1
|
Terakawa M, Tsunoi Y, Mitsuhashi T. In vitro perforation of human epithelial carcinoma cell with antibody-conjugated biodegradable microspheres illuminated by a single 80 femtosecond near-infrared laser pulse. Int J Nanomedicine 2012; 7:2653-60. [PMID: 22679375 PMCID: PMC3368514 DOI: 10.2147/ijn.s31768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pulsed laser interaction with small metallic and dielectric particles has been receiving attention as a method of drug delivery to many cells. However, most of the particles are attended by many risks, which are mainly dependent upon particle size. Unlike other widely used particles, biodegradable particles have advantages of being broken down and eliminated by innate metabolic processes. In this paper, the perforation of cell membrane by a focused spot with transparent biodegradable microspheres excited by a single 800 nm, 80 fs laser pulse is demonstrated. A polylactic acid (PLA) sphere, a biodegradable polymer, was used. Fluorescein isothiocyanate (FITC)-dextran and short interfering RNA were delivered into many human epithelial carcinoma cells (A431 cells) by applying a single 80 fs laser pulse in the presence of antibody-conjugated PLA microspheres. The focused intensity was also simulated by the three-dimensional finite-difference time-domain method. Perforation by biodegradable spheres compared with other particles has the potential to be a much safer phototherapy and drug delivery method for patients. The present method can open a new avenue, which is considered an efficient adherent for the selective perforation of cells which express the specific antigen on the cell membrane.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
14 |
2
|
Sarker RR, Tsunoi Y, Haruyama Y, Ichiki Y, Sato S, Nishidate I. Combined Addition of Ethanol and Ethylenediaminetetraacetic Acid Enhances Antibacterial and Antibiofilm Effects in Methylene Blue-Mediated Photodynamic Treatment against Pseudomonas aeruginosa In Vitro. Photochem Photobiol 2020; 97:600-606. [PMID: 33230825 DOI: 10.1111/php.13358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Antimicrobial photodynamic treatment (aPDT) for infection with drug-resistant bacteria has received much attention. For P. aeruginosa, however, efficient formation of biofilms and the nature of Gram-negative bacteria often limit the efficacy of aPDT. In this study, we investigated the effects of ethanol and ethylenediaminetetraacetic acid (EDTA) as additives on bacterial viability, biofilm biomass, and structures of bacteria and biofilms in methylene blue (MB)-mediated aPDT in vitro. Matured P. aeruginosa biofilms were incubated with 32-µm MB solutions with different concentrations of additives and then illuminated with 665-nm light from an LED array. The combined addition of 10% ethanol and 10 mm EDTA to MB resulted in significantly greater bactericidal effects than those of MB alone and of MB with 10% ethanol or 10 mm EDTA. Crystal violet assays showed significant reductions in biofilm biomass by aPDT with addition of both ethanol and EDTA compared to that in the case of aPDT with MB alone. Scanning electron microscopy showed broken bacterial cells and reduction in the cell density and amount of biofilm under those conditions. Ethanol addition alone did not improve aPDT efficacy. Reduced amount of biofilm by EDTA addition would have improved the transportation of MB and ethanol to bacteria.
