1
|
Liu C, Miyata H, Gao Y, Sha Y, Tang S, Xu Z, Whitfield M, Patrat C, Wu H, Dulioust E, Tian S, Shimada K, Cong J, Noda T, Li H, Morohoshi A, Cazin C, Kherraf ZE, Arnoult C, Jin L, He X, Ray PF, Cao Y, Touré A, Zhang F, Ikawa M. Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. Am J Hum Genet 2020; 107:330-341. [PMID: 32619401 PMCID: PMC7413861 DOI: 10.1016/j.ajhg.2020.06.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
101 |
2
|
Sha YW, Xu X, Mei LB, Li P, Su ZY, He XQ, Li L. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene 2017; 633:48-53. [PMID: 28866084 DOI: 10.1016/j.gene.2017.08.033] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/28/2022]
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a rare disease associated with primary infertility; however, ~50% of the genetic alterations associated with MMAF remain unclear. Here, we reported the case of a 30-year-old infertile male from a consanguineous family. Whole-exome sequencing identified a homozygous mutation in the CEP135 gene (c.A1364T:p.D455V), with CEP135 previously reported to play a role in centriole biogenesis and specifically central pair assembly. D455V-mutated proteins formed protein aggregates in the centrosome and the flagella, which might potentially affect the function of centriole assembly. Moreover, intracytoplasmic sperm injection was performed using sperm from this patient; however, pregnancy failed following embryo transfer. This represents the first report of a homozygous mutation of CEP135 associated with MMAF. These results provide researchers and clinicians with a deeper understanding of the gene involved with MMAF and will help predict and assess pregnancy outcomes associated with in vitro fertilization.
Collapse
|
Journal Article |
8 |
101 |
3
|
Li Y, Sha Y, Wang X, Ding L, Liu W, Ji Z, Mei L, Huang X, Lin S, Kong S, Lu J, Qin W, Zhang X, Zhuang J, Tang Y, Lu Z. DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. Clin Genet 2019; 95:590-600. [PMID: 30811583 DOI: 10.1111/cge.13525] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 01/28/2023]
Abstract
Multiple morphological abnormalities of flagella (MMAF) is one kind of severe teratozoospermia. Gene mutations reported in previous works only revealed the pathogenesis of approximately half of the MMAF cases, and more genetic defects in MMAF need to be explored. In the present study, we performed a genetic analysis on Han Chinese men with MMAF using whole-exome sequencing. After filtering out the cases with known gene mutations, we identified five novel mutation sites in the DNAH2 gene in three cases from three families. These mutations were validated through Sanger sequencing and absent in all control individuals. In silico analysis revealed that these DNAH2 variations are deleterious. The spermatozoa with DNAH2 mutations showed severely disarranged axonemal structures with mitochondrial sheath defection. The DNAH2 protein level was significantly decreased and inner dynein arms were absent in the spermatozoa of patients. ICSI treatment was performed for two MMAF patients with DNAH2 mutations and the associated couples successfully achieved pregnancy, indicating good nuclear quality of the sperm from the DNAH2 mutant patients. Together, these data suggest that the DNAH2 mutation can cause severe sperm flagella defects that damage sperm motility. These results provide a novel genetic pathogeny for the human MMAF phenotype.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
74 |
4
|
Li L, Sha Y, Wang X, Li P, Wang J, Kee K, Wang B. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget 2017; 8:19914-19922. [PMID: 28199965 PMCID: PMC5386733 DOI: 10.18632/oncotarget.15251] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
Acephalic spermatozoa is a very rare disorder of male infertility. Here, in a patient from from a consanguineous family, we have identified, by whole-exome sequencing, a homozygous mutation (c.G2783A, p.G928D) in the BRDT gene. The gene product, BRDT, is a testis-specific protein that is considered an important drug target for male contraception. The G928D mutation is in the P-TEFb binding domain, which mediates the interaction with transcription elongation factor and might affect the transcriptional activities of downstream genes. By RNA-sequencing analysis of cells expressing the BRDT mutation, we found the p.G928D mutation protein causes mis-regulation of 899 genes compared with BRDT wild-type cells. Furthermore, by Gene Ontology analysis, the upregulated genes in p.G928D cells were enriched in the processes of intracellular transport, RNA splicing, cell cycle and DNA metabolic process, revealing the underlying mechanism of the pathology that leads to acephalic spermatozoa.
