1
|
Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 1998; 94:471-80. [PMID: 9727490 DOI: 10.1016/s0092-8674(00)81588-3] [Citation(s) in RCA: 869] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Heat shock and other proteotoxic stresses cause accumulation of nonnative proteins that trigger activation of heat shock protein (Hsp) genes. A chaperone/Hsp functioning as repressor of heat shock transcription factor (HSF) could make activation of hsp genes dependent on protein unfolding. In a novel in vitro system, in which human HSF1 can be activated by nonnative protein, heat, and geldanamycin, addition of Hsp90 inhibits activation. Reduction of the level of Hsp90 but not of Hsp/c70, Hop, Hip, p23, CyP40, or Hsp40 dramatically activates HSF1. In vivo, geldanamycin activates HSF1 under conditions in which it is an Hsp90-specific reagent. Hsp90-containing HSF1 complex is present in the unstressed cell and dissociates during stress. We conclude that Hsp90, by itself and/or associated with multichaperone complexes, is a major repressor of HSF1.
Collapse
|
|
27 |
869 |
2
|
Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 2002; 99:8436-41. [PMID: 12034882 PMCID: PMC123085 DOI: 10.1073/pnas.122224699] [Citation(s) in RCA: 757] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintaining low levels of sodium ions in the cell cytosol is critical for plant growth and development. Biochemical studies suggest that Na(+)/H(+) exchangers in the plasma membrane of plant cells contribute to cellular sodium homeostasis by transporting sodium ions out of the cell; however, these exchangers have not been identified at the molecular level. Genetic analysis has linked components of the salt overly sensitive pathway (SOS1-3) to salt tolerance in Arabidopsis thaliana. The predicted SOS1 protein sequence and comparisons of sodium ion accumulation in wild-type and sos1 plants suggest that SOS1 is involved directly in the transport of sodium ions across the plasma membrane. To demonstrate the transport capability of SOS1, we studied Na(+)/H(+)-exchange activity in wild-type and sos plants using highly purified plasma membrane vesicles. The results showed that plasma membrane Na(+)/H(+)-exchange activity was present in wild-type plants treated with 250 mM NaCl, but this transport activity was reduced by 80% in similarly treated sos1 plants. In vitro addition of activated SOS2 protein (a protein kinase) increased Na(+)/H(+)-exchange activity in salt-treated wild-type plants 2-fold relative to transport without added protein. However, the addition of activated SOS2 did not have any stimulatory effect on the exchange activity in sos1 plants. Although vesicles of sos2 and sos3 plants had reduced plasma membrane Na(+)/H(+)-exchange activity, transport activity in both increased with the addition of activated SOS2 protein. These results demonstrate that SOS1 contributes to plasma membrane Na(+)/H(+) exchange and that SOS2 and SOS3 regulate SOS1 transport activity.
Collapse
|
research-article |
23 |
757 |
3
|
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. THE NEW PHYTOLOGIST 2018; 217:523-539. [PMID: 29205383 DOI: 10.1111/nph.14920] [Citation(s) in RCA: 726] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Collapse
|
Review |
7 |
726 |
4
|
Jamison DT, Summers LH, Alleyne G, Arrow KJ, Berkley S, Binagwaho A, Bustreo F, Evans D, Feachem RGA, Frenk J, Ghosh G, Goldie SJ, Guo Y, Gupta S, Horton R, Kruk ME, Mahmoud A, Mohohlo LK, Ncube M, Pablos-Mendez A, Reddy KS, Saxenian H, Soucat A, Ulltveit-Moe KH, Yamey G. Global health 2035: a world converging within a generation. Lancet 2013; 382:1898-955. [PMID: 24309475 DOI: 10.1016/s0140-6736(13)62105-4] [Citation(s) in RCA: 696] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
12 |
696 |
5
|
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK. Plant abiotic stress response and nutrient use efficiency. SCIENCE CHINA-LIFE SCIENCES 2020; 63:635-674. [PMID: 32246404 DOI: 10.1007/s11427-020-1683-x] [Citation(s) in RCA: 600] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality. Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress- and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.