Collapse
|
Journal Article |
5 |
12 |
3
|
Tsunoi Y, Sato S, Kawauchi S, Ashida H, Saitoh D, Terakawa M. In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin. Burns 2013; 39:1403-8. [DOI: 10.1016/j.burns.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/09/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
|
12 |
8 |
4
|
Gao S, Tsumura R, Vang DP, Bisland K, Xu K, Tsunoi Y, Zhang HK. Acoustic-resolution photoacoustic microscope based on compact and low-cost delta configuration actuator. ULTRASONICS 2022; 118:106549. [PMID: 34474357 PMCID: PMC8530928 DOI: 10.1016/j.ultras.2021.106549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 05/02/2023]
Abstract
The state-of-the-art configurations for acoustic-resolution photoacoustic (PA) microscope (AR-PAM) are large in size and expensive, hindering their democratization. While previous research on AR-PAMs introduced a low-cost light source to reduce the cost, few studies have investigated the possibility of optimizing the sensor actuation, particularly for the AR-PAM. Additionally, there is an unmet need to evaluate the image quality deterioration associated with the actuation inaccuracy. A low-cost actuation device is introduced to reduce the system size and cost of the AR-PAM while maintaining the image quality by implementing the advanced beamformers. This work proposes an AR-RAM incorporating the delta configuration actuator adaptable from a low-cost off-the-shelf 3D printer as the sensor actuation device. The image degradation due to the data acquisition positioning inaccuracy is evaluated in the simulation. We further assess the mitigation of potential actuation precision uncertainty through advanced 3D synthetic aperture focusing algorithms represented by the Delay-and-Sum (DAS) with Coherence Factor (DAS+CF) and Delay-Multiply-and-Sum (DMAS) algorithms. The simulation study demonstrated the tolerance of image quality on actuation inaccuracy and the effect of compensating the actuator motion precision error through advanced reconstruction algorithms. With those algorithms, the image quality degradation was suppressed to within 25% with the presence of 0.2 mm motion inaccuracy. The experimental evaluation using phantoms and an ex-vivo sample presented the applicability of low-cost delta configuration actuators for AR-PAMs. The measured full width at half maximum of the 0.2 mm diameter pencil-lead phantom were 0.45 ± 0.06 mm, 0.31 ± 0.04 mm, and 0.35 ± 0.07 mm, by applying the DAS, DAS+CF, and DMAS algorithms, respectively. AR-PAMs with a compact and low-cost delta configuration provide high-quality PA imaging with better accessibility for biomedical applications. The research evaluated the image degradation contributed by the actuation inaccuracy and suggested that the advanced beamformers are capable of suppressing the actuation inaccuracy.
Collapse
|
research-article |
3 |
7 |
5
|
Ishiwata N, Tsunoi Y, Sarker RR, Haruyama Y, Kawauchi S, Sekine Y, Onuma C, Tsuda H, Saitoh D, Nishidate I, Sato S. Control of Burn Wound Infection by Methylene Blue-Mediated Photodynamic Treatment With Light-Emitting Diode Array Illumination in Rats. Lasers Surg Med 2021; 53:1238-1246. [PMID: 33655570 DOI: 10.1002/lsm.23395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Control of burn wound infection is difficult due to the increase in drug-resistant bacteria and deteriorated immune responses. In this study, we examined the usefulness of methylene blue (MB)-mediated antimicrobial photodynamic therapy (aPDT) with illumination by a light-emitting diode (LED) array for controlling invasive infections from the wound to inside the body for rats with an extended deep burn infected with Pseudomonas aeruginosa. STUDY DESIGN/MATERIALS AND METHODS An MB solution with the addition of ethanol, ethylene-diamine-tetra-acetic acid disodium salt, and dimethyl sulfoxide was used as a photosensitizer (PS). An extended deep burn was made on the dorsal skin in rats and the wounds were infected with P. aeruginosa. The rats were divided into three groups: control (no treatment; n = 14), PS mixture application alone (PS alone group; n = 10), and aPDT group (n = 14). For aPDT, after the PS mixture was applied onto the surface of infected wounds, the wounds were illuminated with a 665-nm LED array at an intensity of 45 mW/cm2 three times per treatment, with an illumination duration of 20 minutes and an interval of 10 minutes. The treatment was repeated each day for 7 consecutive days (day 0-day 6). Bacterial numbers on the wound surface and the weights and survival rates of the animals were evaluated daily. At the endpoints, bacterial numbers in the liver and blood were counted. Since the PS mixture showed high dark toxicity against P. aeruginosa in vitro, the influence of the PS mixture application onto healthy skin was also examined in vivo. RESULTS Even in the aPDT group, rapid bacterial regrowth was observed on the wound surface after each day's treatment, but the geometric mean