1
|
Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001; 68:577-89. [PMID: 11179006 PMCID: PMC1274471 DOI: 10.1086/318811] [Citation(s) in RCA: 712] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Accepted: 01/19/2001] [Indexed: 12/11/2022] Open
Abstract
Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth. The majority of affected individuals have been reported in the Afrikaner population of South Africa, where a high incidence of the disorder occurs as a result of a founder effect. Homozygosity mapping in Afrikaner families along with analysis of historical recombinants localized sclerosteosis to an interval of approximately 2 cM between the loci D17S1787 and D17S930 on chromosome 17q12-q21. Here we report two independent mutations in a novel gene, termed "SOST." Affected Afrikaners carry a nonsense mutation near the amino terminus of the encoded protein, whereas an unrelated affected person of Senegalese origin carries a splicing mutation within the single intron of the gene. The SOST gene encodes a protein that shares similarity with a class of cystine knot-containing factors including dan, cerberus, gremlin, prdc, and caronte. The specific and progressive effect on bone formation observed in individuals affected with sclerosteosis, along with the data presented in this study, together suggest that the SOST gene encodes an important new regulator of bone homeostasis.
Collapse
|
research-article |
24 |
712 |
2
|
Abstract
In recent years, there has been an intensive research on fungal decolorization of dye wastewater. It is becoming a promising alternative to replace or supplement present treatment processes. This paper examines various fungi, living or dead cells, which are capable of decolorizing dye wastewaters; discusses various mechanisms involved; reports some elution and regeneration methods for fungal biomass; summarizes the present pretreatment methods for increasing the biosorption capacity of fungal biomass; discusses the effect of various factors on decolorization.
Collapse
|
Review |
24 |
438 |
3
|
Fu Y, Galán JE. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 1999; 401:293-7. [PMID: 10499590 DOI: 10.1038/45829] [Citation(s) in RCA: 424] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An essential feature of the bacterial pathogen Salmonella spp. is its ability to enter cells that are normally non-phagocytic, such as those of the intestinal epithelium. The bacterium achieves entry by delivering effector proteins into the host-cell cytosol by means of a specialized protein-secretion system (termed type III), which causes reorganization of the cell's actin cytoskeleton and ruffling of its membrane. One of the bacterial effectors that stimulates these cellular responses is SopE, which acts as a guanyl-nucleotide-exchange factor on Rho GTPase proteins such as Cdc42 and Rac. As the actin-cytoskeleton reorganization induced by Salmonella is reversible and short-lived, infected cells regain their normal architecture after bacterial internalization. We show here that the S. Typhimurium effector protein SptP, which is delivered to the host-cell cytosol by the type-III secretion system, is directly responsible for the reversal of the actin cytoskeletal changes induced by the bacterium. SptP exerts this function by acting as a GTPase-activating protein (GAP) for Rac-1 and Cdc42.
Collapse
|
|
26 |
424 |
4
|
Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Li J, Jiang S, Pasztor LM, White RA, Groopman JE. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem 1995; 270:27742-51. [PMID: 7499242 DOI: 10.1074/jbc.270.46.27742] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have isolated a cDNA encoding a novel human intracytoplasmic tyrosine kinase, termed RAFTK (for a related adhesion focal tyrosine kinase). In addition, we have cloned and characterized the murine homolog of the human RAFTK cDNA. Comparison of the deduced amino acid sequences of human RAFTK and murine Raftk cDNAs revealed 95% homology, indicating that RAFTK is highly conserved between these species. The RAFTK cDNA clone, encoding a polypeptide of 1009 amino acids, has closest homology (48% identity, 65% similarity) to the focal adhesion kinase (pp125FAK). Comparison of the deduced amino acid sequences also indicates that RAFTK, like pp125FAK, lacks a transmembrane region, myristylation sites, and SH2 and SH3 domains. In addition, like pp125FAK, RAFTK contains a kinase domain flanked by large N-terminal (426 residues) and C-terminal (331 residues) domains, and the C-terminal region contains a predicted proline-rich stretch of residues. In fetal tissues, RAFTK expression was abundant in brain, and low levels were observed in lung and liver. In adult tissues, it was less restricted, indicating that RAFTK expression is developmentally up-regulated. Expression of RAFTK was also observed in human CD34+ marrow cells, primary bone marrow megakaryocytes, platelets, and various areas of brain. The human RAFTK gene was assigned to human chromosome 8 using genomic DNAs from human/rodent somatic cell hybrid lines. The mouse Raftk gene was mapped to chromosome 14, closely linked to gonadotropin-releasing hormone. Using specific antibodies for RAFTK, a approximately 123-kDa protein from the human megakaryocytic CMK cell line was immunoprecipitated. Treatment of the megakaryocytic CMK cells with thrombin caused a rapid induction of tyrosine phosphorylation of RAFTK protein. The structural features of RAFTK suggest that it is a member of the focal adhesion kinase gene family and may participate in signal transduction in human megakaryocytes and brain as well as in other cell types.
