1
|
You Y, Ginn J, Mullikin TC, Wu QJJ, Yin FF, Sheng Y. Automatic Treatment Planning for Multi-focal Dynamic Conformal Arc GRID Therapy for Late-Stage Lung Cancer: A Feasibility Study. Int J Radiat Oncol Biol Phys 2023; 117:e716-e717. [PMID: 37786093 DOI: 10.1016/j.ijrobp.2023.06.2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Palliative management of large, symptomatic pulmonary lesions, either as primary lung cancers or metastases, can be challenging due to need to balance effective radiation doses for cytoreduction with safety. Spatially Fractionated Radiation Therapy (SFRT), or GRID Therapy, is an emerging technique, which delivers ablative doses of radiotherapy to small, selected areas of tumor, while sparing organs-at-risk (OARs), and has been shown to debulk large lesions in preliminary studies. Conventionally, an alloy GRID block is manufactured to deliver GRID therapy. However, this delivery technique poses a challenge due to need for block, and dosimetrically when the tumor is deep-seated as excess dose may be delivered to OARs, such as skin and chest wall. This study aims to develop a fast, automatic planning solution using multi-focal dynamic conformal arcs (DCA) on modern Linear Accelerator. MATERIALS/METHODS One late-stage lung cancer patient with simulated sphere target grid was included in this study. The sphere targets are 1.5cm in diameter and 4.3cm spacing. Four co-planar full arcs were used for optimization. The problem is formalized as finding optimal multi-leaf collimator (MLC) sequencing to cover N targets with K control points (CPs) for each arc. The state of each target's MLC opening at each CP is binary. In order to solve this NP-hard problem, the optimal solution was approximated by eliminating projection collision at each CP. MLC motion continuity and maximum speed were included in the cost function to ensure deliverability. The optimization started with randomized initial CP apertures, followed by solving state-transition equations for following CPs. Two grid arrays (9 and 10 targets respectively) were tested for plan quality. For each grid of target, the arc collimator angle was planned with 0 and 30 degrees for comparison. Prescription was 20 Gy per fraction. Monte Carlo simulation dose engine from matRad toolkit was used for dose calculation. Key dosimetric endpoints including target mean dose, D5%(Gy) and D95%(Gy), were reported. RESULTS Average calculation time on the AMD Ryzen 5 5600 × 6-Core 3.7GHz CPU and 32GB RAM platform varied from 31 to 44 minutes. One zero-degree collimator and one thirty-degree collimator were generated for each target array. For nine-target array, mean target dose from both plans ranged from 23.41 to 26.55 Gy, while D5%(Gy) and D95%(Gy) ranged from 25.45 to 30.16 Gy, and 20.00 to 22.21 Gy, respectively. For ten-target array, the range of target mean, D5%(Gy) and D95%(Gy) were 23.82 to 28.74 Gy, 26.50 to 33.11 Gy, and 20.00 to 22.49 Gy. CONCLUSION A fast, automatic planning solution for multi-focal DCA GRID therapy was developed. It provides clinically feasible plans with high efficiency for small target arrays for the late-stage cancer patient. The implementation provides excellent coverage for deep-seated tumors where alloy grid solution could fail to meet coverage objectives. Additional patients are needed in the future to further refine the technique.
Collapse
|
2
|
Liu H, Chen R, Li H, Lin J, Wang Y, Han M, Wang T, Wang H, Chen Q, Chen F, Chu P, Liang C, Ren C, Zhang Y, Yang F, Sheng Y, Wei J, Wu X, Yu G. Genome-wide identification and expression analysis of SlRR genes in response to abiotic stress in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:322-333. [PMID: 36457231 DOI: 10.1111/plb.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The cytokinin two-component signal transduction system (TCS) is involved in many biological processes, including hormone signal transduction and plant growth regulation. Although cytokinin TCS has been well characterized in Arabidopsis thaliana, its role in tomato remains elusive. In this study, we characterized the diversity and function of response regulator (RR) genes, a critical component of TCS, in tomato. In total, we identified 31 RR genes in the tomato genome. These SlRR genes were classified into three subgroups (type-A, type-B and type-C). Various stress-responsive cis-elements were present in the tomato RR gene promoters. Their expression responses under pesticide treatment were evaluated by transcriptome analysis. Their expression under heat, cold, ABA, salinity and NaHCO3 treatments was further investigated by qRT-PCR and complemented with the available transcription data under these treatments. Specifically, SlRR13 expression was significantly upregulated under salinity, drought, cold and pesticide stress and was downregulated under ABA treatment. SlRR23 expression was induced under salt treatment, while the transcription level of SlRR1 was increased under cold and decreased under salt stress. We also found that GATA transcription factors played a significant role in the regulation of SlRR genes. Based on our results, tomato SlRR genes are involved in responses to abiotic stress in tomato and could be implemented in molecular breeding approaches to increase resistance of tomato to environmental stresses.