Collapse
|
Case Reports |
8 |
58 |
5
|
Liu W, Sha Y, Li Y, Mei L, Lin S, Huang X, Lu J, Ding L, Kong S, Lu Z. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet 2019; 56:678-684. [PMID: 31151990 DOI: 10.1136/jmedgenet-2018-105952] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Multiple morphological abnormalities of the sperm flagella (MMAF) is a kind of severe teratozoospermia. Patients with the MMAF phenotype are infertile and present aberrant spermatozoa with absent, short, coiled, bent and/or irregular flagella. Mutations in several genes can explain approximately 30%-50% of MMAF cases and more genetic pathogenies need to be explored. SPEF2 was previously demonstrated to play an essential role in sperm tail development in mice and pig. Dysfunctional mutations in SPEF2 impair sperm motility and cause a short-tail phenotype in both animal models. OBJECTIVE Based on 42 patients with severe infertility and MMAF phenotype, we explored the new genetic cause of human MMAF phenotype. METHODS AND RESULTS By screening gene variants in 42 patients with MMAF using whole exome sequencing, we identified the c. 12delC, c. 1745-2A > G, c. 4102 G > T and c. 4323dupA mutations in the SPEF2 gene from two patients. Both of these mutations are rare and potentially deleterious. Transmission electron microscope (TEM) analysis showed a disrupted axonemal structure with mitochondrial sheath defects in the patients' spermatozoa. The SPEF2 protein level was significantly decreased in the spermatozoa of the patients revealed by Western blot (WB) and immunofluorescence (IF) analyses. CONCLUSION Our experimental findings indicate that loss-of-function mutations in the SPEF2 gene can cause the MMAF phenotype in human.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
46 |
6
|
Sha Y, Zheng L, Ji Z, Mei L, Ding L, Lin S, Wang X, Yang X, Li P. A novel TEX11 mutation induces azoospermia: a case report of infertile brothers and literature review. BMC MEDICAL GENETICS 2018; 19:63. [PMID: 29661171 PMCID: PMC5902858 DOI: 10.1186/s12881-018-0570-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
Background Testis-expressed gene 11 (TEX11) is an X-linked gene and essential for meiotic recombination and chromosomal synapsis. TEX11 deficiency causes meiotic arrest and male infertility, and many TEX11 mutations have been found in azoospermic and infertile men. Case presentation This study reported one novel TEX11 mutation (2653G → T, in exon 29, GenBank accession number, NM_031276) in two brothers with azoospermia. This mutation was firstly screened out by whole-exome sequencing (WES) and further verified by amplifying and sequencing the specific exon 29. Surprisingly, the same exonic missense mutation (W856C) was observed in two brothers but not in their mother. Histological analysis of testicular biopsy from both brothers revealed meiotic arrest and no post-meiotic round spermatids and mature spermatozoa were observed in the seminiferous tubules. TEX11 expression was observed strongly in spermatogonia and weakly in spermatocytes, but not in Sertoli cells and interstitial cells. Conclusions We identified one novel TEX11 mutation in two brothers and summarized the literature regarding TEX11 mutations and male infertility. This study and previous literature indicate that TEX11 mutations are closely associated with male infertility, especially azoospermia, although auxiliary clinical analyses are needed to figure out the causes of male infertility.