Collapse
|
Comparative Study |
30 |
303 |
5
|
Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM, Pickles MR, Qin L, Fu Y, Mann JS, Kirschner BS, Jabs EW, Weber J, Hanauer SB, Bayless TM, Brant SR. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci U S A 1998; 95:7502-7. [PMID: 9636179 PMCID: PMC22666 DOI: 10.1073/pnas.95.13.7502] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 04/20/1998] [Indexed: 02/07/2023] Open
Abstract
The idiopathic inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), are chronic, frequently disabling diseases of the intestines. Segregation analyses, twin concordance, and ethnic differences in familial risks have established that CD and UC are complex, non-Mendelian, related genetic disorders. We performed a genome-wide screen using 377 autosomal markers, on 297 CD, UC, or mixed relative pairs from 174 families, 37% Ashkenazim. We observed evidence for linkage at 3q for all families (multipoint logarithm of the odds score (MLod) = 2.29, P = 5.7 x 10(-4)), with greatest significance for non-Ashkenazim Caucasians (MLod = 3.39, P = 3.92 x 10(-5)), and at chromosome 1p (MLod = 2.65, P = 2.4 x 10(-4)) for all families. In a limited subset of mixed families (containing one member with CD and another with UC), evidence for linkage was observed on chromosome 4q (MLod = 2.76, P = 1.9 x 10(-4)), especially among Ashkenazim. There was confirmatory evidence for a CD locus, overlapping IBD1, in the pericentromeric region of chromosome 16 (MLod = 1.69, P = 2.6 x 10(-3)), particularly among Ashkenazim (MLod = 1.51, P = 7.8 x 10(-3)); however, positive MLod scores were observed over a very broad region of chromosome 16. Furthermore, evidence for epistasis between IBD1 and chromosome 1p was observed. Thirteen additional loci demonstrated nominal (MLod > 1.0, P < 0.016) evidence for linkage. This screen provides strong evidence that there are several major susceptibility loci contributing to the genetic risk for CD and UC.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 3
- Chromosomes, Human, Pair 4
- Colitis, Ulcerative/genetics
- Crohn Disease/genetics
- Disease Susceptibility
- Epistasis, Genetic
- Genetic Linkage
- Genetic Markers
- Genotype
- Humans
- Lod Score
Collapse
|
research-article |
27 |
272 |
6
|
Eguchi K, Enomoto S, Furuno K, Goldman J, Hanada H, Ikeda H, Ikeda K, Inoue K, Ishihara K, Itoh W, Iwamoto T, Kawaguchi T, Kawashima T, Kinoshita H, Kishimoto Y, Koga M, Koseki Y, Maeda T, Mitsui T, Motoki M, Nakajima K, Nakajima M, Nakajima T, Ogawa H, Owada K, Sakabe T, Shimizu I, Shirai J, Suekane F, Suzuki A, Tada K, Tajima O, Takayama T, Tamae K, Watanabe H, Busenitz J, Djurcic Z, McKinny K, Mei DM, Piepke A, Yakushev E, Berger BE, Chan YD, Decowski MP, Dwyer DA, Freedman SJ, Fu Y, Fujikawa BK, Heeger KM, Lesko KT, Luk KB, Murayama H, Nygren DR, Okada CE, Poon AWP, Steiner HM, Winslow LA, Horton-Smith GA, McKeown RD, Ritter J, Tipton B, Vogel P, Lane CE, Miletic T, Gorham PW, Guillian G, Learned JG, Maricic J, Matsuno S, Pakvasa S, Dazeley S, Hatakeyama S, Murakami M, Svoboda RC, Dieterle BD, DiMauro M, Detwiler J, Gratta G, Ishii K, Tolich N, Uchida Y, Batygov M, Bugg W, Cohn H, Efremenko Y, Kamyshkov Y, Kozlov A, Nakamura Y, De Braeckeleer L, Gould CR, Karwowski HJ, Markoff DM, Messimore JA, Nakamura K, Rohm RM, Tornow W, Young AR, Wang YF. First results from KamLAND: evidence for reactor antineutrino disappearance. PHYSICAL REVIEW LETTERS 2003; 90:021802. [PMID: 12570536 DOI: 10.1103/physrevlett.90.021802] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Indexed: 05/24/2023]
Abstract
KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.
Collapse
|
|
22 |
214 |
7
|
Rüssmann H, Shams H, Poblete F, Fu Y, Galán JE, Donis RO. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 1998; 281:565-8. [PMID: 9677200 DOI: 10.1126/science.281.5376.565] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Avirulent strains of Salmonella typhimurium are being considered as antigen delivery vectors. During its intracellular stage in the host, S. typhimurium resides within a membrane-bound compartment and is not an efficient inducer of class I-restricted immune responses. Viral epitopes were successfully delivered to the host-cell cytosol by using the type III protein secretion system of S. typhimurium. This resulted in class I-restricted immune responses that protected vaccinated animals against lethal infection. This approach may allow the efficient use of S. typhimurium as an antigen delivery system to control infections by pathogens that require this type of immune response for protection.
