1
|
|
|
17 |
603 |
2
|
Abstract
Mechanical processes are involved in nearly every facet of the cell cycle. Mechanical forces are generated in the cell during processes as diverse as chromosomal segregation, replication, transcription, translation, translocation of proteins across membranes, cell locomotion, and catalyzed protein and nucleic acid folding and unfolding, among others. Because force is a product of all these reactions, biochemists are beginning to directly apply external forces to these processes to alter the extent or even the fate of these reactions hoping to reveal their underlying molecular mechanisms. This review provides the conceptual framework to understand the role of mechanical force in biochemistry.
Collapse
|
|
21 |
508 |
3
|
Moffitt JR, Chemla YR, Aathavan K, Grimes S, Jardine PJ, Anderson DL, Bustamante C. Intersubunit coordination in a homomeric ring ATPase. Nature 2009; 457:446-50. [PMID: 19129763 PMCID: PMC2716090 DOI: 10.1038/nature07637] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/11/2008] [Indexed: 12/22/2022]
Abstract
Homomeric ring ATPases perform many vital and varied tasks in the cell, ranging from chromosome segregation to protein degradation. Here we report the direct observation of the intersubunit coordination and step size of such a ring ATPase, the double-stranded-DNA packaging motor in the bacteriophage phi29. Using high-resolution optical tweezers, we find that packaging occurs in increments of 10 base pairs (bp). Statistical analysis of the preceding dwell times reveals that multiple ATPs bind during each dwell, and application of high force reveals that these 10-bp increments are composed of four 2.5-bp steps. These results indicate that the hydrolysis cycles of the individual subunits are highly coordinated by means of a mechanism novel for ring ATPases. Furthermore, a step size that is a non-integer number of base pairs demands new models for motor-DNA interactions.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
219 |
4
|
Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical tweezers in single-molecule biophysics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:25. [PMID: 34849486 PMCID: PMC8629167 DOI: 10.1038/s43586-021-00021-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.
Collapse
|
research-article |
4 |
219 |
5
|
Chemla YR, Aathavan K, Michaelis J, Grimes S, Jardine PJ, Anderson DL, Bustamante C. Mechanism of force generation of a viral DNA packaging motor. Cell 2005; 122:683-92. [PMID: 16143101 DOI: 10.1016/j.cell.2005.06.024] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/12/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
A large family of multimeric ATPases are involved in such diverse tasks as cell division, chromosome segregation, DNA recombination, strand separation, conjugation, and viral genome packaging. One such system is the Bacillus subtilis phage phi 29 DNA packaging motor, which generates large forces to compact its genome into a small protein capsid. Here we use optical tweezers to study, at the single-molecule level, the mechanism of force generation in this motor. We determine the kinetic parameters of the packaging motor and their dependence on external load to show that DNA translocation does not occur during ATP binding but is likely triggered by phosphate release. We also show that the motor subunits act in a coordinated, successive fashion with high processivity. Finally, we propose a minimal mechanochemical cycle of this DNA-translocating ATPase that rationalizes all of our findings.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
209 |
6
|
Moffitt JR, Chemla YR, Izhaky D, Bustamante C. Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 2006; 103:9006-11. [PMID: 16751267 PMCID: PMC1482556 DOI: 10.1073/pnas.0603342103] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The drive toward more sensitive single-molecule manipulation techniques has led to the recent development of optical tweezers capable of resolving the motions of biological systems at the subnanometer level, approaching the fundamental limit set by Brownian fluctuations. One successful approach has been the dual-trap optical tweezers, in which the system of study is held at both ends by microspheres in two separate optical traps. We present here a theoretical description of the Brownian limit on the spatial resolution of such systems and verify these predictions by direct measurement in a Brownian noise-limited dual-trap optical tweezers. We find that by detecting the positions of both trapped microspheres, correlations in their motions can be exploited to maximize the resolving power of the instrument. Remarkably, we show that the spatial resolution of dual optical traps with dual-trap detection is always superior to that of more traditional, single-trap designs, despite the added Brownian noise of the second trapped microsphere.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
208 |
7
|
Yang Z, Loh KY, Chu YT, Feng R, Satyavolu NSR, Xiong M, Nakamata Huynh SM, Hwang K, Li L, Xing H, Zhang X, Chemla YR, Gruebele M, Lu Y. Optical Control of Metal Ion Probes in Cells and Zebrafish Using Highly Selective DNAzymes Conjugated to Upconversion Nanoparticles. J Am Chem Soc 2018; 140:17656-17665. [PMID: 30427666 DOI: 10.1021/jacs.8b09867] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spatial and temporal distributions of metal ions in vitro and in vivo are crucial in our understanding of the roles of metal ions in biological systems, and yet there is a very limited number of methods to probe metal ions with high space and time resolution, especially in vivo. To overcome this limitation, we report a Zn2+-specific near-infrared (NIR) DNAzyme nanoprobe for real-time metal ion tracking with spatiotemporal control in early embryos and larvae of zebrafish. By conjugating photocaged DNAzymes onto lanthanide-doped upconversion nanoparticles (UCNPs), we have achieved upconversion of a deep tissue penetrating NIR 980 nm light into 365 nm emission. The UV photon then efficiently photodecages a substrate strand containing a nitrobenzyl group at the 2'-OH of adenosine ribonucleotide, allowing enzymatic cleavage by a complementary DNA strand containing a Zn2+-selective DNAzyme. The product containing a visible FAM fluorophore that is initially quenched by BHQ1 and Dabcyl quenchers is released after cleavage, resulting in higher fluorescent signals. The DNAzyme-UCNP probe enables Zn2+ sensing by exciting in the NIR biological imaging window in both living cells and zebrafish embryos and detecting in the visible region. In this study, we introduce a platform that can be used to understand the Zn2+ distribution with spatiotemporal control, thereby giving insights into the dynamical Zn2+ ion distribution in intracellular and in vivo models.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
190 |
8
|
Chemla YR, Grossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci U S A 2000; 97:14268-72. [PMID: 11121032 PMCID: PMC18907 DOI: 10.1073/pnas.97.26.14268] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A technique is described for specific, sensitive, quantitative, and rapid detection of biological targets by using superparamagnetic nanoparticles and a "microscope" based on a high-transition temperature dc superconducting quantum interference device (SQUID). In this technique, a mylar film to which the targets have been bound is placed on the microscope. The film, at room temperature and atmospheric pressure, is typically 40 micrometer from the SQUID, which is at 77 K in a vacuum. A suspension of magnetic nanoparticles carrying antibodies directed against the target is added to the mixture in the well, and 1-s pulses of magnetic field are applied parallel to the SQUID. In the presence of this aligning field the nanoparticles develop a net magnetization, which relaxes when the field is turned off. Unbound nanoparticles relax rapidly by Brownian rotation and contribute no measurable signal. Nanoparticles that are bound to the target on the film are immobilized and undergo Néel relaxation, producing a slowly decaying magnetic flux, which is detected by the SQUID. The ability to distinguish between bound and unbound labels allows one to run homogeneous assays, which do not require separation and removal of unbound magnetic particles. The technique has been demonstrated with a model system of liposomes carrying the FLAG epitope. The SQUID microscope requires no more than (5 +/- 2) x 10(4) magnetic nanoparticles to register a reproducible signal.