values of the bacterial numbers before and after each aPDT were considerably lower than those in the control group. Application of the PS mixture alone showed a clear bactericidal effect only at day 0, which is attributable to the formation of biofilms after day 1. Rats in the aPDT group showed a smaller weight loss, a higher ratio of no bacterial migration at the endpoints, and significantly higher survival rates than those in the other two groups. Effects of repeated application of the PS mixture onto healthy skin were not evident. CONCLUSIONS Application of MB-mediated aPDT with illumination by a high-intensity LED array daily for seven consecutive days was effective for suppressing invasive infection from the wound to inside the body in rats with an extensive deep burn infected with P. aeruginosa, resulting in significant improvement of their survival. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
|
Journal Article |
4 |
7 |
6
|
Tsunoi Y, Araki K, Ozeki E, Hara I, Shiotani A, Terakawa M, Sato S. Photoacoustic diagnosis of pharmacokinetics and vascular shutdown effects in photodynamic treatment with indocyanine green-lactosome for a subcutaneous tumor in mice. Photodiagnosis Photodyn Ther 2019; 26:436-441. [PMID: 31054334 DOI: 10.1016/j.pdpdt.2019.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022]
Abstract
Indocyanine green lactosome (ICG-lactosome) is an attractive new-generation agent for photodynamic therapy (PDT) that is characterized by a near-infrared excitation wavelength and high stability in the bloodstream. Fluorescence imaging has been used to examine its pharmacokinetics in vivo, but no depth-resolved information can be obtained with this method. In this study, we applied photoacoustic (PA) imaging to visualize the depth distribution of ICG-lactosome in a mouse subcutaneous tumor model. With this method, the depth distribution of blood vessels can also be visualized, enabling detection of vascular shutdown effects due to PDT. We performed PA imaging of both the distributions of ICG-lactosome and blood vessels in a tumor before and after PDT, and we found that PA signals originating from ICG-lactosome were greatly increased at 18 h after drug injection but rapidly decreased after PDT. These results indicate efficient accumulation of ICG-lactosome and rapid photobleaching due to the PDT reaction in the tumor, respectively. After PDT, PA amplitudes of hemoglobin were significantly decreased, being attributable to vascular shutdown effects. These results show the usefulness of PA imaging for monitoring not only photosensitizer accumulation and bleaching but also vascular responses in PDT with ICG-lactosome. This method can be applied to the diagnosis of many types of PDT processes.
Collapse
|
|
6 |
6 |
7
|
Sarker RR, Tsunoi Y, Haruyama Y, Sato S, Nishidate I. Depth distributions of bacteria for the Pseudomonas aeruginosa-infected burn wounds treated by methylene blue-mediated photodynamic therapy in rats: effects of additives to photosensitizer. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210330GR. [PMID: 35088588 PMCID: PMC8794038 DOI: 10.1117/1.jbo.27.1.018001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 05/31/2023]
Abstract
SIGNIFICANCE Pseudomonas(P.) aeruginosa, a common cause of infection in burns, acquires antibiotic resistance easily and forms biofilms efficiently. Thus, it is difficult to control P. aeruginosa infection in burn wounds, which causes lethal septicemia. Antimicrobial photodynamic therapy (aPDT) is attractive as a new strategy to treat burn wound infections with drug-resistant bacteria. AIM We examined the efficacy of methylene blue (MB)-mediated aPDT with various additives in a tissue depth-resolved manner to find conditions that minimize the bacterial invasion. APPROACH We applied MB-mediated aPDT with LED array illumination to an extensive, full-thickness burn infected with P. aeruginosa in rats for three consecutive days (days 0, 1, and 2). On day 2, the depth distributions of bacteria were assessed based on the histological analysis using Gram staining. We examined how the addition of ethylenediaminetetraacetic acid (EDTA), ethanol, and dimethyl sulfoxide (DMSO) affected the efficacy of aPDT. RESULTS Pure MB-mediated aPDT significantly reduced the numbers of bacteria with biofilms on the wound surface and in the epidermis compared with those for the control tissue (saline only). However, there were many bacteria in the deeper region of the tissue. In contrast, MB/EDTA/ethanol/DMSO-mediated aPDT minimized the numbers of bacteria in the broad depth region of the tissue. Still, a limited number of bacteria was observed in the subcutaneous tissue. CONCLUSIONS The depthwise analysis of bacteria demonstrated the efficacy of the MB-mediated aPDT with the addition of EDTA, ethanol, and DMSO in controlling burn wound infections. However, further improvement of the therapy is needed to suppress bacterial migration into the deep tissue completely.