Collapse
|
Review |
5 |
600 |
6
|
Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ, Wang Y, Teng Y, Zhao Z, Cui Y, Li Y, Li XF, Li J, Zhang NN, Yang X, Chen S, Guo Y, Zhao G, Wang X, Luo DY, Wang H, Yang X, Li Y, Han G, He Y, Zhou X, Geng S, Sheng X, Jiang S, Sun S, Qin CF, Zhou Y. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 2020; 369:1603-1607. [PMID: 32732280 PMCID: PMC7574913 DOI: 10.1126/science.abc4730] [Citation(s) in RCA: 584] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has prioritized the development of small-animal models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adapted a clinical isolate of SARS-CoV-2 by serial passaging in the respiratory tract of aged BALB/c mice. The resulting mouse-adapted strain at passage 6 (called MASCp6) showed increased infectivity in mouse lung and led to interstitial pneumonia and inflammatory responses in both young and aged mice after intranasal inoculation. Deep sequencing revealed a panel of adaptive mutations potentially associated with the increased virulence. In particular, the N501Y mutation is located at the receptor binding domain (RBD) of the spike protein. The protective efficacy of a recombinant RBD vaccine candidate was validated by using this model. Thus, this mouse-adapted strain and associated challenge model should be of value in evaluating vaccines and antivirals against SARS-CoV-2.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
584 |
7
|
Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham JN, Juchheim A, Prasad N, Levy SE, Guo Y, Shyr Y, Aronow BJ, Haigis KM, Franklin JL, Coffey RJ. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012; 149:146-58. [PMID: 22464327 PMCID: PMC3563328 DOI: 10.1016/j.cell.2012.02.042] [Citation(s) in RCA: 558] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/12/2012] [Accepted: 02/01/2012] [Indexed: 12/20/2022]
Abstract
Lineage mapping has identified both proliferative and quiescent intestinal stem cells, but the molecular circuitry controlling stem cell quiescence is incompletely understood. By lineage mapping, we show Lrig1, a pan-ErbB inhibitor, marks predominately noncycling, long-lived stem cells that are located at the crypt base and that, upon injury, proliferate and divide to replenish damaged crypts. Transcriptome profiling of Lrig1(+) colonic stem cells differs markedly from the profiling of highly proliferative, Lgr5(+) colonic stem cells; genes upregulated in the Lrig1(+) population include those involved in cell cycle repression and response to oxidative damage. Loss of Apc in Lrig1(+) cells leads to intestinal adenomas, and genetic ablation of Lrig1 results in heightened ErbB1-3 expression and duodenal adenomas. These results shed light on the relationship between proliferative and quiescent intestinal stem cells and support a model in which intestinal stem cell quiescence is maintained by calibrated ErbB signaling with loss of a negative regulator predisposing to neoplasia.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
558 |
8
|
Xu X, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 1999; 261:15-9. [PMID: 10484749 DOI: 10.1006/viro.1999.9820] [Citation(s) in RCA: 554] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analysis of the sequences of all eight RNA segments of the influenza A/G oose/Guangdong/1/96 (H5N1) virus, isolated from a sick goose during an outbreak in Guangdong province, China, in 1996, revealed that the hemagglutinin (HA) gene of the virus was genetically similar to those of the H5N1 viruses isolated in Hong Kong in 1997. However, the remaining genes showed greater similarity to other avian influenza viruses. Notably, the neuraminidase gene did no have the 19-amino-acid deletion in the stalk region seen in the H5N1 Hong Kong viruses and the NS gene belonged to allele B, while that of the H5N1 Hong Kong viruses belonged to allele A. These data suggest that the H5N1 viruses isolated from the Hong Kong outbreaks derived their HA genes from a virus similar to the A/Goose/Guangdong/1/96 virus or shared a progenitor with this goose pathogen.