Collapse
|
research-article |
25 |
183 |
9
|
Comstock MJ, Whitley KD, Jia H, Sokoloski J, Lohman TM, Ha T, Chemla YR. Protein structure. Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 2015; 348:352-4. [PMID: 25883359 DOI: 10.1126/science.aaa0130] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022]
Abstract
The relationship between protein three-dimensional structure and function is essential for mechanism determination. Unfortunately, most techniques do not provide a direct measurement of this relationship. Structural data are typically limited to static pictures, and function must be inferred. Conversely, functional assays usually provide little information on structural conformation. We developed a single-molecule technique combining optical tweezers and fluorescence microscopy that allows for both measurements simultaneously. Here we present measurements of UvrD, a DNA repair helicase, that directly and unambiguously reveal the connection between its structure and function. Our data reveal that UvrD exhibits two distinct types of unwinding activity regulated by its stoichiometry. Furthermore, two UvrD conformational states, termed "closed" and "open," correlate with movement toward or away from the DNA fork.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
150 |
10
|
Comstock MJ, Ha T, Chemla YR. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods 2011; 8:335-40. [PMID: 21336286 PMCID: PMC3732480 DOI: 10.1038/nmeth.1574] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/18/2011] [Indexed: 12/24/2022]
Abstract
We present a single-molecule instrument that combines a time-shared ultrahigh-resolution dual optical trap interlaced with a confocal fluorescence microscope. In a demonstration experiment, we observed individual single fluorophore-labeled DNA oligonucleotides to bind and unbind complementary DNA suspended between two trapped beads. Simultaneous with the single-fluorophore detection, we clearly observed coincident angstrom-scale changes in tether extension. Fluorescence readout allowed us to determine the duplex melting rate as a function of force. The new instrument will enable the simultaneous measurement of angstrom-scale mechanical motion of individual DNA-binding proteins (for example, single-base-pair stepping of DNA translocases) along with the detection of properties of fluorescently labeled protein (for example, internal configuration).
Collapse
|
Research Support, N.I.H., Extramural |
14 |
146 |
11
|
Min TL, Mears PJ, Chubiz LM, Rao CV, Golding I, Chemla YR. High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods 2009; 6:831-5. [PMID: 19801991 PMCID: PMC2784139 DOI: 10.1038/nmeth.1380] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 09/08/2009] [Indexed: 11/09/2022]
Abstract
We present a single-cell motility assay, which allows the quantification of bacterial swimming in a well-controlled environment, for durations of up to an hour and with a temporal resolution greater than the flagellar rotation rates of approximately 100 Hz. The assay is based on an instrument combining optical tweezers, light and fluorescence microscopy, and a microfluidic chamber. Using this device we characterized the long-term statistics of the run-tumble time series in individual Escherichia coli cells. We also quantified higher-order features of bacterial swimming, such as changes in velocity and reversals of swimming direction.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
99 |
12
|
Ibarra B, Chemla YR, Plyasunov S, Smith SB, Lázaro JM, Salas M, Bustamante C. Proofreading dynamics of a processive DNA polymerase. EMBO J 2009; 28:2794-802. [PMID: 19661923 DOI: 10.1038/emboj.2009.219] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/06/2009] [Indexed: 12/21/2022] Open
Abstract
Replicative DNA polymerases present an intrinsic proofreading activity during which the DNA primer chain is transferred between the polymerization and exonuclease sites of the protein. The dynamics of this primer transfer reaction during active polymerization remain poorly understood. Here we describe a single-molecule mechanical method to investigate the conformational dynamics of the intramolecular DNA primer transfer during the processive replicative activity of the Phi 29 DNA polymerase and two of its mutants. We find that mechanical tension applied to a single polymerase-DNA complex promotes the intramolecular transfer of the primer in a similar way to the incorporation of a mismatched nucleotide. The primer transfer is achieved through two novel intermediates, one a tension-sensitive and functional polymerization conformation and a second non-active state that may work as a fidelity check point for the proofreading reaction.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
86 |
13
|
Arslan S, Khafizov R, Thomas CD, Chemla YR, Ha T. Protein structure. Engineering of a superhelicase through conformational control. Science 2015; 348:344-7. [PMID: 25883358 DOI: 10.1126/science.aaa0445] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Conformational control of biomolecular activities can reveal functional insights and enable the engineering of novel activities. Here we show that conformational control through intramolecular cross-linking of a helicase monomer with undetectable unwinding activity converts it into a superhelicase that can unwind thousands of base pairs processively, even against a large opposing force. A natural partner that enhances the helicase activity is shown to achieve its stimulating role also by selectively stabilizing the active conformation. Our work provides insight into the regulation of nucleic acid unwinding activity and introduces a monomeric superhelicase without nuclease activities, which may be useful for biotechnological applications.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
80 |
14
|
Abstract
Poly(A)+ RNA was isolated from in vitro short-term-labeled total cytoplasmic RNA of Ehrlich ascites tumor cells by oligo(dT) cellulose chromatography. This poly(A)+ RNA fraction was compared with a poly(A)+ RNA fraction isolated by a new procedure which involves specific binding of poly(A)+ RNA to messenger affinity paper (mAP) and its release in hot (70 degrees C) water. In typical experiments 10-11 micrograms (2.3%) of poly(A)+ RNA can be retained from 500 micrograms of total cytoplasmic RNA per cm2 of mAP in a quick one-step procedure. The poly(A)+ RNA preparations isolated by the two methods proved to be almost identical with respect to their fraction in total cytoplasmic RNA, specific radioactivities, sucrose gradient profiles, and translation assays. Since the isolation of poly(A)+ RNA by mAP is much less time consuming than that by oligo(dT) column chromatography and since the poly(A)+ RNA can be recovered from mAP in small volumes, which avoids further loss during precipitations, it can be advantageously used for preparative isolation of poly(A)+ RNA.