Collapse
|
|
27 |
211 |
8
|
Fu Y, Anderson PW. Application of statistical mechanics to NP-complete problems in combinatorial optimisation. ACTA ACUST UNITED AC 1999. [DOI: 10.1088/0305-4470/19/9/033] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
26 |
205 |
9
|
Fu Y, Galán JE. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol Microbiol 1998; 27:359-68. [PMID: 9484891 DOI: 10.1046/j.1365-2958.1998.00684.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Salmonella typhimurium protein tyrosine phosphatase SptP is a target of the centisome 63 type III protein secrtion system. This system is essential for the interaction of these bacteria with host cells. We have shown here by a combination of biochemical and microscopy techniques that S. typhimurium directs the translocation of SptP into cultured epithelial cells. Translocation requires the function of the secreted proteins, SipB, SipC and SipD, as strains carrying mutations in any of the genes encoding these proteins fail to translocate SptP. Microinjection of purified GST-SptP into cultured cells results in the disruption of the actin cytoskeleton and the disappearance of stress fibres. These changes are reversible, as microinjected cells regain the normal appearance of their actin cytoskeleton upon prolonged incubation. Microinjection of the catalytically active GST-SptP(C481S) protein results in changes similar to those induced by the wild-type toxin. Furthermore, microinjection of a fusion protein between GST and the first 285 amino acids of SptP also leads to identical disruption of the host cell actin cytoskeleton, indicating that the amino-terminal half of SptP is sufficient to mediate this effect. However, microinjection of a fusion protein between GST and the last 259 amino acids of SptP also disrupted the normal appearance of the cytoskeleton. These results support the hypothesis that SptP is an effector protein arranged in modular domains that may co-operate with each other to exert relate functions.
Collapse
|
|
27 |
195 |
10
|
Graña X, De Luca A, Sang N, Fu Y, Claudio PP, Rosenblatt J, Morgan DO, Giordano A. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci U S A 1994; 91:3834-8. [PMID: 8170997 PMCID: PMC43676 DOI: 10.1073/pnas.91.9.3834] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the cell division cycle 2 (CDC2) family of kinases play a pivotal role in the regulation of the eukaryotic cell cycle. In this communication, we report the isolation of a cDNA that encodes a CDC2-related human protein kinase temporarily designated PITALRE for the characteristic Pro-Ile-Thr-Ala-Leu-Arg-Glu motif. Its deduced amino acid sequence is 47% identical to that of the human cholinesterase-related cell division controller (CHED) kinase, which is required during hematopoiesis, and 42% identical to the Saccharomyces cerevisiae SGV1 gene product, a putative kinase involved in the response to pheromone via its guanine nucleotide-binding protein alpha subunit. PITALRE expression is ubiquitous, but its expression levels are different in various human tissues. PITALRE is an approximately 43-kDa protein that associates with three cellular polypeptides of 80, 95, and 155 kDa. PITALRE is localized primarily to the nucleus. In addition, we have identified a retinoblastoma protein kinase activity associated with PITALRE immunocomplexes that cannot phosphorylate histone H1, suggesting that the target phosphorylation site of PITALRE differs from that of CDC2 kinase. Interestingly, the retinoblastoma kinase activity associated with PITALRE does not oscillate during the cell cycle.
Collapse
|
research-article |
31 |
167 |
11
|
Armstrong PW, Fu Y, Chang WC, Topol EJ, Granger CB, Betriu A, Van de Werf F, Lee KL, Califf RM. Acute coronary syndromes in the GUSTO-IIb trial: prognostic insights and impact of recurrent ischemia. The GUSTO-IIb Investigators. Circulation 1998; 98:1860-8. [PMID: 9799205 DOI: 10.1161/01.cir.98.18.1860] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recurrent ischemia after an acute coronary syndrome portends an unfavorable outcome and has major resource-use implications. This issue has not been studied systematically among the spectrum of patients with acute coronary presentations, encompassing those with and without ST-segment elevation. METHODS AND RESULTS We assessed the 1-year prognosis of the 12 142 patients enrolled in the GUSTO-IIb trial by the presence (n=4125) or absence (n=8001) of ST-segment elevation. This latter group was further categorized into those with baseline myocardial infarction (n=3513) or unstable angina (n=4488). We also assessed the incidence of recurrent ischemia and its impact on outcomes. Recurrent ischemia was significantly rarer in those with ST-segment elevation (23%) than in those without (35%; P<0.001). Mortality at 30 days was greater among patients with ST-segment elevation (6.1% versus 3.8%; P<0.001) but less so at 6 months; by 1 year, mortality did not differ significantly (9.6% versus 8.8%). Patients with non-ST-segment-elevation infarction had higher rates of reinfarction at 6 months (9.8% versus 6.2%) and higher 6-month (8.8% versus 5.0%) and 1-year mortality rates (11.1% versus 7.0%) than such patients who had unstable angina. CONCLUSIONS Refractory ischemia was associated with an approximate doubling of mortality among patients with ST-segment elevation and a near tripling of risk among those without ST elevation. This study highlights not only the substantial increase in late mortality and reinfarction with non-ST-segment-elevation infarction but also the opportunities for better triage and application of therapeutic strategies for patients with recurrent ischemia.