Collapse
|
research-article |
3 |
4 |
8
|
Tsunoi Y, Sato N, Nishidate I, Ichihashi F, Saitoh D, Sato S. Burn depth assessment by dual-wavelength light emitting diodes-excited photoacoustic imaging in rats. Wound Repair Regen 2023; 31:69-76. [PMID: 36177703 DOI: 10.1111/wrr.13056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/01/2023]
Abstract
Accurate burn depth assessment is crucial to determine treatment plans for burn patients. We have previously proposed a method for performing burn depth assessments based on photoacoustic (PA) imaging, and we have demonstrated the validity of this method, which allows the successful detection of PA signals originating from the blood under the bloodless burned tissue, using rat burn models. Based on these findings, we started a clinical study in which we faced two technical issues: (1) When the burn depth was shallow, PA signals due to skin contamination and/or melanin in the epidermis (surface signals) could not be distinguished from PA signals originating from the blood in the dermis; (2) the size of the system was too large. To solve these issues, we propose a burn depth diagnosis based on dual-wavelength light emitting diodes (LEDs)-excited PA imaging. The use of LEDs rendered the system compact compared to the previous one that used a conventional solid-state laser. We replicated human burned skin by applying a titrated synthetic melanin solution onto the wound surface in albino rat burn models and measured their burn depths by PA excitation at 690 and 850 nm, where melanin and haemoglobin show greatly different absorption coefficients. As a result, the surface signals were eliminated by subtracting the PA signals at 690 nm from those at 850 nm. The resultant estimated burn depths were strongly correlated with the histological assessment results. The validity of the proposed method was also examined using a burn model of rats with real melanin.
Collapse
|
|
2 |
2 |
9
|
Nawashiro H, Kawauchi S, Tsunoi Y, Sato S. Time courses of BOLD responses during transcranial near-infrared laser irradiation. Brain Stimul 2019; 12:778-780. [DOI: 10.1016/j.brs.2019.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 10/27/2022] Open
|
|
6 |
1 |
10
|
Parvez MA, Yashiro K, Tsunoi Y, Saitoh D, Sato S, Nishidate I. In vivo monitoring of hemoglobin derivatives in a rat thermal injury model using spectral diffuse reflectance imaging. Burns 2024; 50:167-177. [PMID: 37821274 DOI: 10.1016/j.burns.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION To demonstrate the feasibility of our previously proposed Diffuse reflectance spectral imaging (DRSI) method for in vivo monitoring of oxygenated hemoglobin, deoxygenated hemoglobin, methemoglobin, tissue oxygen saturation, and methemoglobin saturation in a rat scald burn wound model and assess whether the method could be used for differentiating the burn depth groups in rats based on the hemoglobin parameters. METHODOLOGY Superficial dermal burns (SDBs), deep dermal burns (DDBs), and deep burns (DBs) were induced in rat dorsal skin using a Walker-Mason method. An approach based on multiple regression analysis for spectral diffuse reflectance images aided by Monte Carlo simulations for light transport was used to quantify the hemoglobin parameters. Canonical discriminant analysis (CDA) was performed to discriminate SDB, DDB, and DB. RESULTS CDA using the total hemoglobin concentration, tissue oxygen saturation, and methemoglobin saturation as the independent variables showed good performance for discriminating the SDB, DDB, and DB groups immediately after burn injury and the SDB group from the DDB and DB groups 24-72 h after burn injury. CONCLUSIONS The DRSI method with multiple regression analysis for quantification of oxygenated hemoglobin, deoxygenated hemoglobin, and methemoglobin proved to be reliable for monitoring these hemoglobin derivatives in the rat experimental burn injury model. The parameters of tissue oxygen saturation, methemoglobin saturation, and total hemoglobin concentration are promising for the differentiating the degree of burn injury using CDA.