Collapse
|
|
26 |
554 |
9
|
Sun SH, Chen Q, Gu HJ, Yang G, Wang YX, Huang XY, Liu SS, Zhang NN, Li XF, Xiong R, Guo Y, Deng YQ, Huang WJ, Liu Q, Liu QM, Shen YL, Zhou Y, Yang X, Zhao TY, Fan CF, Zhou YS, Qin CF, Wang YC. A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host Microbe 2020; 28:124-133.e4. [PMID: 32485164 PMCID: PMC7250783 DOI: 10.1016/j.chom.2020.05.020] [Citation(s) in RCA: 509] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for an animal model. Human angiotensin-converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) by using CRISPR/Cas9 knockin technology. In comparison with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea, and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected-aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was seen to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis and evaluating COVID-19 vaccines and therapeutics.
Human ACE2 knockin mice were generated by using CRISPR/Cas9 technology SARS-CoV-2 leads to robust replication in lung, trachea, and brain SARS-CoV-2 causes interstitial pneumonia and elevated cytokine in aged hACE2 mice High dose of SARS-CoV-2 can establish infection via intragastric route in hACE2 mice
Collapse
|
Journal Article |
5 |
509 |
10
|
Yang Y, Guo Y. Unraveling salt stress signaling in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:796-804. [PMID: 29905393 DOI: 10.1111/jipb.12689] [Citation(s) in RCA: 492] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/08/2018] [Indexed: 05/20/2023]
Abstract
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen-activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants.
Collapse
|
Review |
7 |
492 |
11
|
Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KAG, Guo Y. Mirid Bug Outbreaks in Multiple Crops Correlated with Wide-Scale Adoption of Bt Cotton in China. Science 2010; 328:1151-4. [DOI: 10.1126/science.1187881] [Citation(s) in RCA: 476] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
15 |
476 |
12
|
Abubakar I, Aldridge RW, Devakumar D, Orcutt M, Burns R, Barreto ML, Dhavan P, Fouad FM, Groce N, Guo Y, Hargreaves S, Knipper M, Miranda JJ, Madise N, Kumar B, Mosca D, McGovern T, Rubenstein L, Sammonds P, Sawyer SM, Sheikh K, Tollman S, Spiegel P, Zimmerman C. The UCL-Lancet Commission on Migration and Health: the health of a world on the move. Lancet 2018; 392:2606-2654. [PMID: 30528486 PMCID: PMC7612863 DOI: 10.1016/s0140-6736(18)32114-7] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
With one billion people on the move or having moved in 2018, migration is a global reality, which has also become a political lightning rod. Although estimates indicate that the majority of global migration occurs within low-income and middle-income countries (LMICs), the most prominent dialogue focuses almost exclusively on migration from LMICs to high-income countries (HICs). Nowadays, populist discourse demonises the very same individuals who uphold economies, bolster social services, and contribute to health services in both origin and destination locations. Those in positions of political and economic power continue to restrict or publicly condemn migration to promote their own interests. Meanwhile nationalist movements assert so-called cultural sovereignty by delineating an us versus them rhetoric, creating a moral emergency. In response to these issues, the UCL-Lancet Commission on Migration and Health was convened to articulate evidence-based approaches to inform public discourse and policy. The Commission undertook analyses and consulted widely, with diverse international evidence and expertise spanning sociology, politics, public health science, law, humanitarianism, and anthropology. The result of this work is a report that aims to be a call to action for civil society, health leaders, academics, and policy makers to maximise the benefits and reduce the costs of migration on health locally and globally. The outputs of our work relate to five overarching goals that we thread throughout the report. First, we provide the latest evidence on migration and health outcomes. This evidence challenges common myths and highlights the diversity, dynamics, and benefits of modern migration and how it relates to population and individual health. Migrants generally contribute more to the wealth of host societies than they cost. Our Article shows that international migrants in HICs have, on average, lower mortality than the host country population. However, increased morbidity was found for some conditions and among certain subgroups of migrants, (eg, increased rates of mental illness in victims of trafficking and people fleeing conflict) and in populations left behind in the location of origin. Currently, in 2018, the full range of migrants’ health needs are difficult to assess because of poor quality data. We know very little, for example, about the health of undocumented migrants, people with disabilities, or lesbian, gay, bisexual, transsexual, or intersex (LGBTI) individuals who migrate or who are unable to move. Second, we examine multisector determinants