1
|
Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK, Breshears DD, Davi H, Galbraith D, Ruthrof KX, Wunder J, Adams HD, Bloemen J, Cailleret M, Cobb R, Gessler A, Grams TEE, Jansen S, Kautz M, Lloret F, O'Brien M. Research frontiers for improving our understanding of drought-induced tree and forest mortality. THE NEW PHYTOLOGIST 2018; 218:15-28. [PMID: 29488280 DOI: 10.1111/nph.15048] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 01/08/2018] [Indexed: 05/20/2023]
Abstract
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die-off events have severe consequences for ecosystem services, biophysical and biogeochemical land-atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die-off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought-induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
Collapse
|
|
7 |
171 |
2
|
Kodama N, Barnard RL, Salmon Y, Weston C, Ferrio JP, Holst J, Werner RA, Saurer M, Rennenberg H, Buchmann N, Gessler A. Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 2008; 156:737-50. [DOI: 10.1007/s00442-008-1030-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 03/14/2008] [Indexed: 11/25/2022]
|
|
17 |
118 |
3
|
Lendenmann M, Thonar C, Barnard RL, Salmon Y, Werner RA, Frossard E, Jansa J. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. MYCORRHIZA 2011; 21:689-702. [PMID: 21472448 DOI: 10.1007/s00572-011-0371-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/03/2011] [Indexed: 05/25/2023]
Abstract
Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7 weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P. Isotope tracing ³³P and ¹³C) was used to quantify both the mycorrhizal benefits and the costs, respectively. G. intraradices supported greatest plant P acquisition and incurred high C costs, which lead to similar plant growth benefits as inoculation with G. claroideum, which was less efficient in supporting plant P acquisition, but also required less C. G. margarita imposed large C requirement on the host plant and provided negligible P uptake benefits. However, it did not significantly reduce plant growth due to sink strength stimulation of plant photosynthesis. A simple experimental system such as the one established here should allow quantification of mycorrhizal costs and benefits routinely on a large number of experimental units. This is necessary for rapid progress in assessment of C fluxes between the plants and different mycorrhizal fungi or fungal communities, and for understanding the dynamics between mutualism and parasitism in mycorrhizal symbioses.
Collapse
|
|
14 |
52 |
4
|
Barnard RL, Salmon Y, Kodama N, Sörgel K, Holst J, Rennenberg H, Gessler A, Buchmann N. Evaporative enrichment and time lags between delta18O of leaf water and organic pools in a pine stand. PLANT, CELL & ENVIRONMENT 2007; 30:539-50. [PMID: 17407532 DOI: 10.1111/j.1365-3040.2007.01654.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Understanding ecosystem water fluxes has gained increasing attention, as climate scenarios predict a drier environment for many parts of the world. Evaporative enrichment of (18)O (Delta(18)O) of leaf water and subsequent enrichment of plant organic matter can be used to characterize environmental and physiological factors that control evaporation, based on a recently established mechanistic model. In a Pinus sylvestris forest, we measured the dynamics of oxygen isotopic composition (delta(18)O) every 6 h for 4 d in atmospheric water vapour, xylem sap, leaf water and water-soluble organic matter in current (N) and previous year (N-1) needles, phloem sap, together with leaf gas exchange for pooled N and N-1 needles, and relevant micrometeorological variables. Leaf water delta(18)O showed strong diel periodicity, while delta(18)O in atmospheric water vapour and in xylem sap showed little variation. The Delta(18)O was consistently lower for N than for N-1 needles, possibly related to phenological stage. Modelled leaf water Delta(18)O showed good agreement with measured values when applying a non-steady state evaporative enrichment model including a Péclet effect. We determined the time lags between delta(18)O signals from leaf water to water-soluble foliar organic matter and to phloem sap at different locations down the trunk, which clearly demonstrated the relevance of considering these time-lag effects for carbon transport, source-sink and carbon flux partitioning studies.