Collapse
|
Clinical Trial |
27 |
160 |
12
|
Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J, Fonzi W, Mirbod F, Nakashima S, Nozawa Y, Ghannoum MA. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem 1998; 273:26078-86. [PMID: 9748287 DOI: 10.1074/jbc.273.40.26078] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Candida albicans PLB1 gene was cloned using a polymerase chain reaction-based approach relying on degenerate oligonucleotide primers designed according to the amino acid sequences of two peptide fragments obtained from a purified candidal enzyme displaying phospholipase activity (Mirbod, F., Banno, Y., Ghannoum, M. A., Ibrahim, A. S., Nakashima, S., Yasuo, K., Cole, G. T., and Nozawa, Y. (1995) Biochim. Biophys. Acta 1257, 181-188). Sequence analysis of a 6.7-kilobase pair EcoRI-ClaI genomic clone revealed a single open reading frame of 1818 base pairs that predicts for a pre-protein of 605 residues. Comparison of the putative candidal phospholipase with those of other proteins in data base revealed significant homology to known fungal phospholipase Bs from Saccharomyces cerevisiae (45%), Penicillium notatum (42%), Torulaspora delbrueckii (48%), and Schizosaccharomyces pombe (38%). Thus, we have cloned the gene encoding a C. albicans phospholipase B homolog. This gene, designated caPLB1, was mapped to chromosome 6. Disruption experiments revealed that the caplb1 null mutant is viable and displays no obvious phenotype. However, the virulence of strains deleted for caPLB1, as assessed in a murine model for hematogenously disseminated candidiasis, was significantly attenuated compared with the isogenic wild-type parental strain. Although deletion of caPLB1 did not produce any detectable effects on candidal adherence to human endothelial or epithelial cells, the ability of the caplb1 null mutant to penetrate host cells was dramatically reduced. Thus, phospholipase B may well contribute to the pathogenicity of C. albicans by abetting the fungus in damaging and traversing host cell membranes, processes which likely increase the rapidity of disseminated infection.
Collapse
|
|
27 |
160 |
13
|
Ballicora MA, Frueauf JB, Fu Y, Schürmann P, Preiss J. Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J Biol Chem 2000; 275:1315-20. [PMID: 10625679 DOI: 10.1074/jbc.275.2.1315] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potato tuber (Solanum tuberosum L.) ADP-glucose pyrophosphorylase (ADP-GlcPPase) catalyzes the first committed step in starch biosynthesis. The main type of regulation of this enzyme is allosteric, and its activity is controlled by the ratio of activator, 3-phosphoglycerate to inhibitor, P(i). It was reported (Fu, Y., Ballicora, M. A., Leykam, J. F., and Preiss, J. (1998) J. Biol. Chem. 273, 25045-25052) that the enzyme was activated by reduction of the Cys(12) disulfide linkage present in the catalytic subunits. In this study, both reduced thioredoxin f and m from spinach (Spinacia oleracea) leaves reduced and activated the enzyme at low concentrations (10 microM) of activator (3-phosphoglycerate). Fifty percent activation was at 4.5 and 8.7 microM for reduced thioredoxin f and m, respectively, and 2 orders of magnitude lower than for dithiothreitol. The activation was reversed by oxidized thioredoxin. Cys(12) is conserved in the ADP-GlcPPases from plant leaves and other tissues except for the monocot endosperm enzymes. We postulate that in photosynthetic tissues, reduction could play a role in the fine regulation of the ADP-GlcPPase mediated by the ferredoxin-thioredoxin system. This is the first time that a covalent mechanism of regulation is postulated in the synthesis of starch.