of health and consider the implication of the current sector-siloed approaches. The health of people who migrate depends greatly on structural and political factors that determine the impetus for migration, the conditions of their journey, and their destination. Discrimination, gender inequalities, and exclusion from health and social services repeatedly emerge as negative health influences for migrants that require cross-sector responses. Third, we critically review key challenges to healthy migration. Population mobility provides economic, social, and cultural dividends for those who migrate and their host communities. Furthermore, the right to the highest attainable standard of health, regardless of location or migration status, is enshrined in numerous human rights instruments. However, national sovereignty concerns overshadow these benefits and legal norms. Attention to migration focuses largely on security concerns. When there is conjoining of the words health and migration, it is either focused on small subsets of society and policy, or negatively construed. International agreements, such as the UN Global Compact for Migration and the UN Global Compact on Refugees, represent an opportunity to ensure that international solidarity, unity of intent, and our shared humanity triumphs over nationalist and exclusionary policies, leading to concrete actions to protect the health of migrants. Fourth, we examine equity in access to health and health services and offer evidence-based solutions to improve the health of migrants. Migrants should be explicitly included in universal health coverage commitments. Ultimately, the cost of failing to be health-inclusive could be more expensive to national economies, health security, and global health than the modest investments required. Finally, we look ahead to outline how our evidence can contribute to synergistic and equitable health, social, and economic policies, and feasible strategies to inform and inspire action by migrants, policy makers, and civil society. We conclude that migration should be treated as a central feature of 21st century health and development. Commitments to the health of migrating populations should be considered across all Sustainable Development Goals (SDGs) and in the implementation of the Global Compact for Migration and Global Compact on Refugees. This Commission offers recommendations that view population mobility as an asset to global health by showing the meaning and reality of good health for all. We present four key messages that provide a focus for future action.
Collapse
|
Review |
7 |
465 |
13
|
Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, Huang WJ, Gao P, Zhou C, Zhang RR, Guo Y, Sun SH, Fan H, Zu SL, Chen Q, He Q, Cao TS, Huang XY, Qiu HY, Nie JH, Jiang Y, Yan HY, Ye Q, Zhong X, Xue XL, Zha ZY, Zhou D, Yang X, Wang YC, Ying B, Qin CF. A Thermostable mRNA Vaccine against COVID-19. Cell 2020; 182:1271-1283.e16. [PMID: 32795413 PMCID: PMC7377714 DOI: 10.1016/j.cell.2020.07.024] [Citation(s) in RCA: 461] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 01/21/2023]
Abstract
There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
461 |
14
|
Binley JM, Sanders RW, Clas B, Schuelke N, Master A, Guo Y, Kajumo F, Anselma DJ, Maddon PJ, Olson WC, Moore JP. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J Virol 2000; 74:627-43. [PMID: 10623724 PMCID: PMC111582 DOI: 10.1128/jvi.74.2.627-643.2000] [Citation(s) in RCA: 445] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The few antibodies that can potently neutralize human immunodeficiency virus type 1 (HIV-1) recognize the limited number of envelope glycoprotein epitopes exposed on infectious virions. These native envelope glycoprotein complexes comprise three gp120 subunits noncovalently and weakly associated with three gp41 moieties. The individual subunits induce neutralizing antibodies inefficiently but raise many nonneutralizing antibodies. Consequently, recombinant envelope glycoproteins do not elicit strong antiviral antibody responses, particularly against primary HIV-1 isolates. To try to develop recombinant proteins that are better antigenic mimics of the native envelope glycoprotein complex, we have introduced a disulfide bond between the C-terminal region of gp120 and the immunodominant segment of the gp41 ectodomain. The resulting gp140 protein is processed efficiently, producing a properly folded envelope glycoprotein complex. The association of gp120 with gp41 is now stabilized by the supplementary intermolecular disulfide bond, which forms with approximately 50% efficiency. The gp140 protein has antigenic properties which resemble those of the virion-associated complex. This type of gp140 protein may be worth evaluating for immunogenicity as a component of a multivalent HIV-1 vaccine.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cell Line, Transformed
- Centrifugation, Density Gradient
- Chromatography, Gel
- Cysteine/genetics
- Disulfides/metabolism
- Furin
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/metabolism