Collapse
|
|
18 |
51 |
5
|
Mencuccini M, Minunno F, Salmon Y, Martínez-Vilalta J, Hölttä T. Coordination of physiological traits involved in drought-induced mortality of woody plants. THE NEW PHYTOLOGIST 2015; 208:396-409. [PMID: 25988920 DOI: 10.1111/nph.13461] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
Accurate modelling of drought-induced mortality is challenging. A steady-state model is presented integrating xylem and phloem transport, leaf-level gas exchange and plant carbohydrate consumption during drought development. A Bayesian analysis of parameter uncertainty based on expert knowledge and a literature review is carried out. The model is tested by combining six data compilations covering 170 species using information on sensitivities of xylem conductivity, stomatal conductance and leaf turgor to water potential. The possible modes of plant failure at steady state are identified (i.e. carbon (C) starvation, hydraulic failure and phloem transport failure). Carbon starvation occurs primarily in the parameter space of isohydric stomatal control, whereas hydraulic failure is prevalent in the space of xylem susceptibility to embolism. Relative to C starvation, phloem transport failure occurs under conditions of low sensitivity of photosynthesis and high sensitivity of growth to plant water status. These three failure modes are possible extremes along two axes of physiological vulnerabilities, one characterized by the balance of water supply and demand and the other by the balance between carbohydrate sources and sinks. Because the expression of physiological vulnerabilities is coordinated, we argue that different failure modes should occur with roughly equal likelihood, consistent with predictions using optimality theory.
Collapse
|
|
10 |
50 |
6
|
Salmon Y, Lintunen A, Dayet A, Chan T, Dewar R, Vesala T, Hölttä T. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. THE NEW PHYTOLOGIST 2020; 226:690-703. [PMID: 31955422 DOI: 10.1111/nph.16436] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 05/22/2023]
Abstract
Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.
Collapse
|
|
5 |
46 |
7
|
Mencuccini M, Salmon Y, Mitchell P, Hölttä T, Choat B, Meir P, O'Grady A, Tissue D, Zweifel R, Sevanto S, Pfautsch S. An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies. PLANT, CELL & ENVIRONMENT 2017; 40:290-303. [PMID: 27861997 PMCID: PMC6849533 DOI: 10.1111/pce.12863] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 05/18/2023]
Abstract
Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale.
Collapse
|
research-article |
8 |
45 |
8
|
Lintunen A, Paljakka T, Jyske T, Peltoniemi M, Sterck F, von Arx G, Cochard H, Copini P, Caldeira MC, Delzon S, Gebauer R, Grönlund L, Kiorapostolou N, Lechthaler S, Lobo-do-Vale R, Peters RL, Petit G, Prendin AL, Salmon Y, Steppe K, Urban J, Roig Juan S, Robert EMR, Hölttä T. Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe. FRONTIERS IN PLANT SCIENCE 2016; 7:726. [PMID: 27313582 PMCID: PMC4887491 DOI: 10.3389/fpls.2016.00726] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/11/2016] [Indexed: 05/18/2023]
Abstract
Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter acclimation in these cold regions. Present results for the secondary phloem of trees suggest that adjustment with tissue water content plays an important role in osmolality dynamics. Furthermore, trees acclimated to dry and cold climate showed high phloem osmolality and raffinose proportion.
Collapse
|
research-article |
9 |
44 |
9
|
Salomón RL, Peters RL, Zweifel R, Sass-Klaassen UGW, Stegehuis AI, Smiljanic M, Poyatos R, Babst F, Cienciala E, Fonti P, Lerink BJW, Lindner M, Martinez-Vilalta J, Mencuccini M, Nabuurs GJ, van der Maaten E, von Arx G, Bär A, Akhmetzyanov L, Balanzategui D, Bellan M, Bendix J, Berveiller D, Blaženec M, Čada V, Carraro V, Cecchini S, Chan T, Conedera M, Delpierre N, Delzon S, Ditmarová Ľ, Dolezal J, Dufrêne E, Edvardsson J, Ehekircher S, Forner A, Frouz J, Ganthaler A, Gryc V, Güney A, Heinrich I, Hentschel R, Janda P, Ježík M, Kahle HP, Knüsel S, Krejza J, Kuberski Ł, Kučera J, Lebourgeois F, Mikoláš M, Matula R, Mayr S, Oberhuber W, Obojes N, Osborne B, Paljakka T, Plichta R, Rabbel I, Rathgeber CBK, Salmon Y, Saunders M, Scharnweber T, Sitková Z, Stangler DF, Stereńczak K, Stojanović M, Střelcová K, Světlík J, Svoboda M, Tobin B, Trotsiuk V, Urban J, Valladares F, Vavrčík H, Vejpustková M, Walthert L, Wilmking M, Zin E, Zou J, Steppe K. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat Commun 2022; 13:28. [PMID: 35013178 PMCID: PMC8748979 DOI: 10.1038/s41467-021-27579-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
Collapse
|
research-article |
3 |
41 |
10
|
Salmon Y, Dietrich L, Sevanto S, Hölttä T, Dannoura M, Epron D. Drought impacts on tree phloem: from cell-level responses to ecological significance. TREE PHYSIOLOGY 2019; 39:173-191. [PMID: 30726983 DOI: 10.1093/treephys/tpy153] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.