Collapse
|
|
1 |
1 |
11
|
Tsunoi Y, Tsuda H, Kawauchi S, Araki K, Sato S. Enhanced Therapeutic Effects of an Antitumor Agent on Subcutaneous Tumors in Mice by Photomechanical Wave-based Transvascular Drug Delivery. J Cancer 2023; 14:1773-1780. [PMID: 37476190 PMCID: PMC10355207 DOI: 10.7150/jca.84066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/13/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose: We previously developed a site-selective transvascular drug delivery system based on nanosecond pulsed laser-induced photomechanical waves (PMWs). In this study, we applied this method to the delivery of cisplatin (cis-diamminedichloroplatinum, CDDP) to a subcutaneous tumor in a mouse and examined its antitumor effects. Methods: A mouse tumor model with subcutaneous inoculation of human head and neck cancer cells (FaDu cells) was used. The mice were divided into four groups: control without any treatment (control), CDDP application only (CDDP only), PMW application only (PMW only) and combined application of PMWs and CDDP (PMW+CDDP). A PMW was generated by irradiating a laser target, which was placed on the skin over the tumor, with a ruby laser pulse (fluence, 1.6 J/cm2). A CDDP solution was intraperitoneally injected into the mice (2.5 mg/kg). Results: Until 7 days posttreatment, the tumor volume in the control group monotonically increased, while the tumor volumes in the CDDP-only group and PMW-only group did not change greatly and that in the PMW+CDDP group slightly decreased. Afterward, the tumors started to regrow in all treatment groups, but the tumor growth rate was considerably low in the PMW+CDDP group. There was a significant difference in the time courses of tumor volume between the PMW+CDDP group and the control group for up to 14 days posttreatment. The ratio of the Ki-67-positive (proliferative) areas to the whole tumor regions in the PMW+CDDP group was significantly smaller than that in the control group at 7 days posttreatment. These results are attributable to the synergistic effects of enhanced extravasation of CDDP and mechanical tumoricidal effect by PMWs. Conclusion: The combined application of CDDP and PMWs significantly improved the antitumor effects on mouse subcutaneous tumors.
Collapse
|
research-article |
2 |
|
12
|
Tsunoi Y, Miyazaki H, Kawauchi S, Akagi T, Akashi M, Saitoh D, Sato S. Viability Improvement of
Three‐Dimensional
Human Skin Substitutes by Photobiomodulation During Cultivation. Photochem Photobiol 2022; 98:1464-1470. [DOI: 10.1111/php.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
|
|
3 |
|
13
|
Tsunoi Y, Kawauchi S, Yamada N, Araki K, Tsuda H, Sato S. Transvascular delivery of talaporfin sodium to subcutaneous tumors in mice by nanosecond pulsed laser-induced photomechanical waves. Photodiagnosis Photodyn Ther 2023; 44:103861. [PMID: 37879425 DOI: 10.1016/j.pdpdt.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND We previously developed a site-specific transvascular drug delivery system (DDS) based on photomechanical waves (PMWs) or laser-induced stress/shock waves (LISWs). In this study, we investigated the validity of this method to deliver a clinical photosensitizer, talaporfin sodium (TS), to subcutaneous tumors in mice and to enhance the efficacy of photodynamic therapy (PDT). METHODS TS solution (2.5 mg/kg) was intravenously injected into mice. Immediately thereafter, PMWs were applied to the tumor by irradiating a laser target with a Q-switched ruby laser pulse (0.8 J/cm2). Five hours after TS administration, some tumors were excised to evaluate the depth distribution of the delivered TS under a fluorescence microscope. Other tumors were subjected to PDT by irradiating the tissues with a 665 nm continuous-wave laser diode (75 mW/cm2, 667 s) at this timepoint. The effects of PDT were evaluated on the basis of the two primary therapeutic mechanisms of TS-mediated PDT: i) damage to tumor cells and ii) damage to endothelial cells of tumor vessels, i.e., the vascular shutdown effect on tumors. RESULTS PMW application significantly increased the accumulation of TS in the tumor parenchyma but not in the tumor vessel walls; the endothelial cell junctions of tumor vessels should be the route of TS delivery enhanced by PMWs. Thus, as a result of PMW application followed by PDT, while the vascular shutdown effect on the tumors was not enhanced, direct damage to the tumor cells was increased, resulting in significant tumor growth retardation without body weight loss for 7 days after treatment.