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp120/metabolism
- HIV Envelope Protein gp41/genetics
- HIV Envelope Protein gp41/immunology
- HIV Envelope Protein gp41/metabolism
- HIV-1/isolation & purification
- Humans
- Molecular Sequence Data
- Protein Processing, Post-Translational
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Subtilisins/metabolism
- Sucrose
- Virion
- env Gene Products, Human Immunodeficiency Virus
Collapse
|
research-article |
25 |
445 |
15
|
Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R, Dorn GW, Mochly-Rosen D. Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci U S A 2001; 98:11114-9. [PMID: 11553773 PMCID: PMC58692 DOI: 10.1073/pnas.191369098] [Citation(s) in RCA: 422] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Conflicting roles for protein kinase C (PKC) isozymes in cardiac disease have been reported. Here, deltaPKC-selective activator and inhibitor peptides were designed rationally, based on molecular modeling and structural homology analyses. Together with previously identified activator and inhibitor peptides of epsilonPKC, deltaPKC peptides were used to identify cardiac functions of these isozymes. In isolated cardiomyocytes, perfused hearts, and transgenic mice, deltaPKC and epsilonPKC had opposing actions on protection from ischemia-induced damage. Specifically, activation of epsilonPKC caused cardioprotection whereas activation of deltaPKC increased damage induced by ischemia in vitro and in vivo. In contrast, deltaPKC and epsilonPKC caused identical nonpathological cardiac hypertrophy; activation of either isozyme caused nonpathological hypertrophy of the heart. These results demonstrate that two related PKC isozymes have both parallel and opposing effects in the heart, indicating the danger in the use of therapeutics with nonselective isozyme inhibitors and activators. Moreover, reduction in cardiac damage caused by ischemia by perfusion of selective regulator peptides of PKC through the coronary arteries constitutes a major step toward developing a therapeutic agent for acute cardiac ischemia.
Collapse
|
research-article |
24 |
422 |
16
|
Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. THE PHARMACOGENOMICS JOURNAL 2010; 11:274-86. [PMID: 20386561 DOI: 10.1038/tpj.2010.28] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) metabolizes ∼50% of all clinically used drugs. Although CYP3A4 expression varies widely between individuals, the contribution of genetic factors remains uncertain. In this study, we measured allelic CYP3A4 heteronuclear RNA (hnRNA) and mRNA expression in 76 human liver samples heterozygous for at least one of eight marker SNPs and found marked allelic expression imbalance (1.6-6.3-fold) in 10/76 liver samples (13%). This was fully accounted for by an intron 6 SNP (rs35599367, C>T), which also affected mRNA expression in cell culture on minigene transfections. CYP3A4 mRNA level and enzyme activity in livers with CC genotype were 1.7- and 2.5-fold, respectively, greater than in CT and TT carriers. In 235 patients taking stable doses of atorvastatin, simvastatin, or lovastatin for lipid control, carriers of the T allele required significantly lower statin doses (0.2-0.6-fold, P=0.019) than non-T carriers for optimal lipid control. These results indicate that intron 6 SNP rs35599367 markedly affects expression of CYP3A4 and could serve as a biomarker for predicting response to CYP3A4-metabolized drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
389 |
17
|
Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. THE PLANT CELL 2007; 19:1415-31. [PMID: 17449811 PMCID: PMC1913747 DOI: 10.1105/tpc.106.042291] [Citation(s) in RCA: 384] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 03/18/2007] [Accepted: 04/03/2007] [Indexed: 05/15/2023]
Abstract
The SOS (for Salt Overly Sensitive) pathway plays essential roles in conferring salt tolerance in Arabidopsis thaliana. Under salt stress, the calcium sensor SOS3 activates the kinase SOS2 that positively regulates SOS1, a plasma membrane sodium/proton antiporter. We show that SOS3 acts primarily in roots under salt stress. By contrast, the SOS3 homolog SOS3-LIKE CALCIUM BINDING PROTEIN8 (SCABP8)/CALCINEURIN B-LIKE10 functions mainly in the shoot response to salt toxicity. While root growth is reduced in sos3 mutants in the presence of NaCl, the salt sensitivity of scabp8 is more prominent in shoot tissues. SCABP8 is further shown to bind calcium, interact with SOS2 both in vitro and in vivo, recruit SOS2 to the plasma membrane, enhance SOS2 activity in a calcium-dependent manner, and activate SOS1 in yeast. In addition, sos3 scabp8 and sos2 scabp8 display a phenotype similar to sos2, which is more sensitive to salt than either sos3 or scabp8 alone. Overexpression of SCABP8 in sos3 partially rescues the sos3 salt-sensitive phenotype. However, overexpression of SOS3 fails to complement scabp8. These results suggest that SCABP8 and SOS3 are only partially redundant in their function, and each plays additional and unique roles in the plant salt stress response.