Collapse
|
Comparative Study |
41 |
76 |
15
|
Suksombat S, Khafizov R, Kozlov AG, Lohman TM, Chemla YR. Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. eLife 2015; 4:e08193. [PMID: 26305498 PMCID: PMC4582245 DOI: 10.7554/elife.08193] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli single-stranded (ss)DNA binding (SSB) protein mediates genome maintenance processes by regulating access to ssDNA. This homotetrameric protein wraps ssDNA in multiple distinct binding modes that may be used selectively in different DNA processes, and whose detailed wrapping topologies remain speculative. Here, we used single-molecule force and fluorescence spectroscopy to investigate E. coli SSB binding to ssDNA. Stretching a single ssDNA-SSB complex reveals discrete states that correlate with known binding modes, the likely ssDNA conformations and diffusion dynamics in each, and the kinetic pathways by which the protein wraps ssDNA and is dissociated. The data allow us to construct an energy landscape for the ssDNA-SSB complex, revealing that unwrapping energy costs increase the more ssDNA is unraveled. Our findings provide insights into the mechanism by which proteins gain access to ssDNA bound by SSB, as demonstrated by experiments in which SSB is displaced by the E. coli recombinase RecA.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
72 |
16
|
Qi Z, Pugh RA, Spies M, Chemla YR. Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. eLife 2013; 2:e00334. [PMID: 23741615 PMCID: PMC3668415 DOI: 10.7554/elife.00334] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/26/2013] [Indexed: 11/13/2022] Open
Abstract
Helicases couple the chemical energy of ATP hydrolysis to directional translocation along nucleic acids and transient duplex separation. Understanding helicase mechanism requires that the basic physicochemical process of base pair separation be understood. This necessitates monitoring helicase activity directly, at high spatio-temporal resolution. Using optical tweezers with single base pair (bp) resolution, we analyzed DNA unwinding by XPD helicase, a Superfamily 2 (SF2) DNA helicase involved in DNA repair and transcription initiation. We show that monomeric XPD unwinds duplex DNA in 1-bp steps, yet exhibits frequent backsteps and undergoes conformational transitions manifested in 5-bp backward and forward steps. Quantifying the sequence dependence of XPD stepping dynamics with near base pair resolution, we provide the strongest and most direct evidence thus far that forward, single-base pair stepping of a helicase utilizes the spontaneous opening of the duplex. The proposed unwinding mechanism may be a universal feature of DNA helicases that move along DNA phosphodiester backbones. DOI:http://dx.doi.org/10.7554/eLife.00334.001.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
69 |
17
|
Chowdhury F, Li ITS, Ngo TTM, Leslie BJ, Kim BC, Sokoloski JE, Weiland E, Wang X, Chemla YR, Lohman TM, Ha T. Defining Single Molecular Forces Required for Notch Activation Using Nano Yoyo. NANO LETTERS 2016; 16:3892-3897. [PMID: 27167603 PMCID: PMC4899123 DOI: 10.1021/acs.nanolett.6b01403] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Notch signaling, involved in development and tissue homeostasis, is activated at the cell-cell interface through ligand-receptor interactions. Previous studies have implicated mechanical forces in the activation of Notch receptor upon binding to its ligand. Here we aimed to determine the single molecular force required for Notch activation by developing a novel low tension gauge tether (LTGT). LTGT utilizes the low unbinding force between single-stranded DNA (ssDNA) and Escherichia coli ssDNA binding protein (SSB) (∼4 pN dissociation force at 500 nm/s pulling rate). The ssDNA wraps around SSB and, upon application of force, unspools from SSB, much like the unspooling of a yoyo. One end of this nano yoyo is attached to the surface though SSB, while the other end presents a ligand. A Notch receptor, upon binding to its ligand, is believed to undergo force-induced conformational changes required for activating downstream signaling. If the required force for such activation is larger than 4 pN, ssDNA will unspool from SSB, and downstream signaling will not be activated. Using these LTGTs, in combination with the previously reported TGTs that rupture double-stranded DNA at defined forces, we demonstrate that Notch activation requires forces between 4 and 12 pN, assuming an in vivo loading rate of 60 pN/s. Taken together, our study provides a direct link between single-molecular forces and Notch activation.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