Collapse
|
Review |
6 |
39 |
11
|
Zweifel R, Etzold S, Sterck F, Gessler A, Anfodillo T, Mencuccini M, von Arx G, Lazzarin M, Haeni M, Feichtinger L, Meusburger K, Knuesel S, Walthert L, Salmon Y, Bose AK, Schoenbeck L, Hug C, De Girardi N, Giuggiola A, Schaub M, Rigling A. Determinants of legacy effects in pine trees - implications from an irrigation-stop experiment. THE NEW PHYTOLOGIST 2020; 227:1081-1096. [PMID: 32259280 PMCID: PMC7383578 DOI: 10.1111/nph.16582] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 05/02/2023]
Abstract
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.
Collapse
|
research-article |
5 |
38 |
12
|
Vesala T, Sevanto S, Grönholm T, Salmon Y, Nikinmaa E, Hari P, Hölttä T. Effect of Leaf Water Potential on Internal Humidity and CO 2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure. FRONTIERS IN PLANT SCIENCE 2017; 8:54. [PMID: 28220128 PMCID: PMC5292819 DOI: 10.3389/fpls.2017.00054] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/10/2017] [Indexed: 05/10/2023]
Abstract
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.
Collapse
|
research-article |
8 |
36 |
13
|
|
|
54 |
26 |
14
|
Amiot J, Salmon Y, Collin C, Thompson JD. Differential resistance to freezing and spatial distribution in a chemically polymorphic plant Thymus vulgaris. Ecol Lett 2005. [DOI: 10.1111/j.1461-0248.2005.00728.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
|
20 |
26 |
15
|
Pibarot P, Vrins A, Salmon Y, Difruscia R. Implantation of a programmable atrioventricular pacemaker in a donkey with complete atrioventricular block and syncope. Equine Vet J 1993; 25:248-51. [PMID: 8508758 DOI: 10.1111/j.2042-3306.1993.tb02955.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
Case Reports |
32 |
23 |
16
|
Richter A, Wanek W, Werner RA, Ghashghaie J, Jäggi M, Gessler A, Brugnoli E, Hettmann E, Göttlicher SG, Salmon Y, Bathellier C, Kodama N, Nogués S, Søe A, Volders F, Sörgel K, Blöchl A, Siegwolf RTW, Buchmann N, Gleixner G. Preparation of starch and soluble sugars of plant material for the analysis of carbon isotope composition: a comparison of methods. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:2476-88. [PMID: 19603463 DOI: 10.1002/rcm.4088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Starch and soluble sugars are the major photosynthetic products, and their carbon isotope signatures reflect external versus internal limitations of CO(2) fixation. There has been recent renewed interest in the isotope composition of carbohydrates, mainly for use in CO(2) flux partitioning studies at the ecosystem level. The major obstacle to the use of carbohydrates in such studies has been the lack of an acknowledged method to isolate starch and soluble sugars for isotopic measurements. We here report on the comparison and evaluation of existing methods (acid and enzymatic hydrolysis for starch; ion-exchange purification and compound-specific analysis for sugars). The selectivity and reproducibility of the methods were tested using three approaches: (i) an artificial leaf composed of a mixture of isotopically defined compounds, (ii) a C(4) leaf spiked with C(3) starch, and (iii) two natural plant samples (root, leaf). Starch preparation methods based on enzymatic or acid hydrolysis did not yield similar results and exhibited contaminations by non-starch compounds. The specificity of the acidic hydrolysis method was especially low, and we therefore suggest terming these preparations as HCl-hydrolysable carbon, rather than starch. Despite being more specific, enzyme-based methods to isolate starch also need to be further optimized to increase specificity. The analysis of sugars by ion-exchange methods (bulk preparations) was fast but produced more variable isotope compositions than compound-specific methods. Compound-specific approaches did not in all cases correctly reproduce the target values, mainly due to unsatisfactory separation of sugars and background contamination. Our study demonstrates that, despite their wide application, methods for the preparation of starch and soluble sugars for the analysis of carbon isotope composition are not (yet) reliable enough to be routinely applied and further research is urgently needed to resolve the identified problems.
Collapse
|
Comparative Study |
16 |
20 |
17
|
da Costa ACL, Rowland L, Oliveira RS, Oliveira AAR, Binks OJ, Salmon Y, Vasconcelos SS, Junior JAS, Ferreira LV, Poyatos R, Mencuccini M, Meir P. Stand dynamics modulate water cycling and mortality risk in droughted tropical forest. GLOBAL CHANGE BIOLOGY 2018; 24:249-258. [PMID: 28752626 DOI: 10.1111/gcb.13851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/09/2017] [Indexed: 05/25/2023]
Abstract
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long-term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought-related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.