Collapse
|
3
|
Sheng Y, Mordret A, Brenguier F, Boué P, Vernon F, Takeda T, Aoki Y, Taira T, Ben‐Zion Y. Seeking Repeating Anthropogenic Seismic Sources: Implications for Seismic Velocity Monitoring at Fault Zones. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2023; 128:e2022JB024725. [PMID: 37035576 PMCID: PMC10078280 DOI: 10.1029/2022jb024725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 06/19/2023]
Abstract
Seismic velocities in rocks are highly sensitive to changes in permanent deformation and fluid content. The temporal variation of seismic velocity during the preparation phase of earthquakes has been well documented in laboratories but rarely observed in nature. It has been recently found that some anthropogenic, high-frequency (>1 Hz) seismic sources are powerful enough to generate body waves that travel down to a few kilometers and can be used to monitor fault zones at seismogenic depth. Anthropogenic seismic sources typically have fixed spatial distribution and provide new perspectives for velocity monitoring. In this work, we propose a systematic workflow to seek such powerful seismic sources in a rapid and straightforward manner. We tackle the problem from a statistical point of view, considering that persistent, powerful seismic sources yield highly coherent correlation functions (CFs) between pairs of seismic sensors. The algorithm is tested in California and Japan. Multiple sites close to fault zones show high-frequency CFs stable for an extended period of time. These findings have great potential for monitoring fault zones, including the San Jacinto Fault and the Ridgecrest area in Southern California, Napa in Northern California, and faults in central Japan. However, extra steps, such as beamforming or polarization analysis, are required to determine the dominant seismic sources and study the source characteristics, which are crucial to interpreting the velocity monitoring results. Train tremors identified by the present approach have been successfully used for seismic velocity monitoring of the San Jacinto Fault in previous studies.
Collapse
|
4
|
Yang D, Murr C, Yoo S, O'Neill L, Catalano S, Blitzblau R, McDuff S, Yin F, Wu Q, Sheng Y. Prospective Clinical Integration of AI Based Treatment Planning Tool for Whole Breast Radiation Therapy (WBRT): A Single Institution's Three-Year Experience. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zhang Y, Xu Z, Zhan L, Gao Y, Zheng B, Zhou Y, Sheng Y, Liang G, Song Z. Design, synthesis and biological evaluation of novel chromone-maleimide hybrids as potent anti-inflammatory agents against LPS-induced acute lung injury. Bioorg Chem 2022; 128:106049. [DOI: 10.1016/j.bioorg.2022.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
|
6
|
Sheng Y, Mordret A, Sager K, Brenguier F, Boué P, Rousset B, Vernon F, Higueret Q, Ben‐Zion Y. Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train-Generated Seismic Tremors. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL098509. [PMID: 36582260 PMCID: PMC9786557 DOI: 10.1029/2022gl098509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 06/17/2023]
Abstract
Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low-frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high-frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two-month-long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow-slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow-slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure.