Collapse
|
Review |
7 |
45 |
7
|
Li X, Lindahl L, Sha Y, Zengel JM. Analysis of the Bacillus subtilis S10 ribosomal protein gene cluster identifies two promoters that may be responsible for transcription of the entire 15-kilobase S10-spc-alpha cluster. J Bacteriol 1997; 179:7046-54. [PMID: 9371452 PMCID: PMC179646 DOI: 10.1128/jb.179.22.7046-7054.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have sequenced a previously uncharacterized region of the Bacillus subtilis S10 ribosomal protein gene cluster. The new segment includes genes for S10, L3, L4, L23, L2, S19, L22, S3, and part of L16. These B. subtilis genes map in the same order as the genes in the Escherichia coli S10 ribosomal protein operon. Two potential promoter sequences were identified, one approximately 200 bases and the other approximately 140 bases upstream of the S10 gene. The activities of the two promoters were demonstrated by primer extension analysis, in vitro transcription experiments, and in vivo promoter fusion plasmid studies. In agreement with previous reports, our Northern analysis of exponentially growing cells failed to identify terminators or other active promoters within the S10-spc-alpha region. Our observations suggest that the two S10 promoters reported here are responsible for transcribing a 15-kb-long transcript for all of the genes in the B. subtilis S10, spc, and alpha clusters.
Collapse
|
research-article |
28 |
44 |
8
|
Liu H, Wei X, Sha Y, Liu W, Gao H, Lin J, Li Y, Tang Y, Wang Y, Wang Y, Su Z. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention. J Ovarian Res 2020; 13:114. [PMID: 32962729 PMCID: PMC7510158 DOI: 10.1186/s13048-020-00716-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background The loss of ovarian function in women, referred to as premature ovarian insufficiency (POI), is associated with a series of concomitant diseases. POI is genetically heterogeneous, and in most cases, the etiology is unknown. Methods Whole-exome sequencing (WES) was performed on DNA samples obtained from patients with POI, and Sanger sequencing was used to validate the detected potentially pathogenic variants. An in silico analysis was carried out to predict the pathogenicity of the variants. Results We recruited 24 patients with POI and identified variants in POI-related genes in 14 patients, including bi-allelic mutations in DNAH6, HFM1, EIF2B2, BNC, and LRPPRC and heterozygous variants in BNC1, EIF2B4, FOXL2, MCM9, FANCA, ATM, EIF2B3, and GHR. No variants in the above genes were detected in the WES data obtained from 29 women in a control group without POI. Determining a clear genetic etiology could significantly increase patient compliance with appropriate intervention strategies. Conclusions Our study confirmed that POI is a genetically heterogeneous condition and that whole-exome sequencing is a powerful tool for determining its genetic etiology. The results of this study will aid researchers and clinicians in genetic counseling and suggests the potential of WES for the detection of POI and thus early interventions for patients with POI.
Collapse
|
Journal Article |
5 |
33 |
9
|
Sha YW, Wang X, Xu X, Ding L, Liu WS, Li P, Su ZY, Chen J, Mei LB, Zheng LK, Wang HL, Kong SB, You M, Wu JF. Biallelic mutations in PMFBP1 cause acephalic spermatozoa. Clin Genet 2018; 95:277-286. [PMID: 30298696 DOI: 10.1111/cge.13461] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022]
Abstract
The majority of men with defects in spermatogenesis remain undiagnosed. Acephalic spermatozoa is one of the diseases causing primary infertility. However, the causes underlying over half of affected cases remain unclear. Here, we report by whole-exome sequencing the identification of homozygous and compound heterozygous truncating mutations in PMFBP1 of two unrelated individuals with acephalic spermatozoa. PMFBP1 was highly and specifically expressed in human and mouse testis. Furthermore, immunofluorescence staining in sperm from a normal control showed that PMFBP1 localizes to the head-flagella junction region, and the absence of PMFBP1 was confirmed in patients harboring PMFBP1 mutations. In addition, we generated Pmfbp1 knock-out (KO) mice, which we found recapitulate the acephalic sperm phenotype. Label-free quantitative proteomic analysis of testicular sperm from Pmfbp1 KO and control mice showed 124 and 35 proteins, respectively, increased or decreased in sperm from KO mice compared to that found in control mice. Gene ontology analysis indicates that the biological process of Golgi vesicle transport was the most highly enriched in differentially expressed proteins, indicating process defects related to Golgi complex function may disturb formation of the head-neck junction. Collectively, our data indicate that PMFBP1 is necessary for sperm morphology in both humans and mice, and that biallelic truncating mutations in PMFBP1 cause acephalic spermatozoa.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
33 |
10
|