Collapse
|
|
7 |
18 |
18
|
Lintunen A, Mayr S, Salmon Y, Cochard H, Hölttä T. Drivers of apoplastic freezing in gymnosperm and angiosperm branches. Ecol Evol 2018; 8:333-343. [PMID: 29321875 PMCID: PMC5756836 DOI: 10.1002/ece3.3665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/11/2022] Open
Abstract
It is not well understood what determines the degree of supercooling of apoplastic sap in trees, although it determines the number and duration of annual freeze-thaw cycles in a given environment. We studied the linkage between apoplastic ice nucleation temperature, tree water status, and conduit size. We used branches of 10 gymnosperms and 16 angiosperms collected from an arboretum in Helsinki (Finland) in winter and spring. Branches with lower relative water content froze at lower temperatures, and branch water content was lower in winter than in spring. A bench drying experiment with Picea abies confirmed that decreasing branch water potential decreases apoplastic ice nucleation temperature. The studied angiosperms froze on average 2.0 and 1.8°C closer to zero Celsius than the studied gymnosperms during winter and spring, respectively. This was caused by higher relative water content in angiosperms; when branches were saturated with water, apoplastic ice nucleation temperature of gymnosperms increased to slightly higher temperature than that of angiosperms. Apoplastic ice nucleation temperature in sampled branches was positively correlated with xylem conduit diameter as shown before, but saturating the branches removed the correlation. Decrease in ice nucleation temperature decreased the duration of freezing, which could have an effect on winter embolism formation via the time available for gas escape during ice propagation. The apoplastic ice nucleation temperature varied not only between branches but also within a branch between consecutive freeze-thaw cycles demonstrating the stochastic nature of ice nucleation.
Collapse
|
research-article |
7 |
14 |
19
|
Dewar R, Hölttä T, Salmon Y. Exploring optimal stomatal control under alternative hypotheses for the regulation of plant sources and sinks. THE NEW PHYTOLOGIST 2022; 233:639-654. [PMID: 34637543 DOI: 10.1111/nph.17795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Experimental evidence that nonstomatal limitations to photosynthesis (NSLs) correlate with leaf sugar and/or leaf water status suggests the possibility that stomata adjust to maximise photosynthesis through a trade-off between leaf CO2 supply and NSLs, potentially involving source-sink interactions. However, the mechanisms regulating NSLs and sink strength, as well as their implications for stomatal control, remain uncertain. We used an analytically solvable model to explore optimal stomatal control under alternative hypotheses for source and sink regulation. We assumed that either leaf sugar concentration or leaf water potential regulates NSLs, and that either phloem turgor pressure or phloem sugar concentration regulates sink phloem unloading. All hypotheses led to realistic stomatal responses to light, CO2 and air humidity, including conservative behaviour for the intercellular-to-atmospheric CO2 concentration ratio. Sugar-regulated and water-regulated NSLs are distinguished by the presence/absence of a stomatal closure response to changing sink strength. Turgor-regulated and sugar-regulated phloem unloading are distinguished by the presence/absence of stomatal closure under drought and avoidance/occurrence of negative phloem turgor. Results from girdling and drought experiments on Pinus sylvestris, Betula pendula, Populus tremula and Picea abies saplings are consistent with optimal stomatal control under sugar-regulated NSLs and turgor-regulated unloading. Our analytical results provide a simple representation of stomatal responses to above-ground and below-ground environmental factors and sink activity.
Collapse
|
|
3 |
13 |
20
|
Kaltenbach G, Levêque D, Peter JD, Salmon J, Elkhaili H, Cavalier A, Salmon Y, Monteil H, Jehl F. Pharmacokinetic interaction between itraconazole and rifampin in Yucatan miniature pigs. Antimicrob Agents Chemother 1996; 40:2043-6. [PMID: 8878578 PMCID: PMC163470 DOI: 10.1128/aac.40.9.2043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The objective of this study was to examine the effects of rifampin on itraconazole pharmacokinetics, at steady state, in three Yucatan miniature pigs. Daily for 3 weeks, the pigs received 200 mg of itraconazole orally at the beginning of each meal, and for the following 2 weeks they received itraconazole orally combined with intravenous administration of rifampin at 10 mg/kg/day. Coadministration of rifampin resulted in an 18-fold decrease in the maximum concentration of itraconazole in serum, from 113.0 (standard deviation [SD] 17.2) to 6.2 (SD, 3.9) ng/ml and a 22-fold decrease in the area under the concentration-time curve, from 1,652.7 (SD, 297.7) to 75.6 (SD, 30.0) ng.h/ml. The active metabolite of itraconazole, hydroxyitraconazole, was undetectable. This study demonstrates that rifampin affects itraconazole kinetics considerably at steady state in this miniature-pig model, probably by inducing hepatic metabolism of itraconazole.