Collapse
|
7
|
Rao L, Xu Y, Shen L, Wang X, Zhao H, Wang B, Zhang J, Xiao Y, Guo Y, Sheng Y, Cheng L, Song Z, Yu F. Small-molecule compound SYG-180-2-2 attenuates Staphylococcus aureus virulence by inhibiting hemolysin and staphyloxanthin production. Front Cell Infect Microbiol 2022; 12:1008289. [PMID: 36310881 PMCID: PMC9606476 DOI: 10.3389/fcimb.2022.1008289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Multi-drug resistant Staphylococcus aureus infection is still a serious threat to global health. Therefore, there is an urgent need to develop new antibacterial agents based on virulence factor therapy to overcome drug resistance. Previously, we synthesized SYG-180-2-2 (C21H16N2OSe), an effective small molecule compound against biofilm. The aim of this study was to investigate the anti-virulence efficacy of SYG-180-2-2 against Staphylococcus aureus. MIC results demonstrated no apparent antibacterial activity of the SYG-180-2-2. The growth curve assay showed that SYG-180-2-2 had nonlethal effect on S. aureus. Besides, SYG-180-2-2 strongly inhibited the hemolytic activity and staphyloxanthin synthesis in S. aureus. Inhibition of staphyloxanthin by SYG-180-2-2 enhanced the sensitivity of S. aureus to oxidants and human whole blood. In addition, SYG-180-2-2 significantly decreased the expression of saeR-mediated hemolytic gene hlb and staphyloxanthin-related crtM, crtN and sigB genes by quantitative polymerase chain reaction (qPCR). Meanwhile, the expression of oxidative stress-related genes sodA, sodM and katA also decreased. Galleria Mellonella assay revealed that SYG-180-2-2 was not toxic to larvae. Further, the larvae infection model showed that the virulence of bacteria was significantly reduced after 4 μg/mL SYG-180-2-2 treatment. SYG-180-2-2 also reduced skin abscess formation in mice by reducing bacterial burden and subcutaneous inflammation. In conclusion, SYG-180-2-2 might be a promising agent to attenuate the virulence of S. aureus by targeting genes associated with hemolytic activity and staphyloxanthin synthesis.
Collapse
|
8
|
Sheng Y, Qian W, Guo S. Impact of orthotopic versus subcutaneous implantation on patient-derived xenograft transcriptomic profile. Eur J Cancer 2022. [DOI: 10.1016/s0959-8049(22)00825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Sheng Y, Zhao XL, Xu YY, Jin DQ. [Fulminant myocarditis caused by severe fever with thrombocytopenia syndrome bunyavirus in a child]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2022; 60:717-718. [PMID: 35768364 DOI: 10.3760/cma.j.cn112140-20211122-00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
10
|
Liu YX, Liu L, Dong Y, Zhao M, Sheng Y, Fan LL. Novel heterozygous mutation of MCTP2 gene in a patient with coarctation of the aorta. QJM 2022; 115:157-159. [PMID: 34878133 DOI: 10.1093/qjmed/hcab310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 11/13/2022] Open
|
11
|
Rao L, Sheng Y, Zhang J, Xu Y, Yu J, Wang B, Zhao H, Wang X, Guo Y, Wu X, Song Z, Yu F, Zhan L. Small-Molecule Compound SYG-180-2-2 to Effectively Prevent the Biofilm Formation of Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2022; 12:770657. [PMID: 35069474 PMCID: PMC8777106 DOI: 10.3389/fmicb.2021.770657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
The resistance of methicillin-resistant Staphylococcus aureus (MRSA) has augmented due to the abuse of antibiotics, bringing about difficulties in the treatment of infection especially with the formation of biofilm. Thus, it is essential to develop antimicrobials. Here we synthesized a novel small-molecule compound, which we termed SYG-180-2-2 (C21H16N2OSe), that had antibiofilm activity. The aim of this study was to demonstrate the antibiofilm effect of SYG-180-2-2 against clinical MRSA isolates at a subinhibitory concentration (4 μg/ml). In this study, it was showed that significant suppression in biofilm formation occurred with SYG-180-2-2 treatment, the inhibition ranged between 65.0 and 85.2%. Subsequently, confocal laser scanning microscopy and a bacterial biofilm metabolism activity assay further demonstrated that SYG-180-2-2 could suppress biofilm. Additionally, SYG-180-2-2 reduced bacterial adhesion and polysaccharide intercellular adhesin (PIA) production. It was found that the expression of icaA and other biofilm-related genes were downregulated as evaluated by RT-qPCR. At the same time, icaR and codY were upregulated when biofilms were treated with SYG-180-2-2. Based on the above results, we speculate that SYG-180-2-2 inhibits the formation of biofilm by affecting cell adhesion and the expression of genes related to PIA production. Above all, SYG-180-2-2 had no toxic effects on human normal alveolar epithelial cells BEAS-2B. Collectively, the small-molecule compound SYG-180-2-2 is a safe and effective antibacterial agent for inhibiting MRSA biofilm.