Sha YW, Ding L, Li P. Management of primary ciliary dyskinesia/Kartagener's syndrome in infertile male patients and current progress in defining the underlying genetic mechanism. Asian J Androl 2014; 16:101-6. [PMID: 24369140 PMCID: PMC3901865 DOI: 10.4103/1008-682x.122192] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kartagener's syndrome (KS) is an autosomal recessive genetic disease accounting for approximately 50% of the cases of primary ciliary dyskinesia (PCD). As it is accompanied by many complications, PCD/KS severely affects the patient's quality of life. Therapeutic approaches for PCD/KS aim to enhance prevention, facilitate rapid definitive diagnosis, avoid misdiagnosis, maintain active treatment, control infection and postpone the development of lesions. In male patients, sperm flagella may show impairment in or complete absence of the ability to swing, which ultimately results in male infertility. Assisted reproductive technology will certainly benefit such patients. For PCD/KS patients with completely immotile sperm, intracytoplasmic sperm injection may be very important and even indispensable. Considering the number of PCD/KS susceptibility genes and mutations that are being identified, more extensive genetic screening is indispensable in patients with these diseases. Moreover, further studies into the potential molecular mechanisms of these diseases are required. In this review, we summarize the available information on various aspects of this disease in order to delineate the therapeutic objectives more clearly, and clarify the efficacy of assisted reproductive technology as a means of treatment for patients with PCD/KS-associated infertility.
Collapse
|
Review |
11 |
30 |
11
|
Xiang J, Sha Y, Jia Z, Prasad L, Delbaere LT. Framework residues 71 and 93 of the chimeric B72.3 antibody are major determinants of the conformation of heavy-chain hypervariable loops. J Mol Biol 1995; 253:385-90. [PMID: 7473721 DOI: 10.1006/jmbi.1995.0560] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Structural analysis derived from the crystallographic study of the chimeric B72.3 antibody illustrated that some heavy-chain framework residues having atomic interactions with heavy-chain CDR residues may directly affect the conformation of CDR loops. For example, an alanine residue at H71 provides room for packing CDR2/CDR1 and lysine residues at H73 and H93 contribute a salt-bridge to aspartic acid at H55 in CDR2 and a hydrogen bond to the carbonyl group at H96 in CDR3, respectively. We have analysed the contribution of these framework residues to the TAG72-binding affinity. We altered these framework residues by site-directed mutagenesis, and determined the affinity of these mutant chimeric antibodies for the TAG72 antigen by solid phase radioimmunoassay. We found that a single amino acid substitution of alanine by phenylalanine at H71 or lysine by isoleucine at H93, significantly reduced the binding affinity for the TAG72 antigen by 12 and 20-fold, respectively, whereas the substitution of lysine by alanine at H73 reduced the binding affinity only two-fold. Our results indicate that heavy-chain framework residues alanine at H71 and lysine at H93 of the chimeric B72.3 antibody are the major determinants of the conformation of heavy-chain CDR2/CDR1 and CDR3 loops, whereas the salt-bridge between lysine at H73 and aspartic acid at H55 is less important. The hydrogen bond between two framework residues, glutamine at H5 and serine at H25 does not affect any CDR conformation. Our results will thus be of importance especially when the humanized B72.3 antibody is constructed by grafting the CDR loops to a human framework. The important framework region interactions must be maintained in the final humanized antibody.
Collapse
|
|
30 |
29 |
12
|
Sha Y, Li S, Pei Z, Luo L, Tian Y, He C. Generation and flanking sequence analysis of a rice T-DNA tagged population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:306-14. [PMID: 14504746 DOI: 10.1007/s00122-003-1423-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Accepted: 07/04/2003] [Indexed: 05/07/2023]
Abstract
Insertional mutagenesis provides a rapid way to clone a mutated gene. Transfer DNA (T-DNA) of Agrobacterium tumefaciens has been proven to be a successful tool for gene discovery in Arabidopsis and rice ( Oryza sativa L. ssp. japonica). Here, we report the generation of 5,200 independent T-DNA tagged rice lines. The T-DNA insertion pattern in the rice genome was investigated, and an initial database was constructed based on T-DNA flanking sequences amplified from randomly selected T-DNA tagged rice lines using Thermal Asymmetric Interlaced PCR (TAIL-PCR). Of 361 T-DNA flanking sequences, 92 showed long T-DNA integration (T-DNA together with non-T-DNA). Another 55 sequences showed complex integration of T-DNA into the rice genome. Besides direct integration, filler sequences and microhomology (one to several nucleotides of homology) were observed between the T-DNA right border and other portions of the vector pCAMBIA1301 in transgenic rice. Preferential insertion of T-DNA into protein-coding regions of the rice genome was detected. Insertion sites mapped onto rice chromosomes were scattered in the genome. Some phenotypic mutants were observed in the T1 generation of the T-DNA tagged plants. Our mutant population will be useful for studying T-DNA integration patterns and for analyzing gene function in rice.
