1
|
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2013; 505:117-20. [PMID: 24284625 PMCID: PMC3877715 DOI: 10.1038/nature12730] [Citation(s) in RCA: 3254] [Impact Index Per Article: 271.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Abstract
N(6)-methyladenosine (m(6)A) is the most prevalent internal (non-cap) modification present in the messenger RNA of all higher eukaryotes. Although essential to cell viability and development, the exact role of m(6)A modification remains to be determined. The recent discovery of two m(6)A demethylases in mammalian cells highlighted the importance of m(6)A in basic biological functions and disease. Here we show that m(6)A is selectively recognized by the human YTH domain family 2 (YTHDF2) 'reader' protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m(6)A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies. The carboxy-terminal domain of YTHDF2 selectively binds to m(6)A-containing mRNA, whereas the amino-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m(6)A modification is recognized by selectively binding proteins to affect the translation status and lifetime of mRNA.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
3254 |
2
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7:885-7. [PMID: 22002720 PMCID: PMC3218240 DOI: 10.1038/nchembio.687] [Citation(s) in RCA: 3051] [Impact Index Per Article: 217.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/04/2011] [Indexed: 12/16/2022]
Abstract
We report here that fat mass and obesity-associated protein (FTO) has efficient oxidative demethylation activity targeting the abundant N6-methyladenosine (m(6)A) residues in RNA in vitro. FTO knockdown with siRNA led to increased amounts of m(6)A in mRNA, whereas overexpression of FTO resulted in decreased amounts of m(6)A in human cells. We further show the partial colocalization of FTO with nuclear speckles, which supports the notion that m(6)A in nuclear RNA is a major physiological substrate of FTO.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
3051 |
3
|
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2012. [PMID: 23177736 DOI: 10.1016/j.molcel.2012.10.015] [Citation(s) in RCA: 2644] [Impact Index Per Article: 203.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N(6)-methyladenosine (m(6)A) is the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes. Here we report ALKBH5 as another mammalian demethylase that oxidatively reverses m(6)A in mRNA in vitro and in vivo. This demethylation activity of ALKBH5 significantly affects mRNA export and RNA metabolism as well as the assembly of mRNA processing factors in nuclear speckles. Alkbh5-deficient male mice have increased m(6)A in mRNA and are characterized by impaired fertility resulting from apoptosis that affects meiotic metaphase-stage spermatocytes. In accordance with this defect, we have identified in mouse testes 1,551 differentially expressed genes that cover broad functional categories and include spermatogenesis-related mRNAs involved in the p53 functional interaction network. The discovery of this RNA demethylase strongly suggests that the reversible m(6)A modification has fundamental and broad functions in mammalian cells.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
2644 |
4
|
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2013; 10:93-5. [PMID: 24316715 PMCID: PMC3911877 DOI: 10.1038/nchembio.1432] [Citation(s) in RCA: 2485] [Impact Index Per Article: 207.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/02/2013] [Indexed: 01/13/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent and reversible internal modification in mammalian messenger and non-coding RNAs. We report here that human METTL14 catalyzes m6A RNA methylation. Together with METTL3, the only previously known m6A methyltransferase, these two proteins form a stable heterodimer core complex of METTL3-14 that functions in cellular m6A deposition on mammalian nuclear RNAs. WTAP, a mammalian splicing factor, can interact with this complex and affect this methylation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
2485 |
5
|
Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m⁶A RNA methylation. Nat Rev Genet 2014; 15:293-306. [PMID: 24662220 DOI: 10.1038/nrg3724] [Citation(s) in RCA: 1409] [Impact Index Per Article: 128.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular RNAs carry diverse chemical modifications that used to be regarded as static and having minor roles in 'fine-tuning' structural and functional properties of RNAs. In this Review, we focus on reversible methylation through the most prevalent mammalian mRNA internal modification, N(6)-methyladenosine (m(6)A). Recent studies have discovered protein 'writers', 'erasers' and 'readers' of this RNA chemical mark, as well as its dynamic deposition on mRNA and other types of nuclear RNA. These findings strongly indicate dynamic regulatory roles that are analogous to the well-known reversible epigenetic modifications of DNA and histone proteins. This reversible RNA methylation adds a new dimension to the developing picture of post-transcriptional regulation of gene expression.