Collapse
|
12
|
Sheng Y, Gao Y, Duan B, Lv M, Chen Y, Yang M, Zhou J, Liang G, Song Z. Rhodium(III)‐Catalyzed Direct C7‐Selective Alkenylation and Alkylation of Indoles with Maleimides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Zhang WB, Yang QB, Wu SF, Lu SH, Cheng M, Sheng Y, Zhang QC, Yang LF, Yu L, Yan SX. [Application of diffusion-weighted magnetic resonance imaging in evaluating the efficacy of radiotherapy and chemotherapy for esophageal cancer]. ZHONGHUA YI XUE ZA ZHI 2021; 101:3427-3430. [PMID: 34758548 DOI: 10.3760/cma.j.cn112137-20210709-01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study was a prospective single arm trial conducted in Zhejiang Jinhua Guangfu hospital from February 2018 to June 2020. A total of 39 patients (32 males and 7 females) with esophageal cancer, aged from 44 to 82 (69±9) years were enrolled. Diffusion weighted magnetic resonance imaging(MR-DWI) was implemented to evaluate the changes of apparent diffusion coefficient(ADC) value before and after chemoradiotherapy. The results showed that the ADC value after chemoradiotherapy was higher than that before treatment[(2.03±0.42)×10⁻³ mm 2/s vs (1.60±0.28)×10⁻³ mm2/s], and there was a positive correlation between the increase of ADC value and the prognosis of patients.
Collapse
|
14
|
Karukonda P, Oyekunle T, Natesan D, Kalman N, Sheng Y, O'Daniel J, Niedzwiecki D, Koontz B. Impact of Target Volume and Image Guidance on Post-Prostatectomy Patients Treated With Intensity Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys 2021. [DOI: 10.1016/j.ijrobp.2021.07.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Li X, Wu Q, Wu Q, Wang C, Sheng Y, Wang W, Stephens H, Yin F, Ge Y. Collect Insights of an H&N IMRT Planning AI Agent Through Analyzing Relationships Between Fluence Map Prediction Error and the Corresponding Dosimetric Impacts. Int J Radiat Oncol Biol Phys 2021. [DOI: 10.1016/j.ijrobp.2021.07.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Hito M, Wang W, Stephens H, Xie Y, Li R, Yin F, Ge Y, Wu Q, Wu Q, Sheng Y. Assessing the Robustness and Performance of Artificial Intelligence Powered Planning Tools in Clinical Settings. Int J Radiat Oncol Biol Phys 2021. [DOI: 10.1016/j.ijrobp.2021.07.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Ramirez-Fort MK, Meier-Schiesser B, Lachance K, Mahase SS, Church CD, Niaz MJ, Liu H, Navarro V, Nikolopoulou A, Kazakov DV, Contassot E, Nguyen DP, Sach J, Hadravsky L, Sheng Y, Tagawa ST, Wu X, Lange CS, French LE, Nghiem PT, Bander NH. Folate hydrolase-1 (FOLH1) is a novel target for antibody-based brachytherapy in Merkel cell carcinoma. SKIN HEALTH AND DISEASE 2021; 1. [PMID: 34541577 PMCID: PMC8447486 DOI: 10.1002/ski2.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Backgrounds Folate Hydrolase‐1 (FOLH1; PSMA) is a type II transmembrane protein, luminally expressed by solid tumour neo‐vasculature. Monoclonal antibody (mAb), J591, is a vehicle for mAb‐based brachytherapy in FOLH1+ cancers. Brachytherapy is a form of radiotherapy that involves placing a radioactive material a short distance from the target tissue (e.g., on the skin or internally); brachytherapy is commonly accomplished with the use of catheters, needles, metal seeds and antibody or small peptide conjugates. Herein, FOLH1 expression in primary (p) and metastatic (m) Merkel cell carcinoma (MCC) is characterized to determine its targeting potential for J591‐brachytherapy. Materials & Methods Paraffin sections from pMCC and mMCC were evaluated by immunohistochemistry for FOLH1. Monte Carlo simulation was performed using the physical properties of conjugated radioisotope lutetium‐177. Kaplan–Meier survival curves were calculated based on patient outcome data and FOLH1 expression. Results Eighty‐one MCC tumours were evaluated. 67% (54/81) of all cases, 77% (24/31) pMCC and 60% (30/50) mMCC tumours were FOLH1+. Monte Carlo simulation showed highly localized ionizing tracks of electrons emitted from the targeted neo‐vessel. 42% (34/81) of patients with FOLH1+/− MCC had available survival data for analysis. No significant differences in our limited data set were detected based on FOLH1 status (p = 0.4718; p = 0.6470), staining intensity score (p = 0.6966; p = 0.9841) or by grouping staining intensity scores (− and + vs. ++, +++, +++) (p = 0.8022; p = 0.8496) for MCC‐specific survival or recurrence free survival, respectively. Conclusions We report the first evidence of prevalent FOLH1 expression within MCC‐associated neo‐vessels, in 60‐77% of patients in a large MCC cohort. Given this data, and the need for alternatives to immune therapies it is appropriate to explore the safety and efficacy of FOLH1‐targeted brachytherapy for MCC. What's already known about this topic?
