealed that human and mouse apoE were in particles the same size as those secreted by astrocytes. Further use of physiological preparations of CNS-derived lipoproteins may allow for a detailed understanding of the role of these molecules in the normal brain and in diseases such as AD.
Collapse
|
|
24 |
128 |
18
|
Han X, Gubitosi-Klug RA, Collins BJ, Gross RW. Alterations in individual molecular species of human platelet phospholipids during thrombin stimulation: electrospray ionization mass spectrometry-facilitated identification of the boundary conditions for the magnitude and selectivity of thrombin-induced platelet phospholipid hydrolysis. Biochemistry 1996; 35:5822-32. [PMID: 8639543 DOI: 10.1021/bi952927v] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the rapid thrombin-induced release of arachidonic acid in human platelets has been known for over 20 years, the amount of arachidonic acid mass mobilized and the source of the released arachidonic acid has remained a subject of intense controversy. Herein, we exploit the analytic power and sensitivity of electrospray ionization mass spectrometry to identify plasmenylethanolamines as the largest source of arachidonic acid mass released during thrombin stimulation and to demonstrate the presence of multiple novel molecular species of plasmenylethanolamines in human platelets. Specifically, 90 s after thrombin stimulation a total of 60.1 nmol of arachidonic acid-containing phospholipids/10(9) platelets was hydrolyzed which included the loss of 31.8 nmol/10(9) platelets from ethanolamine glycerophospholipids (hydrolysis of plasmenylethanolamines represented 63% of the mass lost from the ethanolamine glycerophospholipid pool) but only 10.9 nmol/10(9) platelets from choline glycerophospholipids. Human platelet phosphatidylserine and phosphatidylinositol pools contained similar amounts of arachidonic acid mass in resting platelets (approximately equal to 20 nmol/10(9) platelets), and each pool contributed 8.7 nmol/10(9) platelets after thrombin stimulation. From these results, a lower boundary for the rate of thrombin-induced arachidonic acid mobilization in human platelets can be set at > 60 nmol/10(9) platelets, thereby identifying specific kinetic characteristics and substrate selectivities of the phospholipase(s) activated during platelet stimulation. Collectively, these results underscore the importance of plasmenylethanolamines as the major storage depot of arachidonic acid in resting platelets and as the major source of arachidonic acid mobilized after thrombin stimulation of human platelets.
Collapse
|
|
29 |
123 |
19
|
Xiao Y, Wang Q, Erb M, Turlings TCJ, Ge L, Hu L, Li J, Han X, Zhang T, Lu J, Zhang G, Lou Y. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett 2012; 15:1130-9. [DOI: 10.1111/j.1461-0248.2012.01835.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/13/2012] [Accepted: 06/11/2012] [Indexed: 12/25/2022]
|
|
13 |
122 |
20
|
MacDonald IR, Bohrmann G, Escobar E, Abegg F, Blanchon P, Blinova V, Brückmann W, Drews M, Eisenhauer A, Han X, Heeschen K, Meier F, Mortera C, Naehr T, Orcutt B, Bernard B, Brooks J, de Faragó M. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 2004; 304:999-1002. [PMID: 15143278 DOI: 10.1126/science.1097154] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the Campeche Knolls, in the southern Gulf of Mexico, lava-like flows of solidified asphalt cover more than 1 square kilometer of the rim of a dissected salt dome at a depth of 3000 meters below sea level. Chemosynthetic tubeworms and bivalves colonize the sea floor near the asphalt, which chilled and contracted after discharge. The site also includes oil seeps, gas hydrate deposits, locally anoxic sediments, and slabs of authigenic carbonate. Asphalt volcanism creates a habitat for chemosynthetic life that may be widespread at great depth in the Gulf of Mexico.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
117 |
21
|
Han X, Tamm LK. A host-guest system to study structure-function relationships of membrane fusion peptides. Proc Natl Acad Sci U S A 2000; 97:13097-102. [PMID: 11069282 PMCID: PMC27184 DOI: 10.1073/pnas.230212097] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We designed a host-guest fusion peptide system, which is completely soluble in water and has a high affinity for biological and lipid model membranes. The guest sequences are those of the fusion peptides of influenza hemagglutinin, which are solubilized by a highly charged unstructured C-terminal host sequence. These peptides partition to the surface of negatively charged liposomes or erythrocytes and elicit membrane fusion or hemolysis. They undergo a conformational change from random coil to an obliquely inserted ( approximately 33 degrees from the surface) alpha-helix on binding to model membranes. Partition coefficients for membrane insertion were measured for influenza fusion peptides of increasing lengths (n = 8, 13, 16, and 20). The hydrophobic contribution to the free energy of binding of the 20-residue fusion peptide at pH 5.0 is -7.6 kcal/mol (1 cal = 4.18 J). This energy is sufficient to stabilize a "stalk" intermediate if a typical number of fusion peptides assemble at the site of membrane fusion. The fusion activity of the fusion peptides increases with each increment in length, and this increase strictly correlates with the hydrophobic binding energy and the angle of insertion.