Collapse
|
|
21 |
29 |
13
|
Qiu SG, Wintermantel WM, Sha Y, Schoelz JE. Light-dependent systemic infection of solanaceous species by cauliflower mosaic virus can Be conditioned by a viral gene encoding an aphid transmission factor. Virology 1997; 227:180-8. [PMID: 9007071 DOI: 10.1006/viro.1996.8314] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gene II of cauliflower mosaic virus (CaMV), which encodes an 18-kDa protein originally identified as an aphid transmission factor (ATF), influences host specificity in a light-dependent manner. A point mutation within the ATF gene that occurs in several CaMV strains was responsible for conditioning light-dependent systemic infections. A point mutant of CaMV strain W260 that carried the single mutation within the ATF gene was able to systemically infect Nicotiana bigelovii at low light intensity (100-180 micromol m-2 sec-1), but not at a higher light intensity level (350-450 micromol m-2 sec-1), while the wild-type W260 virus could systemically infect N. bigelovii under both light conditions. The same point mutation also affected the stability of the amorphous CaMV inclusions and previous studies have shown that it abolishes transmission of CaMV by aphids. The point mutation within the ATF gene that mediated light-dependent infections was complemented by transgenic N. bigelovii plants that express the CaMV gene VI product, a viral protein that has been identified as a translational transactivator. The complementation studies indicated that the ATF gene may influence systemic infections through an interaction with the CaMV gene VI product. The ATF gene of CaMV may contribute to viral infections by regulating expression of downstream genes or by influencing cell-to-cell or long distance movement within the plant.
Collapse
|
|
28 |
28 |
14
|
Sha Y, Lindahl L, Zengel JM. Role of NusA in L4-mediated attenuation control of the S10 r-protein operon of Escherichia coli. J Mol Biol 1995; 245:474-85. [PMID: 7844821 DOI: 10.1006/jmbi.1994.0039] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription of the 11 gene S10 operon of Escherichia coli is autogenously regulated by one of the operon's products, ribosomal protein L4. This protein stimulates termination of transcription in vivo at a specific site within the S10 leader. The in vivo effect can be reproduced in a purified transcription system but requires an additional factor, NusA. Our earlier in vitro studies showed that NusA is required for RNA polymerase pausing at the termination site; such paused complexes are further stabilized by L4, which presumably accounts for L4's stimulation of termination in vivo. Here we show that NusA is not absolutely required for RNA polymerase to recognize the attenuation site: at low (5 microM) UTP concentration, RNA polymerase pauses at the site, although the paused transcription complex formed in the absence of NusA can be further stabilized by subsequent addition of the protein. Furthermore, RNA polymerase pausing at the attenuation site is not sufficient for the L4 effect, since L4 cannot stabilize a transcription complex paused at the attenuation site in the absence of NusA. We have been able to isolate paused complexes formed without NusA and/or L4; such complexes are active upon re-addition of NTPs, and respond as expected to the addition of L4 or NusA. Our experiments are consistent with the notion that L4 is a stable component of a paused transcription complex.