We report the first evidence of prevalent folate hydrolase‐1 (FOLH1; also known as prostate‐specific membrane antigen) expression within MCC‐associated neovessels. What does this study add?
Herein, FOLH1 expression in Merkel cell carcinoma neovasculature is validated, and the therapeutic mechanism of specific, systemic targeting of disseminated disease with antibody‐based brachytherapy, is defined.
Collapse
|
18
|
Sheng Y, Carpenter JS, Elomba CD, Alwine JS, Yue M, Chen CX, Tisdale JE. Effect of menopausal symptom treatment options on palpitations: a systematic review. Climacteric 2021; 25:128-140. [PMID: 34346265 DOI: 10.1080/13697137.2021.1948006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This systematic review provides an overview of the effects of menopausal symptom treatment options on palpitations, defined as feelings of missed or exaggerated heart beats, reported by perimenopausal and postmenopausal women. Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searches were conducted in PubMed, CINAHL and PsycINFO to identify articles meeting pre-specified inclusion criteria. Of 670 unique articles identified, 37 were included in the review. Treatments included drug therapies and non-drug therapies. Palpitations were studied as an outcome in 89% of articles and as an adverse effect in 11%. Articles provided mostly level II/III evidence due to their design and/or small sample sizes. Based on available evidence, no therapies can be fully recommended for clinical practice. Only some hormonal agents (e.g. estradiol) can be recommended with caution based on some positive evidence for reducing palpitation prevalence or severity. However, other drug therapies (e.g. moxonidine, atenolol), dietary supplementary treatments (e.g. isoflavones, Rheum rhaponticum, sage), cognitive-behavioral intervention and auricular acupressure cannot be recommended given the existing evidence. Additional well-designed randomized controlled treatment trials focusing on palpitations during the menopause transition as an inclusion criteria and outcome are needed to advance the field.
Collapse
|
19
|
Sheng Y, Zhou J, Gao Y, Duan B, Wang Y, Samorodov A, Liang G, Zhao Q, Song Z. Ruthenium(II)-Catalyzed Direct C7-Selective Amidation of Indoles with Dioxazolones at Room Temperature. J Org Chem 2021; 86:2827-2839. [DOI: 10.1021/acs.joc.0c02779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Ni Y, Sheng Y, Zhang J, Li X, Wu Q, Wang C. Automatic VMAT Planning via MLC Dynamic Sequence Prediction (AVP-DSP): A Novel Deep-Learning Method for Real-Time Prostate Treatment Planning. Int J Radiat Oncol Biol Phys 2020. [DOI: 10.1016/j.ijrobp.2020.07.2261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Wang W, Sheng Y, Palta M, Czito B, Willett C, Li X, Wang C, Zhang J, Yin F, Wu Q, Ge Y, Wu Q. Fluence Map Prediction for Fast Pancreas Stereotactic Body Radiation Therapy (SBRT) Planning via Deep Learning. Int J Radiat Oncol Biol Phys 2020. [DOI: 10.1016/j.ijrobp.2020.07.855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Dong L, Sun R, Liu J, Xie L, Li X, Qu S, Sheng Y. PGI7 Cost-Effectiveness Analysis of Vonoprazan Versus Proton Pump Inhibitors in the Treatment of Reflux Esophagitis in China. Value Health Reg Issues 2020. [DOI: 10.1016/j.vhri.2020.07.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Han X, Xia F, Chen G, Sheng Y, Wang W, Wang Z, Zhao M, Wang X. Superior rectal artery embolization for bleeding internal hemorrhoids. Tech Coloproctol 2020; 25:75-80. [PMID: 32712932 DOI: 10.1007/s10151-020-02312-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of the present study was to evaluate clinical efficacy and safety of superselective embolization of the superior rectal artery (SRA) for the treatment of internal hemorrhoidal bleeding. METHODS Patients with stage II and stage III internal hemorrhoids, treated by interventional embolization of the SRA in our department between January 2017 and June 2019 were retrospectively evaluated. All patients suffering from disabling chronic hematochezia and some with relative contraindications for operation (n = 17) or rejection of conventional