Collapse
|
Review |
11 |
1409 |
6
|
Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 2011; 29:68-72. [PMID: 21151123 PMCID: PMC3107705 DOI: 10.1038/nbt.1732] [Citation(s) in RCA: 840] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/15/2010] [Indexed: 12/11/2022]
Abstract
In contrast to 5-methylcytosine (5-mC), which has been studied extensively, little is known about 5-hydroxymethylcytosine (5-hmC), a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types. Here we present a method for determining the genome-wide distribution of 5-hmC. We use the T4 bacteriophage β-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group can be chemically modified with biotin for detection, affinity enrichment and sequencing of 5-hmC-containing DNA fragments in mammalian genomes. Using this method, we demonstrate that 5-hmC is present in human cell lines beyond those previously recognized. We also find a gene expression level-dependent enrichment of intragenic 5-hmC in mouse cerebellum and an age-dependent acquisition of this modification in specific gene bodies linked to neurodegenerative disorders.
Collapse
|
Evaluation Study |
14 |
840 |
7
|
Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001; 68:577-89. [PMID: 11179006 PMCID: PMC1274471 DOI: 10.1086/318811] [Citation(s) in RCA: 714] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Accepted: 01/19/2001] [Indexed: 12/11/2022] Open
Abstract
Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth. The majority of affected individuals have been reported in the Afrikaner population of South Africa, where a high incidence of the disorder occurs as a result of a founder effect. Homozygosity mapping in Afrikaner families along with analysis of historical recombinants localized sclerosteosis to an interval of approximately 2 cM between the loci D17S1787 and D17S930 on chromosome 17q12-q21. Here we report two independent mutations in a novel gene, termed "SOST." Affected Afrikaners carry a nonsense mutation near the amino terminus of the encoded protein, whereas an unrelated affected person of Senegalese origin carries a splicing mutation within the single intron of the gene. The SOST gene encodes a protein that shares similarity with a class of cystine knot-containing factors including dan, cerberus, gremlin, prdc, and caronte. The specific and progressive effect on bone formation observed in individuals affected with sclerosteosis, along with the data presented in this study, together suggest that the SOST gene encodes an important new regulator of bone homeostasis.
Collapse
|
research-article |
24 |
714 |
8
|
Abstract
In recent years, there has been an intensive research on fungal decolorization of dye wastewater. It is becoming a promising alternative to replace or supplement present treatment processes. This paper examines various fungi, living or dead cells, which are capable of decolorizing dye wastewaters; discusses various mechanisms involved; reports some elution and regeneration methods for fungal biomass; summarizes the present pretreatment methods for increasing the biosorption capacity of fungal biomass; discusses the effect of various factors on decolorization.
Collapse
|
Review |
24 |
441 |
9
|
Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 2013; 153:678-91. [PMID: 23602153 DOI: 10.1016/j.cell.2013.04.001] [Citation(s) in RCA: 439] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/19/2013] [Accepted: 03/23/2013] [Indexed: 11/20/2022]
Abstract
TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here, we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
439 |
10
|
Fu Y, Galán JE. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 1999; 401:293-7. [PMID: 10499590 DOI: 10.1038/45829] [Citation(s) in RCA: 424] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An essential feature of the bacterial pathogen Salmonella spp. is its ability to enter cells that are normally non-phagocytic, such as those of the intestinal epithelium. The bacterium achieves entry by delivering effector proteins into the host-cell cytosol by means of a specialized protein-secretion system (termed type III), which causes reorganization of the cell's actin cytoskeleton and ruffling of its membrane. One of the bacterial effectors that stimulates these cellular responses is SopE, which acts as a guanyl-nucleotide-exchange factor on Rho GTPase proteins such as Cdc42 and Rac. As the actin-cytoskeleton reorganization induced by Salmonella is reversible and short-lived, infected cells regain their normal architecture after bacterial internalization. We show here that the S. Typhimurium effector protein SptP, which is delivered to the host-cell cytosol by the type-III secretion system, is directly responsible for the reversal of the actin cytoskeletal changes induced by the bacterium. SptP exerts this function by acting as a GTPase-activating protein (GAP) for Rac-1 and Cdc42.