Collapse
|
research-article |
18 |
384 |
18
|
Stern SA, Bagenal F, Ennico K, Gladstone GR, Grundy WM, McKinnon WB, Moore JM, Olkin CB, Spencer JR, Weaver HA, Young LA, Andert T, Andrews J, Banks M, Bauer B, Bauman J, Barnouin OS, Bedini P, Beisser K, Beyer RA, Bhaskaran S, Binzel RP, Birath E, Bird M, Bogan DJ, Bowman A, Bray VJ, Brozovic M, Bryan C, Buckley MR, Buie MW, Buratti BJ, Bushman SS, Calloway A, Carcich B, Cheng AF, Conard S, Conrad CA, Cook JC, Cruikshank DP, Custodio OS, Dalle Ore CM, Deboy C, Dischner ZJB, Dumont P, Earle AM, Elliott HA, Ercol J, Ernst CM, Finley T, Flanigan SH, Fountain G, Freeze MJ, Greathouse T, Green JL, Guo Y, Hahn M, Hamilton DP, Hamilton SA, Hanley J, Harch A, Hart HM, Hersman CB, Hill A, Hill ME, Hinson DP, Holdridge ME, Horanyi M, Howard AD, Howett CJA, Jackman C, Jacobson RA, Jennings DE, Kammer JA, Kang HK, Kaufmann DE, Kollmann P, Krimigis SM, Kusnierkiewicz D, Lauer TR, Lee JE, Lindstrom KL, Linscott IR, Lisse CM, Lunsford AW, Mallder VA, Martin N, McComas DJ, McNutt RL, Mehoke D, Mehoke T, Melin ED, Mutchler M, Nelson D, Nimmo F, Nunez JI, Ocampo A, Owen WM, Paetzold M, Page B, Parker AH, Parker JW, Pelletier F, Peterson J, Pinkine N, Piquette M, Porter SB, Protopapa S, Redfern J, Reitsema HJ, Reuter DC, Roberts JH, Robbins SJ, Rogers G, Rose D, Runyon K, Retherford KD, Ryschkewitsch MG, Schenk P, Schindhelm E, Sepan B, Showalter MR, Singer KN, Soluri M, Stanbridge D, Steffl AJ, Strobel DF, Stryk T, Summers ME, Szalay JR, Tapley M, Taylor A, Taylor H, Throop HB, Tsang CCC, Tyler GL, Umurhan OM, Verbiscer AJ, Versteeg MH, Vincent M, Webbert R, Weidner S, Weigle GE, White OL, Whittenburg K, Williams BG, Williams K, Williams S, Woods WW, Zangari AM, Zirnstein E. The Pluto system: Initial results from its exploration by New Horizons. Science 2015; 350:aad1815. [DOI: 10.1126/science.aad1815] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
10 |
367 |
19
|
Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. THE PLANT CELL 2005; 17:2384-96. [PMID: 15994908 PMCID: PMC1182496 DOI: 10.1105/tpc.105.033043] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The phytohormone abscisic acid (ABA) modulates the expression of many genes important to plant growth and development and to stress adaptation. In this study, we found that an APETALA2/EREBP-type transcription factor, AtERF7, plays an important role in ABA responses. AtERF7 interacts with the protein kinase PKS3, which has been shown to be a global regulator of ABA responses. AtERF7 binds to the GCC box and acts as a repressor of gene transcription. AtERF7 interacts with the Arabidopsis thaliana homolog of a human global corepressor of transcription, AtSin3, which in turn may interact with HDA19, a histone deacetylase. The transcriptional repression activity of AtERF7 is enhanced by HDA19 and AtSin3. Arabidopsis plants overexpressing AtERF7 show reduced sensitivity of guard cells to ABA and increased transpirational water loss. By contrast, AtERF7 and AtSin3 RNA interference lines show increased sensitivity to ABA during germination. Together, our results suggest that AtERF7 plays an important role in ABA responses and may be part of a transcriptional repressor complex and be regulated by PKS3.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
366 |
20
|