Collapse
|
|
2 |
|
14
|
Tsunoi Y, Takayama I, Kondo N, Nagano Y, Miyazaki H, Kawauchi S, Akashi M, Saitoh D, Terakawa M, Sato S. Cultivation and Transplantation of Three-Dimensional Skins with Laser-Processed Biodegradable Membranes. Tissue Eng Part A 2023; 29:344-353. [PMID: 37053095 DOI: 10.1089/ten.tea.2022.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
For the treatment of irreversible, extensive skin damage, artificial skins or cultured skins are useful when allogeneic skins are unavailable. However, most of them lack vasculature, causing delayed perfusion and hence delay or failure in engraftment of the tissues. We previously developed a prevascularized three-dimensional (3D) cultured skin based on the layer-by-layer cell coating technique (LbL-3D skin), in which cells are seeded and laminated on a porous polymer membrane for medium supply to the thick cultured tissue. Recent animal studies have demonstrated that LbL-3D skin can achieve rapid perfusion and high graft survival after transplantation. However, there were practical issues with separating LbL-3D skins from the membranes before transplantation and the handling separated LbL-3D skins for transplantation. To address these problems, in this study, we examined the use of biodegradable porous polymer membranes that enabled the transplantation of LbL-3D skins together with the membranes, which could be decomposed after transplantation. Thin films made from poly (lactic-co-glycolic acid) (PLGA) were irradiated with femtosecond laser pulses to create micro through-holes, producing porous membranes. We designed and fabricated culture inserts with the PLGA membranes and cultivated LbL-3D skins with 2 × 106 neonatal normal human dermal fibroblasts and 1 × 104 human umbilical vein endothelial cells in the dermis of 20 cell layers and 1 × 105 neonatal human epidermal keratinocytes in the epidermis. Histological analyses revealed that the skins cultured on the PLGA membranes had thickness of about 400 μm and that there were no defects in the quality of the skins cultured on the PLGA membranes when compared with those cultured on the conventional (nonbiodegradable) commercial membranes. The cultured LbL-3D skins were then transplanted together with the PLGA membranes onto full-thickness excisional wounds in mice. At 7 days posttransplantation onto a mouse, the tissues above and below the membrane were connected through the holes with collagen-positive fibers that appeared to migrate from both the host and donor sides, and favorable reepithelization was observed throughout the transplanted skin region. However, insufficient engraftment was observed in some cases. Thus, further optimization of the membrane conditions would be needed to improve the transplantation outcome.