64 |
18
|
Chemla YR, Moffitt JR, Bustamante C. Exact Solutions for Kinetic Models of Macromolecular Dynamics. J Phys Chem B 2008; 112:6025-44. [DOI: 10.1021/jp076153r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
|
17 |
56 |
19
|
Rhine K, Makurath MA, Liu J, Skanchy S, Lopez C, Catalan KF, Ma Y, Fare CM, Shorter J, Ha T, Chemla YR, Myong S. ALS/FTLD-Linked Mutations in FUS Glycine Residues Cause Accelerated Gelation and Reduced Interactions with Wild-Type FUS. Mol Cell 2020; 80:666-681.e8. [PMID: 33159856 PMCID: PMC7688085 DOI: 10.1016/j.molcel.2020.10.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein fused in sarcoma (FUS) can form pathogenic inclusions in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). Over 70 mutations in Fus are linked to ALS/FTLD. In patients, all Fus mutations are heterozygous, indicating that the mutant drives disease progression despite the presence of wild-type (WT) FUS. Here, we demonstrate that ALS/FTLD-linked FUS mutations in glycine (G) strikingly drive formation of droplets that do not readily interact with WT FUS, whereas arginine (R) mutants form mixed condensates with WT FUS. Remarkably, interactions between WT and G mutants are disfavored at the earliest stages of FUS nucleation. In contrast, R mutants physically interact with the WT FUS such that WT FUS recovers the mutant defects by reducing droplet size and increasing dynamic interactions with RNA. This result suggests disparate molecular mechanisms underlying ALS/FTLD pathogenesis and differing recovery potential depending on the type of mutation.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
55 |
20
|
Mears PJ, Koirala S, Rao CV, Golding I, Chemla YR. Escherichia coli swimming is robust against variations in flagellar number. eLife 2014; 3:e01916. [PMID: 24520165 PMCID: PMC3917375 DOI: 10.7554/elife.01916] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial chemotaxis is a paradigm for how environmental signals modulate cellular behavior. Although the network underlying this process has been studied extensively, we do not yet have an end-to-end understanding of chemotaxis. Specifically, how the rotational states of a cell’s flagella cooperatively determine whether the cell ‘runs’ or ‘tumbles’ remains poorly characterized. Here, we measure the swimming behavior of individual E. coli cells while simultaneously detecting the rotational states of each flagellum. We find that a simple mathematical expression relates the cell’s run/tumble bias to the number and average rotational state of its flagella. However, due to inter-flagellar correlations, an ‘effective number’ of flagella—smaller than the actual number—enters into this relation. Data from a chemotaxis mutant and stochastic modeling suggest that fluctuations of the regulator CheY-P are the source of flagellar correlations. A consequence of inter-flagellar correlations is that run/tumble behavior is only weakly dependent on number of flagella. DOI:http://dx.doi.org/10.7554/eLife.01916.001 Escherichia coli is a rod-shaped bacterium commonly found in the lower intestines of humans and other warm-blooded animals. While most strains of E. coli are harmless, including most of those found in the human gut, some can cause diseases such as food poisoning. Due to its close association with humans and the fact that it is easy to grow and work with in the laboratory, E. coli has been intensively studied for over 60 years. Many bacteria are capable of ‘swimming’ by using one or more flagella. These rotating whip-like structures are each driven by a reversible motor, and they act a bit like a propeller on a boat. While some bacteria have only a single flagellum, others, such as E. coli, have multiple flagella distributed over the cell surface. Rotating all their flagella in a counterclockwise direction allows the bacterium to swim—and it has been proposed that the clockwise movement of at least one flagellum will cause the bacterium cell to stop swimming and start