Collapse
|
research-article |
25 |
116 |
22
|
London B, Jeron A, Zhou J, Buckett P, Han X, Mitchell GF, Koren G. Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel. Proc Natl Acad Sci U S A 1998; 95:2926-31. [PMID: 9501192 PMCID: PMC19671 DOI: 10.1073/pnas.95.6.2926] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated potassium channels control cardiac repolarization, and mutations of K+ channel genes recently have been shown to cause arrhythmias and sudden death in families with the congenital long QT syndrome. The precise mechanism by which the mutations lead to QT prolongation and arrhythmias is uncertain, however. We have shown previously that an N-terminal fragment including the first transmembrane segment of the rat delayed rectifier K+ channel Kv1.1 (Kv1.1N206Tag) coassembles with other K+ channels of the Kv1 subfamily in vitro, inhibits the currents encoded by Kv1.5 in a dominant-negative manner when coexpressed in Xenopus oocytes, and traps Kv1.5 polypeptide in the endoplasmic reticulum of GH3 cells. Here we report that transgenic mice overexpressing Kv1.1N206Tag in the heart have a prolonged QT interval and ventricular tachycardia. Cardiac myocytes from these mice have action potential prolongation caused by a significant reduction in the density of a rapidly activating, slowly inactivating, 4-aminopyridine sensitive outward K+ current. These changes correlate with a marked decrease in the level of Kv1.5 polypeptide. Thus, overexpression of a truncated K+ channel in the heart alters native K+ channel expression and has profound effects on cardiac excitability.
Collapse
|
research-article |
27 |
115 |
23
|
Ramanadham S, Gross RW, Han X, Turk J. Inhibition of arachidonate release by secretagogue-stimulated pancreatic islets suppresses both insulin secretion and the rise in beta-cell cytosolic calcium ion concentration. Biochemistry 1993; 32:337-46. [PMID: 8418854 DOI: 10.1021/bi00052a042] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fuel secretagogues induce hydrolysis of esterified arachidonic acid from pancreatic islet cell phospholipids and accumulation of nonesterified arachidonate at concentrations up to 35 microM. Exogenous arachidonate (5-30 microM) amplifies depolarization-induced insulin secretion from islets. Fuel secretagogue-induced hydrolysis of arachidonate from islet phospholipids occurs in Ca(2+)-free medium, suggesting the possible involvement of a Ca(2+)-independent phospholipase. In the companion paper [Gross et al. (1993) Biochemistry (preceding paper in this issue)], we demonstrated that the major islet phospholipase A2 is Ca(2+)-independent, ATP-stimulated, and inhibited by the haloenol lactone suicide substrate (HELSS) (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one. Here we demonstrate that HELSS suppressed both release of the arachidonate metabolite prostaglandin E2 and insulin secretion from islets stimulated with D-glucose and the muscarinic agonist carbachol. Both prostaglandin E2 release and insulin secretion were suppressed with similar concentration profiles and time courses. Islet oxidation of [14C]-glucose to [14C]CO2, activities of islet lactate dehydrogenase and alanine and aspartate aminotransferases, and carbachol-induced inositol phosphate accumulation in islets were all unaffected by HELSS. Depolarization of isolated beta-cells with 40 mM KCl induced a rise in cytosolic [Ca2+] that was also unaffected by HELSS. In contrast, the 17 mM D-glucose-induced rise in beta-cell [Ca2+] was inhibited by HELSS in a concentration-dependent manner, but that induced by exogenous arachidonate (15 microM) was not. These results suggest that fuel secretagogues activate the islet Ca(2+)-independent phospholipase A2, resulting in release of nonesterified arachidonate, which facilitates Ca2+ entry into beta-cells and promotes insulin secretion.