Boden D, Hurley A, Zhang L, Cao Y, Guo Y, Jones E, Tsay J, Ip J, Farthing C, Limoli K, Parkin N, Markowitz M. HIV-1 drug resistance in newly infected individuals. JAMA 1999; 282:1135-41. [PMID: 10501116 DOI: 10.1001/jama.282.12.1135] [Citation(s) in RCA: 357] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT There is concern that the widespread use of antiretroviral drugs to treat human immunodeficiency virus 1 (HIV-1) infection may result in the increased transmission of drug-resistant virus. OBJECTIVE To determine the prevalence of drug resistance-conferring mutations and phenotypic resistance to antiretroviral agents in a cohort of individuals newly infected with HIV-1. DESIGN Case series with genetic analyses of the HIV-1 plasma-derived pol gene using reverse transcriptase polymerase chain reaction followed by direct sequencing of polymerase chain reaction products. Phenotypic analysis was performed with a recombinant virus assay. SETTING AND PATIENTS Eighty individuals referred, on average, 1.7 months after infection with HIV-1 to the Aaron Diamond AIDS Research Center between July 1995 and April 1999. Subjects were from large urban areas (65 from New York, NY; 11 from Los Angeles, Calif); 60 (75%) were white, and 75 (93.8%) were homosexual men. MAIN OUTCOME MEASURES Prevalence of known resistance-conferring genotypes and reduced susceptibility to individual antiviral agents by phenotype. RESULTS Thirteen individuals (16.3%) had genotypes associated with drug resistance to any antiretroviral agent. Virus with known resistance-conferring mutations to any nucleoside reverse transcriptase inhibitors was found in 10 individuals, to any nonnucleoside reverse transcriptase inhibitors in 6 subjects, and to any protease inhibitors in 2 cases. Multidrug-resistant virus was identified in 3 individuals (3.8%). Extensive polymorphism in the protease gene was identified. Interpretation of genotypes and phenotypes was concordant in 57 (85%) of the 67 cases in which both studies were performed. CONCLUSION The prevalence of HIV-1 variants with known resistance-conferring genotypes to any antiretroviral agent in this cohort of 80 newly infected individuals is 16.3%. These data support expanded use of resistance testing in the setting of primary HIV-1 infection. Clinical trials should be initiated to establish whether therapy guided by resistance testing, compared with the use of empirical triple combination antiretroviral therapy, provides additional virological and immunological benefit when treating primary HIV-1 infection. Further efforts to expand the study of transmission of drug-resistant HIV-1 variants, particularly in cohorts with different epidemiological profiles, are indicated.
Collapse
|
|
26 |
357 |
21
|
Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 2000; 182:4129-36. [PMID: 10894718 PMCID: PMC101881 DOI: 10.1128/jb.182.15.4129-4136.2000] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
Review |
25 |
344 |
22
|
Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O, Rausch T, Stütz AM, Stedman W, Anantharaman T, Hastie A, Dai H, Fritz MHY, Cao H, Cohain A, Deikus G, Durrett RE, Blanchard SC, Altman R, Chin CS, Guo Y, Paxinos EE, Korbel JO, Darnell RB, McCombie WR, Kwok PY, Mason CE, Schadt EE, Bashir A. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 2015; 12:780-6. [PMID: 26121404 PMCID: PMC4646949 DOI: 10.1038/nmeth.3454] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/28/2015] [Indexed: 12/30/2022]
Abstract
We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.