Collapse
|
|
2 |
|
15
|
Parvez MA, Yashiro K, Nagahama Y, Tsunoi Y, Saitoh D, Sato S, Nishidate I. In vivo visualization of burn depth in skin tissue of rats using hemoglobin parameters estimated by diffuse reflectance spectral imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:026003. [PMID: 38361505 PMCID: PMC10869121 DOI: 10.1117/1.jbo.29.2.026003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Significance Burn injuries represent a global public health problem that kills an estimated 180,000 people annually. Non-fatal burns result in prolonged hospitalization, disfigurement, and disability. The most common, convenient, and widely used method for assessing burn depth is physical or visual examination, but the accuracy of this method is reportedly poor (60% to 75%). Rapid, correct assessment of burn depth is very important for the optimal management and treatment of burn patients. New methods of burn depth assessment that are inexpensive, simple, rapid, non-contact, and non-invasive are therefore needed. Aim The aim of this study was to propose an approach to visualize the spatial distribution of burn depth using hemoglobin parameters estimated from spectral diffuse reflectance imaging and to demonstrate the feasibility of the proposed approach for differentiating burn depth in a rat model of scald burn injury. Approach The new approach to creating a spatial map of burn depth was based on canonical discriminant analysis (CDA) of total hemoglobin concentration, tissue oxygen saturation, and methemoglobin saturation as estimated from spectral diffuse reflectance images. Burns of three different degrees of severity were created in rat dorsal skin by 10-s exposure to water maintained at 70°C, 78°C, and 98°C, respectively. Spectral images for dorsal regions were acquired under anesthesia immediately after burn injury and at 24 h, 48 h, and 72 h after injury. Results Most areas of images in the group with skin exposed to 70°C water and 98°C water were classified as 70°C burn and 98°C burn, respectively. In contrast, no significant difference between areas classified as 78°C burn and 98°C burn from 24 h to 72 h was evident in the group with skin exposed to 78°C water, suggesting that burn depth was heterogeneous. Conclusions The proposed approach combining diffuse reflectance spectral imaging and CDA appears promising for differentiating 70°C burns from 78°C burns and 98°C burns, and 98°C burns from 70°C burns and 78°C burns at 24 to 72 h after burn injury in a rat model of scald burn injury.
Collapse
|
research-article |
1 |
|
16
|
Khatun R, Okura K, Parvez MA, Yashiro K, Nagahama Y, Tsunoi Y, Kawauchi S, Saitoh D, Sato S, Nishidate I. In vivo evaluation of burn severity in skin tissue of rats using hemoglobin parameters estimated by red-green-blue imaging. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036006. [PMID: 40129968 PMCID: PMC11931295 DOI: 10.1117/1.jbo.30.3.036006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/20/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
Significance Burn injuries are a global public health problem and are estimated to cause more than 150,000 deaths annually. Even non-fatal burns result in prolonged hospitalization, disfigurement, and disability. The depth of the burn injury is crucial information for selecting adequate treatment for burns. The most common, convenient, and widely used method for assessing burn severity is visual examination, but the accuracy of this method is insufficient, at only 60% to 75%. Rapid and accurate assessment of burn severity is critical for optimal management and treatment of burn patients. Methods of burn severity assessment that are inexpensive, simple, rapid, non-contact, and non-invasive are thus needed. Aim We aim to propose an approach to visualize the spatial distribution of burn severity using hemoglobin parameters estimated from a snapshot red-green-blue (RGB) color image and to demonstrate the feasibility of this proposed approach for differentiating burn severity in a rat model of scald burn injury. Approach The approach to creating a spatial map of burn severity was based on canonical discriminant analysis (CDA) of total hemoglobin concentration, tissue oxygen saturation, and methemoglobin saturation as estimated from RGB color images. Burns of two different degrees of severity were created in rat dorsal skin by 10-s exposure to water maintained at 70°C and 78°C. RGB color images for the dorsal regions were acquired under anesthesia before burn injury and at 24, 48, and 72 h after injury. Results Most areas of images in the groups with skin exposed to 70°C, 78°C, and 37°C water were classified as 70°C burn, 78°C burn, and non-burned normal skin, respectively, over 48 to 72 h. In contrast, classification images of the skin group exposed to 70°C water for 24 h showed a mixture of non-burned normal skin and 70°C burned areas, suggesting that burn severity was heterogeneous. Conclusions The proposed approach combining RGB color imaging and CDA appears promising for differentiating 78°C burns from 70°C burns and non-burned normal skin and non-burned normal skin from 70°C and 78°C burns at 24 to 72 h after burn injury in a rat model of scald burn injury.
Collapse
|
research-article |
1 |
|