Collapse
|
|
25 |
143 |
14
|
Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH. Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circ Res 1999; 85:e33-43. [PMID: 10532960 DOI: 10.1161/01.res.85.9.e33] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent evidence suggests that functional diversity of vascular smooth muscle is produced in part by a differential expression of ion channels. The aim of the present study was to examine the role of Ca(2+)-activated K(+) channels (K(Ca) channels) in the expression of smooth muscle cell functional phenotype. We found that smooth muscle cells exhibiting a contractile function express predominantly large-conductance ( approximately 200 pS) K(Ca) (BK) channels. In contrast, proliferative smooth muscle cells express predominantly K(Ca) channels exhibiting a much smaller conductance ( approximately 32 pS). These channels are blocked by low concentrations of charybdotoxin (10 nmol/L) but, unlike BK channels, are insensitive to iberiotoxin (100 nmol/L). To determine the molecular identity of this K(+) channel, we cloned a 1.9-kb cDNA from an immature-phenotype smooth muscle cell cDNA library. The cDNA contains an open reading frame for a 425 amino acid protein exhibiting sequence homology to other K(Ca) channels, in particular with mIK1 and hIK1. Expression in oocytes gives rise to a K(+)-selective channel exhibiting intermediate-conductance (37 pS at -60 mV) and potent activation by Ca(2+) (K(d) 120 nmol/L). Thus, we have cloned and characterized the vascular smooth muscle intermediate-conductance K(Ca) channel (SMIK), which is markedly upregulated in proliferating smooth muscle cells. The differential expression of these K(Ca) channels in functionally distinct smooth muscle cell types suggests that K(Ca) channels play a role in defining the physiological properties of vascular smooth muscle.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Charybdotoxin/pharmacology
- Cloning, Molecular
- Endothelin-1/pharmacology
- In Vitro Techniques
- Intermediate-Conductance Calcium-Activated Potassium Channels
- Molecular Sequence Data
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Oocytes
- Patch-Clamp Techniques
- Peptides/pharmacology
- Potassium Channels/biosynthesis
- Potassium Channels/drug effects
- Potassium Channels/genetics
- Potassium Channels/physiology
- Potassium Channels, Calcium-Activated
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred WKY
- Reverse Transcriptase Polymerase Chain Reaction
- Xenopus
Collapse
|
|
26 |
142 |
15
|
Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE, Filler SG. Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 1998; 66:1783-6. [PMID: 9529114 PMCID: PMC108121 DOI: 10.1128/iai.66.4.1783-1786.1998] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To identify genes encoding adhesins that mediate the binding of Candida albicans to endothelial cells, a genomic library from this organism was constructed and used to transform Saccharomyces cerevisiae. These transformed organisms were screened for adherence to endothelial cells, and a highly adherent clone was identified. The adherence of this clone to endothelial cells was over 100-fold greater than that of control S. cerevisiae transformed with the empty plasmid. This clone also exhibited enhanced adherence to epithelial cells. The C. albicans gene contained within this clone was found to be ALS1. These results indicate that ALS1 may encode a candidal adhesin.
Collapse
|
research-article |
27 |
141 |
16
|
Campanelli D, Melchior M, Fu Y, Nakata M, Shuman H, Nathan C, Gabay JE. Cloning of cDNA for proteinase 3: a serine protease, antibiotic, and autoantigen from human neutrophils. J Exp Med 1990; 172:1709-15. [PMID: 2258701 PMCID: PMC2188764 DOI: 10.1084/jem.172.6.1709] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Closely similar but nonidentical NH2-terminal amino acid sequences have been reported for a protein or proteins in human neutrophils whose bioactivities is/are diverse (as a serine protease, antibiotic, and Wegener's granulomatosis autoantigen) but that share(s) several features: localization in the azurophil granules, a molecular mass of approximately 29 kD, reactivity with diisopropylfluorophosphate, and the ability to degrade elastin. We previously purified one such entity, termed p29b. Using a monospecific antibody, we have cloned from human bone marrow a cDNA encoding the complete p29b protein in its mature form, along with pre- and pro-sequences. The predicted amino acid sequence agrees closely with the NH2-terminal sequence obtained previously from purified p29b, as well as with sequences newly obtained from CNBr fragments. The primary structure is highly homologous to elastase, cathepsin G, T cell granzymes, and other serine proteases, and shares both the catalytic triad and substrate binding pocket of elastase. Hybridization of the full-length cDNA with restriction enzyme digests of human genomic DNA revealed only one fragment. This suggests that the closely related species described previously are the same, and can be subsumed by the term used for the first-described activity, proteinase 3. Proteinase 3 is more abundant in neutrophils than elastase and has a similar proteolytic profile and specific activity. Thus, proteinase 3 may share the role previously attributed to neutrophil elastase in tissue damage, and has the potential to function as an antimicrobial agent.
Collapse
|
research-article |
35 |
132 |
17
|
Biro S, Fu YM, Yu ZX, Epstein SE. Inhibitory effects of antisense oligodeoxynucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration. Proc Natl Acad Sci U S A 1993; 90:654-8. [PMID: 8421701 PMCID: PMC45722 DOI: 10.1073/pnas.90.2.654] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Smooth muscle cell (SMC) proliferation and migration play pivotal roles in restenosis following angioplasty. c-myc is an immediate early response gene induced by various mitogens, and several lines of evidence derived from experiments using transformed or hematopoietic cell lines, or transgenic mice, suggest its protein product plays a role in numerous signaling transduction pathways, including those modulating cell division. We therefore reasoned that a strategy employing oligodeoxynucleotides (ODNs) complementary to c-myc mRNA (antisense ODNs) might be potent inhibitors of SMC proliferation and, perhaps, of SMC migration. To evaluate this concept, we tested several antisense ODNs targeted to c-myc mRNA (15- or 18-mer ODNs complementary to different c-myc mRNA sequences) by introducing them individually into the medium of cultured rat aortic SMCs. Phosphoroamidate-modified ODNs were employed to retard degradation. Antisense ODNs inhibited, in a concentration-dependent manner, SMC proliferation and SMC migration. Maximal inhibitory effect was 50% for proliferation and > 90% for migration. These effects were associated with decreased SMC expression of c-myc-encoded protein by Western immunoblotting and immunocytochemical staining. ODNs with the same nucleotides but a scrambled sequence caused no effect. These results indicate that the c-myc gene product is involved in the signal transduction pathways mediating SMC proliferation and migration in the in vitro model we employed. The results also suggest a potential role of antisense strategies designed to inhibit c-myc expression for the prevention of coronary restenosis.