Collapse
|
|
26 |
424 |
11
|
Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Dore LC, Weng X, Ji Q, Mets L, He C. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 2015; 161:879-892. [PMID: 25936837 DOI: 10.1016/j.cell.2015.04.010] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023]
Abstract
N(6)-methyldeoxyadenosine (6mA or m(6)A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here, we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
378 |
12
|
Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H, Han D, Evans M, Klungland A, Pan T, He C. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell 2016; 167:816-828.e16. [PMID: 27745969 DOI: 10.1016/j.cell.2016.09.038] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/14/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022]
Abstract
tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
350 |
13
|
Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet 2012; 29:108-15. [PMID: 23218460 DOI: 10.1016/j.tig.2012.11.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 01/20/2023]
Abstract
N(6)-methyladenosine (m(6)A) is a ubiquitous modification in mRNA and other RNAs across most eukaryotes. For many years, however, the exact functions of m(6)A were not clearly understood. The discovery that the fat mass and obesity-associated protein (FTO) is an m(6)A demethylase indicates that this modification is reversible and dynamically regulated, suggesting that it has regulatory roles. In addition, it has been shown that m(6)A affects cell fate decisions in yeast and plant development. Recent affinity-based m(6)A profiling in mouse and human cells further showed that this modification is a widespread mark in coding and noncoding RNA (ncRNA) transcripts and is likely dynamically regulated throughout developmental processes. Therefore, reversible RNA methylation, analogous to reversible DNA and histone modifications, may affect gene expression and cell fate decisions by modulating multiple RNA-related cellular pathways, which potentially provides rapid responses to various cellular and environmental signals, including energy and nutrient availability in mammals.
Collapse
|
Review |
13 |
324 |
14
|
Cai G, Fu Y, Li Y, Wan X, Shi Z. Indirect ortho Functionalization of Substituted Toluenes through ortho Olefination of N,N-Dimethylbenzylamines Tuned by the Acidity of Reaction Conditions. J Am Chem Soc 2007; 129:7666-73. [PMID: 17530847 DOI: 10.1021/ja070588a] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly regioselective olefination of substituted N,N-dimethylbenzylamines was developed by tuning the acidity of reaction conditions based on analysis of their features. The ortho-functionalized N,N-dimethylbenzylamines were further transformed into 3-(2'-tolyl)propanoic acid and its derivatives under mild conditions. These two transformations could be combined into one pot, and 3-(2'-tolyl)propanoic acid and its derivatives were obtained in moderate to good yields. Mechanistic studies indicated that electrophilic attack on the phenyl ring by the Pd(II) ion assisted by the N,N-dimethylaminomethyl group was a key step during this catalytic transformation, which was controlled by the acidity of the reaction conditions.
Collapse
|
|
18 |
320 |
15
|
Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T, He C. High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem Int Ed Engl 2014; 54:1587-90. [PMID: 25491922 DOI: 10.1002/anie.201410647] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 11/08/2022]
Abstract
N(6) -methyladenosine (m(6) A) is an abundant internal modification in eukaryotic mRNA and plays regulatory roles in mRNA metabolism. However, methods to precisely locate the m(6) A modification remain limited. We present here a photo-crosslinking-assisted m(6) A sequencing strategy (PA-m(6) A-seq) to more accurately define sites with m(6) A modification. Using this strategy, we obtained a high-resolution map of m(6) A in a human transcriptome. The map resembles the general distribution pattern observed previously, and reveals new m(6) A sites at base resolution. Our results provide insight into the relationship between the methylation regions and the binding sites of RNA-binding proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
313 |
16
|
Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Li J, Jiang S, Pasztor LM, White RA, Groopman JE. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem 1995; 270:27742-51. [PMID: 7499242 DOI: 10.1074/jbc.270.46.27742] [Citation(s) in RCA: 296] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have isolated a cDNA encoding a novel human intracytoplasmic tyrosine kinase, termed RAFTK (for a related adhesion focal tyrosine kinase). In addition, we have cloned and characterized the murine homolog of the human RAFTK cDNA. Comparison of the deduced amino acid sequences of human RAFTK and murine Raftk cDNAs revealed 95% homology, indicating that RAFTK is highly conserved between these species. The RAFTK cDNA clone, encoding a polypeptide of 1009 amino acids, has closest homology (48% identity, 65% similarity) to the focal adhesion kinase (pp125FAK). Comparison of the deduced amino acid sequences also indicates that RAFTK, like pp125FAK, lacks a transmembrane region, myristylation sites, and SH2 and SH3 domains. In addition, like pp125FAK, RAFTK contains a kinase domain flanked by large N-terminal (426 residues) and C-terminal (331 residues) domains, and the C-terminal region contains a predicted proline-rich stretch of residues. In fetal tissues, RAFTK expression was abundant in brain, and low levels were observed in lung and liver. In adult tissues, it was less restricted, indicating that RAFTK expression is developmentally up-regulated. Expression of RAFTK was also observed in human CD34+ marrow cells, primary bone marrow megakaryocytes, platelets, and various areas of brain. The human RAFTK gene was assigned to human chromosome 8 using genomic DNAs from human/rodent somatic cell hybrid lines. The mouse Raftk gene was mapped to chromosome 14, closely linked to gonadotropin-releasing hormone. Using specific antibodies for RAFTK, a approximately 123-kDa protein from the human megakaryocytic CMK cell line was immunoprecipitated. Treatment of the megakaryocytic CMK cells with thrombin caused a rapid induction of tyrosine phosphorylation of RAFTK protein. The structural features of RAFTK suggest that it is a member of the focal adhesion kinase gene family and may participate in signal transduction in human megakaryocytes and brain as well as in other cell types.
Collapse
|
Comparative Study |
30 |
296 |
17
|
Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM, Pickles MR, Qin L, Fu Y, Mann JS, Kirschner BS, Jabs EW, Weber J, Hanauer SB, Bayless TM, Brant SR. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci U S A 1998; 95:7502-7. [PMID: 9636179 PMCID: PMC22666 DOI: 10.1073/pnas.95.13.7502] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 04/20/1998] [Indexed: 02/07/2023] Open
Abstract
The idiopathic inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), are chronic, frequently disabling diseases of the intestines. Segregation analyses, twin concordance, and ethnic differences in familial risks have established that CD and UC are complex, non-Mendelian, related genetic disorders. We performed a genome-wide screen using 377 autosomal markers, on 297 CD, UC, or mixed relative pairs from 174 families, 37% Ashkenazim. We observed evidence for linkage at 3q for all families (multipoint logarithm of the odds score (MLod) = 2.29, P = 5.7 x 10(-4)), with greatest significance for non-Ashkenazim Caucasians (MLod = 3.39, P = 3.92 x 10(-5)), and at chromosome 1p (MLod = 2.65, P = 2.4 x 10(-4)) for all families. In a limited subset of mixed families (containing one member with CD and another with UC), evidence for linkage was observed on chromosome 4q (MLod = 2.76, P = 1.9 x 10(-4)), especially among Ashkenazim. There was confirmatory evidence for a CD locus, overlapping IBD1, in the pericentromeric region of chromosome 16 (MLod = 1.69, P = 2.6 x 10(-3)), particularly among Ashkenazim (MLod = 1.51, P = 7.8 x 10(-3)); however, positive MLod scores were observed over a very broad region of chromosome 16. Furthermore, evidence for epistasis between IBD1 and chromosome 1p was observed. Thirteen additional loci demonstrated nominal (MLod > 1.0, P < 0.016) evidence for linkage. This screen provides strong evidence that there are several major susceptibility loci contributing to the genetic risk for CD and UC.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 3
- Chromosomes, Human, Pair 4
- Colitis, Ulcerative/genetics
- Crohn Disease/genetics
- Disease Susceptibility
- Epistasis, Genetic
- Genetic Linkage
- Genetic Markers
- Genotype
- Humans
- Lod Score
Collapse
|
research-article |
27 |
272 |