Collapse
|
|
30 |
25 |
15
|
Sha YW, Wang X, Xu X, Su ZY, Cui Y, Mei LB, Huang XJ, Chen J, He XM, Ji ZY, Bao H, Yang X, Li P, Li L. Novel Mutations in CFAP44 and CFAP43 Cause Multiple Morphological Abnormalities of the Sperm Flagella (MMAF). Reprod Sci 2017; 26:26-34. [PMID: 29277146 DOI: 10.1177/1933719117749756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a rare disease that causes primary infertility. However, the genetic causes for approximately half of MMAF cases are unknown. Whole exome sequencing analysis of the 27 patients with MMAF identified several CFAP44 mutations (3 homozygous: c.2935_2944del: p.D979*, c.T1769A: p.L590Q, c.2005_2006del: p.M669Vfs*13; and putative compound heterozygous: c.G3262A: p.G1088S and c.C1718A: p.P573H.) and CFAP43 acceptor splice-site deletion (c.3661-2A>-) mutations in 5 and 1 patients, respectively. Real-time quantitative polymerase chain reaction assays also demonstrated that CFAP44 expression was very weak in patient (P)1 and P3, and CFAP43 expression was lower in P6 than in the control. Immunofluorescence analysis of CFAP43 showed lower CFAP43 protein expression levels in P6 than in the normal control. This study demonstrated that biallelic mutations in CFAP44 and CFAP43 cause MMAF. These results provide researchers with a new insight to understand the genetic etiology of MMAF and to identify new loci for genetic counselling of MMAF.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
25 |
16
|
Sha YW, Wang X, Su ZY, Mei LB, Ji ZY, Bao H, Li P. Patients with multiple morphological abnormalities of the sperm flagella harbouring CFAP44 or CFAP43 mutations have a good pregnancy outcome following intracytoplasmic sperm injection. Andrologia 2018; 51:e13151. [PMID: 30251428 DOI: 10.1111/and.13151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 11/27/2022] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) are a rare type of male infertility. Mutations in DNAH1, CFAP43 and CFAP44 are the main aetiology of the disorder. Previously, good intracytoplasmic sperm injection (ICSI) outcomes were reported for MMAF patients with DNAH1 mutations. However, the ICSI prognosis for MMAF patients with CFAP43 or CFAP44 mutations was not known. We designed a retrospective cohort study. Molecular genetic testing identified six MMAF patients with biallelic CFAP44 (CFAP44+ group) or CFAP43 mutations and 12 patients with homozygous or compound heterozygous DNAH1 mutations (DNAH1+ group). A control group consisted of age-matched, non-MMAF men. For MMAF patients carrying CFAP44 mutations, the recorded rates of fertilisation, transferable embryos, pregnancy and delivery after ICSI were 76.47%, 88.46%, 50.0% and 50.0% respectively. The fertilisation rate was significantly higher in the CFAP44+ group than in the DNAH1+ group (76.47% vs. 54.5%, p = 0.0196). There were no statistically significant differences in the rates of transferable embryos, implantation, clinical pregnancy and miscarriage between the CFAP44+ group and either the DNAH1+ group or the age-matched control group. Our results support a good ICSI prognosis for MMAF patients carrying CFAP44 or CFAP43 mutations.
Collapse
|
Journal Article |
7 |
25 |
17
|
Sha YW, Xu X, Ji ZY, Lin SB, Wang X, Qiu PP, Zhou Y, Mei LB, Su ZY, Li L, Li P. Genetic contribution of SUN5 mutations to acephalic spermatozoa in Fujian China. Gene 2018; 647:221-225. [PMID: 29331481 DOI: 10.1016/j.gene.2018.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022]
Abstract
Acephalic spermatozoa is an extremely rare disease associated with primary infertility. A recent study showed that genetic alterations in the SUN5 gene lead to this disease, and SUN5 mutations could explain the disease in about half of the patients. Therefore, in the present study, to re-visit the genetic contribution of SUN5 mutations to acephalic spermatozoa, we recruited 15 unrelated affected individuals and screened the SUN5 gene for mutations by whole-exome sequencing (WES) and Sanger sequencing. Five of the 15 (33.33%) subjects were found to carry the same homozygous mutation in the SUN5 gene c.381delA (p.V128Sfs*7). Neither homozygous nor compound heterozygous mutations in SUN5 were found in the other 10 patients. The c.381delA mutation resulted in the truncation of the SUN5 protein and decreased the expression and altered the distribution of the outer dense fiber 1 (ODF1) protein. Thus, in our study SUN5 mutations accounted for only one-third of the patients in our cohort, which is lower than the percentage reported previously. Thus, our study suggests that the contribution of SUN5 mutations to acephalic spermatozoa might not be as high as described previously. These results will help in the genetic counseling of patients with acephalic spermatozoa.