Collapse
|
research-article |
32 |
131 |
18
|
Wang M, Ye R, Barron E, Baumeister P, Mao C, Luo S, Fu Y, Luo B, Dubeau L, Hinton DR, Lee AS. Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 2009; 17:488-98. [PMID: 19816510 PMCID: PMC2822118 DOI: 10.1038/cdd.2009.144] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neurodegenerative diseases are often associated with dysfunction in protein quality control. The endoplasmic reticulum (ER), a key site for protein synthesis, senses stressful conditions by activating the unfolded protein response (UPR). Here we report the creation of a novel mouse model where GRP78/BiP, a major ER chaperone and master regulator of UPR, is specifically eliminated in the Purkinje cells (PCs). GRP78 depleted PCs activate UPR including induction of GRP94, PDI, CHOP and GADD34, feedback suppression of eIF2α phosphorylation and apoptotic cell death. In contrast to current models of protein misfolding where abnormal accumulation of ubiquitinated protein is prominent, cytosolic ubiquitin staining is dramatically reduced in GRP78 null PCs. Ultrastructural evaluation reveals that the ER shows prominent dilatation with focal accumulation of electron-dense material within the ER. The mice show retarded growth and severe motor coordination defect by week 5 and cerebellar atrophy by week 13. Our studies uncover a novel link between GRP78 depletion and reduction in cytosolic ubiquitination and establish a novel mouse model of accelerated cerebellar degeneration with basic and clinical applications.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
130 |
19
|
Fu Y, Ballicora MA, Leykam JF, Preiss J. Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 1998; 273:25045-52. [PMID: 9737961 DOI: 10.1074/jbc.273.39.25045] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potato tuber (Solanum tuberosum L.) ADP-glucose pyrophosphorylase activity is activated by a incubation with ADP-glucose and dithiothreitol or by ATP, glucose- 1-phosphate, Ca2+, and dithiothreitol. The activation was accompanied by the appearance of new sulfhydryl groups as determined with 5, 5'-dithiobis(2-nitrobenzoic acid). By analyzing the activated and nonactivated enzymes on SDS-polyacrylamide gel electrophoresis under nonreducing conditions, it was found that an intermolecular disulfide bridge between the small subunits of the potato tuber enzyme was reduced during the activation. Further experiments showed that the activation was mediated via a slow reduction and subsequent rapid conformational change induced by ADP-glucose. The activation process could be reversed by oxidation with 5, 5'-dithiobis(2-nitrobenzoic acid). Incubation with ADP-glucose and dithiothreitol could reactivate the oxidized enzyme. Chemical modification experiments with [14C]iodoacetic acid and 4-vinylpyridine determined that the intermolecular disulfide bridge was located between Cys12 of the small subunits of the potato tuber enzyme. Mutation of Cys12 in the small subunit into either Ala or Ser eliminated the requirement of DTT on the activation and prevented the formation of the intermolecular disulfide of the potato tuber enzyme. The mutants had instantaneous activation rates as the wild-type in the reduced state. A two-step activation model is proposed.
Collapse
|
|
27 |
123 |
20
|
Ghannoum MA, Ibrahim AS, Fu Y, Shafiq MC, Edwards JE, Criddle RS. Susceptibility testing of Cryptococcus neoformans: a microdilution technique. J Clin Microbiol 1992; 30:2881-6. [PMID: 1452658 PMCID: PMC270546 DOI: 10.1128/jcm.30.11.2881-2886.1992] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We studied a series of test conditions in a microtiter system to define the optimal method for determining the susceptibility of Cryptococcus neoformans to antifungal agents. Twenty-one isolates of C. neoformans were grown for 24 or 48 h in four chemically defined media: yeast nitrogen base (BYNB 7); RPMI 1640; synthetic amino acid medium--fungal (SAAMF), buffered at pH 7.0 to select the medium that best supported growth of this fastidious yeast; and yeast nitrogen base, pH 5.4 (YNB 5.4). Maximum growth of C. neoformans, at 35 degrees C, was obtained in YNB 5.4, with the next highest growth levels in BYNB 7, SAAMF, and RPMI. Growth at 24 h was uniformly poor in all media and lacked reproducibility. In contrast, incubation for 48 h gave adequate growth with low standard deviations, and 48 h was selected as the optimal incubation period for this study. Comparison of the relationship between growth kinetics and initial inoculum size for eight cryptococcal isolates showed that 10(4) cells per ml yielded optimal growth in BYNB 7 and YNB 5.4, whereas 10(5) cells per ml was optimal in RPMI and SAAMF. Furthermore, variation of inocula from 10(3) to 10(5) cells per ml showed small but significant inoculum effects in determining MICs of fluconazole, amphotericin B, and flucytosine for C. neoformans. Therefore, 10(4) cells per ml was chosen as the optimal inoculum for susceptibility testing in this study. Mean MICs of fluconazole, amphotericin B, and flucytosine for 21 crytococcal isolates in RPMI and BYNB 7 were low (for example, fluconazole had mean MICs of 1.2 and 1.3 micrograms/ml in RPMI and BYNB 7, respectively) and differed significantly from medium to medium. In contrast, the MICs obtained in SAAMF were significantly higher (e.g., fluconazole had a mean MIC of 2.2 micrograms/ml). Variance in MICs was large with fluconazole and flucytosine but small with amphotericin B, irrespective of the medium used. A microtiter system employing BYNB 7 as the medium, 48 h as the incubation period, and 10(4) cells per ml as the final inoculum is a simple, accurate, and reproducible method for the testing of C. neoformans susceptibility to fluconazole, amphotericin B, and flucytosine.