18
|
Pokusaeva K, Johnson C, Luk B, Uribe G, Fu Y, Oezguen N, Matsunami RK, Lugo M, Major A, Mori‐Akiyama Y, Hollister EB, Dann SM, Shi XZ, Engler DA, Savidge T, Versalovic J. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 2017; 29:e12904. [PMID: 27458085 PMCID: PMC5195897 DOI: 10.1111/nmo.12904] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recurrent abdominal pain is a common and costly health-care problem attributed, in part, to visceral hypersensitivity. Increasing evidence suggests that gut bacteria contribute to abdominal pain perception by modulating the microbiome-gut-brain axis. However, specific microbial signals remain poorly defined. γ-aminobutyric acid (GABA) is a principal inhibitory neurotransmitter and a key regulator of abdominal and central pain perception from peripheral afferent neurons. Although gut bacteria are reported to produce GABA, it is not known whether the microbial-derived neurotransmitter modulates abdominal pain. METHODS To investigate the potential analgesic effects of microbial GABA, we performed daily oral administration of a specific Bifidobacterium strain (B. dentiumATCC 27678) in a rat fecal retention model of visceral hypersensitivity, and subsequently evaluated pain responses. KEY RESULTS We demonstrate that commensal Bifidobacterium dentium produces GABA via enzymatic decarboxylation of glutamate by GadB. Daily oral administration of this specific Bifidobacterium (but not a gadB deficient) strain modulated sensory neuron activity in a rat fecal retention model of visceral hypersensitivity. CONCLUSIONS & INFERENCES The functional significance of microbial-derived GABA was demonstrated by gadB-dependent desensitization of colonic afferents in a murine model of visceral hypersensitivity. Visceral pain modulation represents another potential health benefit attributed to bifidobacteria and other GABA-producing species of the intestinal microbiome. Targeting GABAergic signals along this microbiome-gut-brain axis represents a new approach for the treatment of abdominal pain.
Collapse
|
research-article |
8 |
218 |
19
|
Rüssmann H, Shams H, Poblete F, Fu Y, Galán JE, Donis RO. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 1998; 281:565-8. [PMID: 9677200 DOI: 10.1126/science.281.5376.565] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Avirulent strains of Salmonella typhimurium are being considered as antigen delivery vectors. During its intracellular stage in the host, S. typhimurium resides within a membrane-bound compartment and is not an efficient inducer of class I-restricted immune responses. Viral epitopes were successfully delivered to the host-cell cytosol by using the type III protein secretion system of S. typhimurium. This resulted in class I-restricted immune responses that protected vaccinated animals against lethal infection. This approach may allow the efficient use of S. typhimurium as an antigen delivery system to control infections by pathogens that require this type of immune response for protection.
Collapse
|
|
27 |
216 |
20
|
Eguchi K, Enomoto S, Furuno K, Goldman J, Hanada H, Ikeda H, Ikeda K, Inoue K, Ishihara K, Itoh W, Iwamoto T, Kawaguchi T, Kawashima T, Kinoshita H, Kishimoto Y, Koga M, Koseki Y, Maeda T, Mitsui T, Motoki M, Nakajima K, Nakajima M, Nakajima T, Ogawa H, Owada K, Sakabe T, Shimizu I, Shirai J, Suekane F, Suzuki A, Tada K, Tajima O, Takayama T, Tamae K, Watanabe H, Busenitz J, Djurcic Z, McKinny K, Mei DM, Piepke A, Yakushev E, Berger BE, Chan YD, Decowski MP, Dwyer DA, Freedman SJ, Fu Y, Fujikawa BK, Heeger KM, Lesko KT, Luk KB, Murayama H, Nygren DR, Okada CE, Poon AWP, Steiner HM, Winslow LA, Horton-Smith GA, McKeown RD, Ritter J, Tipton B, Vogel P, Lane CE, Miletic T, Gorham PW, Guillian G, Learned JG, Maricic J, Matsuno S, Pakvasa S, Dazeley S, Hatakeyama S, Murakami M, Svoboda RC, Dieterle BD, DiMauro M, Detwiler J, Gratta G, Ishii K, Tolich N, Uchida Y, Batygov M, Bugg W, Cohn H, Efremenko Y, Kamyshkov Y, Kozlov A, Nakamura Y, De Braeckeleer L, Gould CR, Karwowski HJ, Markoff DM, Messimore JA, Nakamura K, Rohm RM, Tornow W, Young AR, Wang YF. First results from KamLAND: evidence for reactor antineutrino disappearance. PHYSICAL REVIEW LETTERS 2003; 90:021802. [PMID: 12570536 DOI: 10.1103/physrevlett.90.021802] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Indexed: 05/24/2023]
Abstract
KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.