Collapse
|
Journal Article |
7 |
25 |
18
|
Ye Y, Wei X, Sha Y, Li N, Yan X, Cheng L, Qiao D, Zhou W, Wu R, Liu Q, Li Y. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genomic Med 2020; 8:e1284. [PMID: 32410354 PMCID: PMC7336754 DOI: 10.1002/mgg3.1284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Acephalic spermatozoa is an extremely rare type of teratozoospermia that is associated with male infertility. Several genes have been reported to be relevant to acephalic spermatozoa. Thus, more genetic pathogenesis needs to be explored. Methods Whole‐exome sequencing was performed in a patient with acephalic spermatozoa. Then Sanger sequencing was used for validation in the patient and his family. The patient's spermatozoa sample was observed by papanicolaou staining and transmission electron microscopy. Western blot and immunofluorescence were performed to detect the level and localization of related proteins. Results A novel homozygous frameshift insertion mutation c.545dupT;p.Ala183Serfs*10 in exon 8 of TSGA10 (NM_001349012.1) was identified. Our results showed misarranged mitochondrial sheath and abnormal flagellum in the patient's spermatozoa. TSGA10 failed to be detected in the patient's spermatozoa. However, the expression of SUN5 and PMFBP1 remained unaffected. Conclusion These results suggest that the novel homozygous frameshift insertion mutation of TSGA10 is a cause of acephalic spermatozoa.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
23 |
19
|
Wang JH, Li W, Sha Y, Tezuka Y, Kadota S, Li X. Triterpenoid saponins from leaves and stems of Panax quinquefolium L. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2001; 3:123-130. [PMID: 11407811 DOI: 10.1080/10286020108041379] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the chemical investigation on the saponin composition of leaves and stems of Panax quinquefolium L., two new minor dammarane saponins, quinquenoside L1 (1) and L2 (2) have been isolated. By means of physico-chemical evidences and spectral analysis their structures were established as 3-O-[beta-D-glucopyranosyl-(1-2)-beta-D-glucopyranosyl]-20-O-beta-D-glucopyranosyl-dammara-23,25-diene-3beta, 12beta, 20(S)-triol (1) and 3-O-[beta-D-glucopyranosyl-(1-2)-beta-D-glucopyranosyl]-20-O-beta-D-glucopyranosyl-(24Z)-dammar-24-ene-3beta, 12beta, 20(S), 26-tetraol (2).
Collapse
|
|
24 |
22 |
20
|
Wang X, Jin HR, Cui YQ, Chen J, Sha YW, Gao ZL. Case study of a patient with cryptozoospermia associated with a recessive TEX15 nonsense mutation. Asian J Androl 2019; 20:101-102. [PMID: 28303806 PMCID: PMC5753545 DOI: 10.4103/1008-682x.194998] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
Letter |
6 |
22 |
21
|
Ji ZY, Sha YW, Ding L, Li P. Genetic factors contributing to human primary ciliary dyskinesia and male infertility. Asian J Androl 2018; 19:515-520. [PMID: 27270341 PMCID: PMC5566842 DOI: 10.4103/1008-682x.181227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from the loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. However, only 15 PCD-associated genes have been identified to cause male infertility to date. Owing to the genetic heterogeneity of PCD, comprehensive molecular genetic testing is not considered the standard of care. Here, we provide an update of the progress on the identification of genetic factors related to PCD associated with male infertility, summarizing the underlying molecular mechanisms, and discuss the clinical implications of these findings. Further research in this field will impact the diagnostic strategy for male infertility, enabling clinicians to provide patients with informed genetic counseling, and help to adopt the best course of treatment for developing directly targeted personalized medicine.