Collapse
|
research-article |
10 |
341 |
23
|
Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein. THE PLANT CELL 2007; 19:1617-34. [PMID: 17483306 PMCID: PMC1913743 DOI: 10.1105/tpc.105.035626] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an Arabidopsis thaliana Ser/Thr protein kinase, PKS5, is a negative regulator of the plasma membrane proton pump (PM H+ -ATPase). Loss-of-function pks5 mutant plants are more tolerant of high external pH due to extrusion of protons to the extracellular space. PKS5 phosphorylates the PM H+ -ATPase AHA2 at a novel site, Ser-931, in the C-terminal regulatory domain. Phosphorylation at this site inhibits interaction between the PM H+ -ATPase and an activating 14-3-3 protein in a yeast expression system. We show that PKS5 interacts with the calcium binding protein SCaBP1 and that high external pH can trigger an increase in the concentration of cytosolic-free calcium. These results suggest that PKS5 is part of a calcium-signaling pathway mediating PM H+ -ATPase regulation.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
333 |
24
|
Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci U S A 1999; 96:11507-12. [PMID: 10500207 PMCID: PMC18064 DOI: 10.1073/pnas.96.20.11507] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to interrogate the role of inducible NO synthase (iNOS) in the late phase of ischemic preconditioning (PC) in vivo. A total of 321 mice were used. Wild-type mice preconditioned 24 h earlier with six cycles of 4-min coronary occlusion/4-min reperfusion exhibited a significant (P < 0.05) increase in myocardial iNOS protein content, iNOS activity (assessed as calcium-independent L-citrulline formation), and nitrite + nitrate tissue levels. In contrast, endothelial NOS protein content and calcium-dependent NOS activity remained unchanged. No immunoreactive neuronal NOS was detected. When wild-type mice were preconditioned 24 h earlier with six 4-min occlusion/4-min reperfusion cycles, the size of the infarcts produced by a 30-min coronary occlusion followed by 24 h of reperfusion was reduced markedly (by 67%; P < 0.05) compared with sham-preconditioned controls, indicating a late PC effect. In contrast, when mice homozygous for a null iNOS allele were preconditioned 24 h earlier with the same protocol, infarct size was not reduced. Disruption of the iNOS gene had no effect on early PC or on infarct size in the absence of PC. These results demonstrate that (i) the late phase of ischemic PC is associated with selective up-regulation of iNOS, and (ii) targeted disruption of the iNOS gene completely abrogates the infarct-sparing effect of late PC (but not of early PC), providing unequivocal molecular genetic evidence for an obligatory role of iNOS in the cardioprotection afforded by the late phase of ischemic PC. Thus, this study identifies a specific protein that mediates late PC in vivo.
Collapse
|
research-article |
26 |
296 |
25
|
Shi H, Kim Y, Guo Y, Stevenson B, Zhu JK. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. THE PLANT CELL 2003; 15:19-32. [PMID: 12509519 PMCID: PMC143448 DOI: 10.1105/tpc.007872] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Accepted: 09/30/2002] [Indexed: 05/17/2023]
Abstract
Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for Arabidopsis salt-hypersensitive mutants. Under salt stress, the root tips of sos5 mutant plants swell and root growth is arrested. The root-swelling phenotype is caused by abnormal expansion of epidermal, cortical, and endodermal cells. The SOS5 gene was isolated through map-based cloning. The predicted SOS5 protein contains an N-terminal signal sequence for plasma membrane localization, two arabinogalactan protein-like domains, two fasciclin-like domains, and a C-terminal glycosylphosphatidylinositol lipid anchor signal sequence. The presence of fasciclin-like domains, which typically are found in animal cell adhesion proteins, suggests a role for SOS5 in cell-to-cell adhesion in plants. The SOS5 protein was present at the outer surface of the plasma membrane. The cell walls are thinner in the sos5 mutant, and those between neighboring epidermal and cortical cells in sos5 roots appear less organized. SOS5 is expressed ubiquitously in all plant organs and tissues, including guard cells in the leaf.
Collapse
|
Comparative Study |
22 |
285 |