Collapse
|
|
22 |
214 |
21
|
Fu Y, Anderson PW. Application of statistical mechanics to NP-complete problems in combinatorial optimisation. ACTA ACUST UNITED AC 1999. [DOI: 10.1088/0305-4470/19/9/033] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
26 |
205 |
22
|
Zhang M, Lin S, Song X, Liu J, Fu Y, Ge X, Fu X, Chang Z, Chen PR. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat Chem Biol 2011; 7:671-7. [DOI: 10.1038/nchembio.644] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/05/2011] [Indexed: 12/20/2022]
|
|
14 |
190 |
23
|
Fu Y, Galán JE. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol Microbiol 1998; 27:359-68. [PMID: 9484891 DOI: 10.1046/j.1365-2958.1998.00684.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Salmonella typhimurium protein tyrosine phosphatase SptP is a target of the centisome 63 type III protein secrtion system. This system is essential for the interaction of these bacteria with host cells. We have shown here by a combination of biochemical and microscopy techniques that S. typhimurium directs the translocation of SptP into cultured epithelial cells. Translocation requires the function of the secreted proteins, SipB, SipC and SipD, as strains carrying mutations in any of the genes encoding these proteins fail to translocate SptP. Microinjection of purified GST-SptP into cultured cells results in the disruption of the actin cytoskeleton and the disappearance of stress fibres. These changes are reversible, as microinjected cells regain the normal appearance of their actin cytoskeleton upon prolonged incubation. Microinjection of the catalytically active GST-SptP(C481S) protein results in changes similar to those induced by the wild-type toxin. Furthermore, microinjection of a fusion protein between GST and the first 285 amino acids of SptP also leads to identical disruption of the host cell actin cytoskeleton, indicating that the amino-terminal half of SptP is sufficient to mediate this effect. However, microinjection of a fusion protein between GST and the last 259 amino acids of SptP also disrupted the normal appearance of the cytoskeleton. These results support the hypothesis that SptP is an effector protein arranged in modular domains that may co-operate with each other to exert relate functions.
Collapse
|
|
27 |
180 |
24
|
Toma M, Buller CE, Westerhout CM, Fu Y, O'Neill WW, Holmes DR, Hamm CW, Granger CB, Armstrong PW. Non-culprit coronary artery percutaneous coronary intervention during acute ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. Eur Heart J 2010; 31:1701-7. [DOI: 10.1093/eurheartj/ehq129] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
15 |
174 |
25
|
Graña X, De Luca A, Sang N, Fu Y, Claudio PP, Rosenblatt J, Morgan DO, Giordano A. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci U S A 1994; 91:3834-8. [PMID: 8170997 PMCID: PMC43676 DOI: 10.1073/pnas.91.9.3834] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the cell division cycle 2 (CDC2) family of kinases play a pivotal role in the regulation of the eukaryotic cell cycle. In this communication, we report the isolation of a cDNA that encodes a CDC2-related human protein kinase temporarily designated PITALRE for the characteristic Pro-Ile-Thr-Ala-Leu-Arg-Glu motif. Its deduced amino acid sequence is 47% identical to that of the human cholinesterase-related cell division controller (CHED) kinase, which is required during hematopoiesis, and 42% identical to the Saccharomyces cerevisiae SGV1 gene product, a putative kinase involved in the response to pheromone via its guanine nucleotide-binding protein alpha subunit. PITALRE expression is ubiquitous, but its expression levels are different in various human tissues. PITALRE is an approximately 43-kDa protein that associates with three cellular polypeptides of 80, 95, and 155 kDa. PITALRE is localized primarily to the nucleus. In addition, we have identified a retinoblastoma protein kinase activity associated with PITALRE immunocomplexes that cannot phosphorylate histone H1, suggesting that the target phosphorylation site of PITALRE differs from that of CDC2 kinase. Interestingly, the retinoblastoma kinase activity associated with PITALRE does not oscillate during the cell cycle.
Collapse
|
research-article |
31 |
170 |