Collapse
|
|
32 |
113 |
24
|
Valenzuela D, Han X, Mende U, Fankhauser C, Mashimo H, Huang P, Pfeffer J, Neer EJ, Fishman MC. G alpha(o) is necessary for muscarinic regulation of Ca2+ channels in mouse heart. Proc Natl Acad Sci U S A 1997; 94:1727-32. [PMID: 9050846 PMCID: PMC19984 DOI: 10.1073/pnas.94.5.1727] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heterotrimeric G proteins, composed of G alpha and G betagamma subunits, transmit signals from cell surface receptors to cellular effector enzymes and ion channels. The G alpha(o) protein is the most abundant G alpha subtype in the nervous system, but it is also found in the heart. Its function is not completely known, although it is required for regulation of N-type Ca2+ channels in GH3 cells and also interacts with GAP43, a major protein in growth cones, suggesting a role in neuronal pathfinding. To analyze the function of G alpha(o), we have generated mice lacking both isoforms of G alpha(o) by homologous recombination. Surprisingly, the nervous system is grossly intact, despite the fact that G alpha(o) makes up 0.2-0.5% of brain particulate protein and 10% of the growth cone membrane. The G alpha(o)-/- mice do suffer tremors and occasional seizures, but there is no obvious histologic abnormality in the nervous system. In contrast, G alpha(o)-/- mice have a clear and specific defect in ion channel regulation in the heart. Normal muscarinic regulation of L-type calcium channels in ventricular myocytes is absent in the mutant mice. The L-type calcium channel responds normally to isoproterenol, but there is no evident muscarinic inhibition. Muscarinic regulation of atrial K+ channels is normal, as is the electrocardiogram. The levels of other G alpha subunits (G alpha(s), G alpha(q), and G alpha(i)) are unchanged in the hearts of G alpha(o)-/- mice, but the amount of G betagamma is decreased. Whichever subunit, G alpha(o) or G betagamma, carries the signal forward, these studies show that muscarinic inhibition of L-type Ca2+ channels requires coupling of the muscarinic receptor to G alpha(o). Other cardiac G alpha subunits cannot substitute.
Collapse
|
research-article |
28 |
106 |
25
|
Han X, Patters AB, Jones DP, Zelikovic I, Chesney RW. The taurine transporter: mechanisms of regulation. Acta Physiol (Oxf) 2006; 187:61-73. [PMID: 16734743 DOI: 10.1111/j.1748-1716.2006.01573.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Taurine transport undergoes an adaptive response to changes in taurine availability. Unlike most amino acids, taurine is not metabolized or incorporated into protein but remains free in the intracellular water. Most amino acids are reabsorbed at rates of 98-99%, but reabsorption of taurine may range from 40% to 99.5%. Factors that influence taurine accumulation include ionic environment, electrochemical charge, and post-translational and transcriptional factors. Among these are protein kinase C (PKC) activation and transactivation or repression by proto-oncogenes such as WT1, c-Jun, c-Myb and p53. Renal adaptive regulation of the taurine transporter (TauT) was studied in vivo and in vitro. Site-directed mutagenesis and the oocyte expression system were used to study post-translational regulation of the TauT by PKC. Reporter genes and Northern and Western blots were used to study transcriptional regulation of the taurine transporter gene (TauT). We demonstrated that (i) the body pool of taurine is controlled through renal adaptive regulation of TauT in response to taurine availability; (ii) ionic environment, electrochemical charge, pH, and developmental ontogeny influence renal taurine accumulation; (iii) the fourth segment of TauT is involved in the gating of taurine across the cell membrane, which is controlled by PKC phosphorylation of serine 322 at the post-translational level; (iv) expression of TauT is repressed by the p53 tumour suppressor gene and is transactivated by proto-oncogenes such as WT1, c-Jun, and c-Myb; and (v) over-expression of TauT protects renal cells from cisplatin-induced nephrotoxicity.
Collapse
|
Review |
19 |
105 |