tumbling. E. coli is able to control the time it spends swimming or tumbling to move towards a nutrient, such as glucose, or away from certain harmful chemicals. However, the details of how the number of flagella and the direction of rotation (clockwise or counterclockwise) influence the motion of the bacterium are not fully understood. Now, Mears et al. have used ‘optical tweezers’ to immobilize individual E. coli cells under a microscope, and then track both their swimming behavior and the movements of their flagella. This revealed that the individual flagella on the same cell tend to move in a coordinated way. Therefore, whilst tumbling could be caused by a single flagellum stopping swimming behavior, it often involved a concerted effort by many of the cell’s flagella. After observing that E. coli cells with more flagella spent less time tumbling than would be predicted if a single flagella always ‘vetoed’ swimming, Mears et al. propose a new mathematical relationship between the number of flagella on the cell, the direction of rotation, and the resulting probability that the cell will tumble. This work shows that swimming behavior in bacteria is less affected by variations in the number of flagella than previously thought—and this phenomenon may provide evolutionary advantages to E. coli. The next step is to explore the mechanism by which bacteria coordinate their flagella. DOI:http://dx.doi.org/10.7554/eLife.01916.002
Collapse
|
Video-Audio Media |
11 |
53 |
21
|
|
|
15 |
52 |
22
|
Liu Y, Park J, Dahmen KA, Chemla YR, Ha T. A comparative study of multivariate and univariate hidden Markov modelings in time-binned single-molecule FRET data analysis. J Phys Chem B 2010; 114:5386-403. [PMID: 20361785 DOI: 10.1021/jp9057669] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We compare two different types of hidden Markov modeling (HMM) algorithms, e.g., multivariate HMM (MHMM) and univariate HMM (UHMM), for the analysis of time-binned single-molecule fluorescence energy transfer (smFRET) data. In MHMM, the original two channel signals, i.e., the donor fluorescence intensity (I(D)) and acceptor fluorescence intensity (I(A)), are simultaneously analyzed. However, in UHMM, only the calculated FRET trajectory is analyzed. On the basis of the analysis of both synthetic and experimental data, we find that, if the noise in the signal is described with a proper probability distribution, MHMM generally outperforms UHMM. We also show that, in the case of multiple trajectories, analyzing them simultaneously gives better results than averaging over individual analysis results.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
51 |
23
|
Zhang Z, Kottadiel VI, Vafabakhsh R, Dai L, Chemla YR, Ha T, Rao VB. A promiscuous DNA packaging machine from bacteriophage T4. PLoS Biol 2011; 9:e1000592. [PMID: 21358801 PMCID: PMC3039672 DOI: 10.1371/journal.pbio.1000592] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 12/30/2010] [Indexed: 11/25/2022] Open
Abstract
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
49 |
24
|
Chemla YR, Smith DE. Single-molecule studies of viral DNA packaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:549-84. [PMID: 22297530 DOI: 10.1007/978-1-4614-0980-9_24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Many double-stranded DNA bacteriophages and viruses use specialized ATP-driven molecular machines to package their genomes into tightly confined procapsid shells. Over the last decade, single-molecule approaches - and in particular, optical tweezers - have made key contributions to our understanding of this remarkable process. In this chapter, we review these advances and the insights they have provided on the packaging mechanisms of three bacteriophages: φ 29, λ, and T4.
Collapse
|
Review |
13 |
35 |
25
|
Kottadiel VI, Rao VB, Chemla YR. The dynamic pause-unpackaging state, an off-translocation recovery state of a DNA packaging motor from bacteriophage T4. Proc Natl Acad Sci U S A 2012; 109:20000-5. [PMID: 23169641 PMCID: PMC3523870 DOI: 10.1073/pnas.1209214109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ~170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor-DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the "pause-unpackaging" state is an off-translocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
29 |