Collapse
|
research-article |
33 |
117 |
21
|
Fu Y, Comella N, Tognazzi K, Brown LF, Dvorak HF, Kocher O. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene 1999; 240:157-63. [PMID: 10564822 DOI: 10.1016/s0378-1119(99)00419-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumors interact with their environment, reprogramming host cells to induce responses such as angiogenesis, inflammation, immunity and immune suppression. To understand these processes, it is important to identify and isolate new genes whose expression is induced in host tissues in response to tumors. Ascites tumors offer an attractive model for isolating such genes, because responding host peritoneal lining tissues can be cleanly separated from tumor cells growing in suspension within the peritoneal cavity. We here report the cloning by differential display of a novel gene, DLM-1, that is highly up-regulated in the peritoneal lining tissue of mice bearing MOT ascites tumors. Mouse peritoneal macrophages, stimulated by IFN-gamma or LPS, also expressed significant amounts of DLM-1. Up-regulation of DLM-1 became evident by 4h after stimulation with IFN-gamma and was not blocked by cycloheximide, suggesting the presence of IFN responding elements in its transcription regulation region. DLM-1 RNA was detected at significant levels in normal mouse lung, intestinal epithelium, liver and thymus by Northern blot analysis. In situ hybridization of MOT and HT-29 mouse subcutaneous transplanted solid tumors revealed strong DLM-1 expression in the host reactive stromal cells, but not the tumor cells. Sequence analysis of the full-length cDNA clone revealed that it encodes a protein of approx. M(r) 44330 with multiple potential protein kinase C and casein kinase II phosphorylation sites. Our data suggest that DLM-1 plays a role in such important processes as host response in neoplasia.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Cytokines/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins
- Female
- Gene Expression Regulation/drug effects
- Glycoproteins/genetics
- Humans
- In Situ Hybridization
- Macrophage Activation/genetics
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA-Binding Proteins
- Sequence Analysis, DNA
- Tissue Distribution
- Tumor Cells, Cultured
- Up-Regulation
Collapse
|
|
26 |
115 |
22
|
Abstract
Nicotine has been shown to be a potent stimulus for the secretion of the stress-responsive hormones, adrenocorticotropin (ACTH) and prolactin. This paper reviews the findings by our laboratory and others that demonstrate the polysynaptic pathways involved in the neuroendocrine responses to systemic nicotine. It will focus primarily on the hypothalamo-pituitary-adrenal (HPA) axis and the effect of nicotine on ACTH secretion, with supplementary information on prolactin secretion, where relevant. Data are presented demonstrating that nicotine acts via a central mechanism to stimulate indirectly the release of ACTH from the anterior pituitary corticotropes. Nicotine does not appear to act directly at the hypothalamic paraventricular nucleus (PVN), the site of the corticotropin-releasing hormone (CRH) neurons crucial to the regulation of ACTH. However, brainstem catecholaminergic regions projecting to the PVN showed a regionally selective and dose-dependent sensitivity to nicotine, particularly the noradrenergic/adrenergic nucleus tractus solitarius (NTS). A reduction in the modulatory effect of these catecholamines (by neurotoxic lesion, synthetic enzyme inhibitors or adrenergic receptor antagonists) resulted in an inhibition of nicotine-stimulated ACTH secretion. In addition, blockade of nicotinic cholinergic receptors (NAchRs) in the brainstem by the antagonist, mecamylamine, resulted in a dose-dependent reduction in norepinephrine (NE) release from terminals in the PVN, and a concomitant reduction in plasma ACTH. The differential sensitivity of these receptors to the nicotinic agonists, cytisine and nicotine, reflects the heterogeneity of the NAchR subtypes involved. The desensitization characteristics of the neuroendocrine responses to both acute and chronic nicotine exposure are indicative of an alteration in these NAchRs.