hemorrhoidectomy (n = 15). Superselective SRA branch embolization was performed using gelatin sponge particles (350-560 μm) and metallic coils (2-3 mm). This treatment process was planned by a multidisciplinary team consisting of proctologist, gastroenterologist and radiologist. The surgical efficacy, postoperative complications and follow-up outcomes were observed. RESULTS There were 32 patients (18 males, mean age 52 ± 12 years, range: 22-78 years), 12 (37%) with stage II hemorrhoids and 20 (63%) with stage III hemorrhoids. Embolization was successful in all patients, and bleeding symptoms resolved in 27 (84.4%) patients. The remaining 5 (15.6%) patients underwent either stapled hemorrhoidopexy (n = 4) or sclerotherapy (n = 1). Some patients experienced different degrees of pain (n = 4;12.5%), low fever (n = 11;34.4%), and tenesmus (n = 17;53.1%), which all spontaneously regressed without further treatment. All patients were followed up for at least 1 year. There were no serious complications, such as infection, intestinal ischemia or massive hemorrhage. Four patients (14.8%) had rebleeding during the first months of follow-up. All patients with re-bleeding were successfully treated with internal iliac arteriography and branch embolization and did not experience further bleeds after a minimum follow up 3 months follow-up. CONCLUSIONS The short-term efficacy of superselective SRA embolization for grade II-III internal hemorrhoids is good, and this method is safe and feasible.
Collapse
|
24
|
Zhou Y, Liang H, Sheng Y, Wang S, Gao Y, Zhan L, Zheng Z, Yang M, Liang G, Zhou J, Deng J, Song Z. Ruthenium(II)-Catalyzed C-H Activation of Chromones with Maleimides to Synthesize Succinimide/Maleimide-Containing Chromones. J Org Chem 2020; 85:9230-9243. [PMID: 32578431 DOI: 10.1021/acs.joc.0c01223] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient route for the coupling of maleimides with chromones at the C5-position has been developed under Ru(II) catalysis. It could provide 1,4-addition products and oxidative Heck-type products by switching additives. Benzoic acid led to the formation of 1,4-addition products under solvent-free conditions, and silver acetate was promoted to the generation of oxidative Heck-type products. Various maleimides and chromones were suitable for this transformation, affording the desired products with good to excellent yields in a short reaction time. To understand the mechanism of this reaction, deuteration studies and control experiments have been performed.
Collapse
|
25
|
Sheng Y, Chen YJ, Qian ZM, Zheng J, Liu Y. Cyclophosphamide induces a significant increase in iron content in the liver and spleen of mice. Hum Exp Toxicol 2020; 39:973-983. [PMID: 32129080 DOI: 10.1177/0960327120909880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: Oxidative stress is one of the major mechanisms of cyclophosphamide (CPX)-induced toxicities. However, it is unknown how CPX induces oxidative stress. Based on the available information, we speculated that CPX could increase iron content in the tissues and then induce oxidative stress. Method: We tested this hypothesis by investigating the effects of CPX on iron and ferritin contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), hepcidin, and nuclear factor erythroid 2-related factor-2 (Nrf2) in the liver and spleen, and also on reticulocyte count, immature reticulocyte fraction, and hemoglobin (Hb) in the blood in c57/B6 mouse. Results: We demonstrated that CPX could induce a significant increase in iron contents and ferritin expression in the liver and spleen, notably inhibit erythropoiesis and Hb synthesis and lead to a reduction in iron usage. The reduced expression in TfR1 and Fpn1 is a secondary effect of CPX-induced iron accumulation in the liver and spleen and also partly associated with the suppressed IRP/iron-responsive element system, upregulation of hepcidin, and downregulation of Nrf2. Conclusions: The reduced iron usage is one of the causes for iron overload in the liver and spleen and the increased tissue iron might be one of the mechanisms for CPX to induce oxidative stress and toxicities.
Collapse
|