Collapse
|
Review |
7 |
22 |
22
|
Sha Y, Wei X, Ding L, Mei L, Huang X, Lin S, Su Z, Kong L, Zhang Y, Ji Z. DNAH17 is associated with asthenozoospermia and multiple morphological abnormalities of sperm flagella. Ann Hum Genet 2019; 84:271-279. [PMID: 31841227 DOI: 10.1111/ahg.12369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple morphological abnormalities of the sperm flagella (MMAF) is one kind of severe asthenozoospermia, which is caused by dysplastic development of sperm flagella. In our study, we sought to investigate the novel gene mutations leading to severe asthenozoospermia and MMAF. METHODS AND MATERIALS The patient's spermatozoa were tested by Papanicolaou staining and transmission electron microscopy. Whole exome sequencing was performed on the patient with severe asthenozoospermia and MMAF. Sanger sequencing verified the mutations in the family. The expression of DNAH17 was detected by immunofluorescence and Western blot. RESULTS Spermatozoa sample from the patient showed severe asthenozoospermia and MMAF. We detected biallelic mutations (c.C4445T, p.A1482V and c.C6857T, and p.S2286L) in DNAH17 (MIM:610063). The protein expression of DNAH17 was almost undetectable in spermatozoa from the patient with the biallelic mutations. CONCLUSION These results demonstrated that DNAH17 may be involved in severe asthenozoospermia and MMAF.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
22 |
23
|
Sun K, Li X, Liu JM, Wang JH, Li W, Sha Y. A novel sulphur glycoside from the seeds of Descurainia sophia (L.). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2005; 7:853-6. [PMID: 16308204 DOI: 10.1080/1028602042000204072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new sulphur glycoside, named descurainoside (1), and the known compound sinapic acid (2) have been isolated from the seeds of Descurainia sophia (L.) Webb ex Prantl. The structure of 1 has been identified as (1R,6S,8R,9S,10S)-9,10-dihydroxy-4-[(4-hydroxy-3,5-dimethoxyphenyl)methylene]-8-(hydroxymethyl)-2,7-dioxa-5-thiabicyclo[4.4.0]decan-3-one by means of physico-chemical properties and spectroscopic methods (1D and 2D NMR, HRMS, ESI-MS).
Collapse
|
|
20 |
22 |
24
|
Sun Y, Zhan YC, Sha Y, Pei YH. Norisoprenoids from Ulva lactuca. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2007; 9:321-5. [PMID: 17613616 DOI: 10.1080/10286020600727491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Five norisoprenoids were isolated from the green marine alga Ulva lactuca. Two new compounds were assigned to (3R,5R,6R,7E)3,5,6-trihydroxy-7-megastigmen-9-one (1) and (3S,5R,6S,7E)3,5,6-trihydroxy-7-megastigmen-9-one (2). The structures and absolute configurations of the five compounds were determined by analyses of NMR, MS and circular dichroism (CD).
Collapse
|
|
18 |
22 |
25
|
Xu H, Foltz L, Sha Y, Madlansacay MR, Cain C, Lindemann G, Vargas J, Nagy D, Harriman B, Mahoney W, Schueler PA. Cloning and characterization of human erythroid membrane-associated protein, human ERMAP. Genomics 2001; 76:2-4. [PMID: 11549310 DOI: 10.1006/geno.2001.6600] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe here the cloning and characterization of the human gene ERMAP, identified by subtractive hybridization using early and late gestation human fetal liver. By in situ hybridization, we found human ERMAP to be expressed not only in erythoid cells in fetal liver and adult bone marrow, but also in reticulocytes and circulating erythroblasts in 8-12-week fetal cord blood. The human ERMAP protein is predicted to contain a transmembrane segment and one extracellular immunoglobulin fold (IgV). The cytoplasmic region contains a highly conserved B30.2 motif, multiple consensus sequences for kinases, and post-Golgi sorting signals. The protein was localized to the cell surface as shown by an antibody specific for a peptide predicted from the IgV fold. The amino acid sequence of human ERMAP is highly homologous with that of mouse ERMAP, but differs in the number of extracellular immunoglobulin folds. Human ERMAP represents a new unique member of the rapidly growing B30.2 domain proteins.
Collapse
|
|
24 |
22 |