Collapse
|
research-article |
29 |
11 |
21
|
Cavalier A, Levêque D, Peter JD, Salmon J, Elkhaïli H, Salmon Y, Nobelis P, Geisert J, Monteil H, Jehl F. Pharmacokinetic interaction between itraconazole and ceftriaxone in Yucatan miniature pigs. Antimicrob Agents Chemother 1997; 41:2029-32. [PMID: 9303409 PMCID: PMC164060 DOI: 10.1128/aac.41.9.2029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since ceftriaxone and itraconazole are highly protein bound, are excreted via a biliary pathway, and are in vitro modulators of the efflux pump P glycoprotein, a pharmacokinetic interaction between these antimicrobial agents can be hypothesized. Therefore, we evaluated the pharmacokinetics of itraconazole and ceftriaxone alone and in combination in a chronic model of catheterized miniature pigs. Itraconazole does not influence ceftriaxone kinetic behavior. The mean areas under the concentration-time curve (AUC) were 152.2 microg x h/ml (standard deviation [SD], 22.5) and 129.2 microg x h/ml (SD, 41.2) and the terminal half-lives were 1.1 h (SD, 0.3) and 0.9 h (SD, 0.2) when ceftriaxone was given alone and combined with itraconazole, respectively. Regarding itraconazole kinetics, ceftriaxone was shown to alter the disposition of the triazole. Contrary to what was expected, the AUC (from 0 to 8 h) decreased from 139.3 ng h/ml with itraconazole alone to 122.7 ng h/ml with itraconazole and ceftriaxone combined in pig 1, from 398.5 to 315.7 ng x h/ml in pig 2, and from 979.6 to 716.6 ng x h/ml in pig 3 (P of <0.01 by analysis of variance).
Collapse
|
research-article |
28 |
10 |
22
|
|
|
47 |
10 |
23
|
Schönbeck L, Grossiord C, Gessler A, Gisler J, Meusburger K, D'Odorico P, Rigling A, Salmon Y, Stocker BD, Zweifel R, Schaub M. Photosynthetic acclimation and sensitivity to short- and long-term environmental changes in a drought-prone forest. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2576-2588. [PMID: 35134157 DOI: 10.1093/jxb/erac033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (gs) and reduced gs sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (Vcmax) and electron transport (Jmax) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought.
Collapse
|
|
3 |
9 |
24
|
Ingram S, Salmon Y, Lintunen A, Hölttä T, Vesala T, Vehkamäki H. Dynamic Surface Tension Enhances the Stability of Nanobubbles in Xylem Sap. FRONTIERS IN PLANT SCIENCE 2021; 12:732701. [PMID: 34975934 PMCID: PMC8716698 DOI: 10.3389/fpls.2021.732701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/29/2021] [Indexed: 05/28/2023]
Abstract
Air seeded nanobubbles have recently been observed within tree sap under negative pressure. They are stabilized by an as yet unidentified process, although some embolize their vessels in extreme circumstances. Current literature suggests that a varying surface tension helps bubbles survive, but few direct measurements of this quantity have been made. Here, we present calculations of dynamic surface tension for two biologically relevant lipids using molecular dynamics simulations. We find that glycolipid monolayers resist expansion proportionally to the rate of expansion. Their surface tension increases with the tension applied, in a similar way to the viscosity of a non-Newtonian fluid. In contrast, a prototypical phospholipid was equally resistant to all applied tensions, suggesting that the fate of a given nanobubble is dependent on its surface composition. By incorporating our results into a Classical Nucleation Theory (CNT) framework, we predict nanobubble stability with respect to embolism. We find that the metastable radius of glycolipid coated nanobubbles is approximately 35 nm, and that embolism is in this case unlikely when the external pressure is less negative than -1.5 MPa.
Collapse
|
research-article |
4 |
9 |
25
|
Salmon Y, Torres-Ruiz JM, Poyatos R, Martinez-Vilalta J, Meir P, Cochard H, Mencuccini M. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine. PLANT, CELL & ENVIRONMENT 2015; 38:2575-88. [PMID: 25997464 PMCID: PMC4989476 DOI: 10.1111/pce.12572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/04/2023]
Abstract
Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non-defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non-defoliated trees. Defoliated trees maintained gas exchange while non-defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non-structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non-defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees.
Collapse
|
research-article |
10 |
9 |