Collapse
|
Review |
27 |
105 |
23
|
Guerrero-Preston R, Soudry E, Acero J, Orera M, Moreno-López L, Macía-Colón G, Jaffe A, Berdasco M, Ili-Gangas C, Brebi-Mieville P, Fu Y, Engstrom C, Irizarry RA, Esteller M, Westra W, Koch W, Califano J, Sidransky D. NID2 and HOXA9 promoter hypermethylation as biomarkers for prevention and early detection in oral cavity squamous cell carcinoma tissues and saliva. Cancer Prev Res (Phila) 2011; 4:1061-72. [PMID: 21558411 DOI: 10.1158/1940-6207.capr-11-0006] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Differentially methylated oral squamous cell carcinoma (OSCC) biomarkers, identified in vitro and validated in well-characterized surgical specimens, have shown poor clinical correlation in cohorts with different risk profiles. To overcome this lack of relevance, we used the HumanMethylation27 BeadChip, publicly available methylation and expression array data, and quantitative methylation specific PCR to uncover differential methylation in OSCC clinical samples with heterogeneous risk profiles. A two stage design consisting of discovery and prevalence screens was used to identify differential promoter methylation and deregulated pathways in patients diagnosed with OSCC and head and neck squamous cell carcinoma. Promoter methylation of KIF1A (κ = 0.64), HOXA9 (κ = 0.60), NID2 (κ = 0.60), and EDNRB (κ = 0.60) had a moderate to substantial agreement with clinical diagnosis in the discovery screen. HOXA9 had 68% sensitivity, 100% specificity, and a 0.81 Area Under the Curve (AUC). NID2 had 71% sensitivity, 100% specificity, and a 0.79 AUC. In the prevalence screen, HOXA9 (κ = 0.82) and NID2 (κ = 0.80) had an almost perfect agreement with histologic diagnosis. HOXA9 had 85% sensitivity, 97% specificity, and a 0.95 AUC. NID2 had 87% sensitivity, 95% specificity, and a 0.91 AUC. A HOXA9 and NID2 gene panel had 94% sensitivity, 97% specificity, and a 0.97 AUC. In saliva, from OSCC cases and controls, HOXA9 had 75% sensitivity, 53% specificity, and a 0.75 AUC. NID2 had 87% sensitivity, 21% specificity, and a 0.73 AUC. This phase I Biomarker Development Trial identified a panel of differentially methylated genes in normal and OSCC clinical samples from patients with heterogeneous risk profiles. This panel may be useful for early detection and cancer prevention studies.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
104 |
24
|
Takashima S, Martin ML, Jansen SA, Fu Y, Bos J, Chandra D, O'Connor MH, Mertelsmann AM, Vinci P, Kuttiyara J, Devlin SM, Middendorp S, Calafiore M, Egorova A, Kleppe M, Lo Y, Shroyer NF, Cheng EH, Levine RL, Liu C, Kolesnick R, Lindemans CA, Hanash AM. T cell-derived interferon-γ programs stem cell death in immune-mediated intestinal damage. Sci Immunol 2020; 4:4/42/eaay8556. [PMID: 31811055 DOI: 10.1126/sciimmunol.aay8556] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Despite the importance of intestinal stem cells (ISCs) for epithelial maintenance, there is limited understanding of how immune-mediated damage affects ISCs and their niche. We found that stem cell compartment injury is a shared feature of both alloreactive and autoreactive intestinal immunopathology, reducing ISCs and impairing their recovery in T cell-mediated injury models. Although imaging revealed few T cells near the stem cell compartment in healthy mice, donor T cells infiltrating the intestinal mucosa after allogeneic bone marrow transplantation (BMT) primarily localized to the crypt region lamina propria. Further modeling with ex vivo epithelial cultures indicated ISC depletion and impaired human as well as murine organoid survival upon coculture with activated T cells, and screening of effector pathways identified interferon-γ (IFNγ) as a principal mediator of ISC compartment damage. IFNγ induced JAK1- and STAT1-dependent toxicity, initiating a proapoptotic gene expression program and stem cell death. BMT with IFNγ-deficient donor T cells, with recipients lacking the IFNγ receptor (IFNγR) specifically in the intestinal epithelium, and with pharmacologic inhibition of JAK signaling all resulted in protection of the stem cell compartment. In addition, epithelial cultures with Paneth cell-deficient organoids, IFNγR-deficient Paneth cells, IFNγR-deficient ISCs, and purified stem cell colonies all indicated direct targeting of the ISCs that was not dependent on injury to the Paneth cell niche. Dysregulated T cell activation and IFNγ production are thus potent mediators of ISC injury, and blockade of JAK/STAT signaling within target tissue stem cells can prevent this T cell-mediated pathology.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
103 |
25
|
Abstract
Lymphotoxin and tumor necrosis factor provide essential signals for the formation of secondary lymphoid tissue structures. Lymphotoxin in its membrane form (LT alpha 1 beta 2 heterotrimer) is required for the development of lymph nodes and Peyer's patches and supports the development of normal spleen structure. In the spleen, lymphotoxin acts during embryonic development to support the formation of distinct B and T cell zones. Lymphotoxin also acts in a tonic fashion-supporting the formation and maintenance of the follicular dendritic cell network and of primary B cell follicle structure. The cells that deliver the tonic lymphotoxin signal supporting follicular dendritic cell structure are B cells; thus, B cells participate fundamentally in the development of the lymphoid tissue structure in which they subsequently mature.
Collapse
|
Comparative Study |
27 |
102 |