1
|
Ong YH, Lim M, Liu Q. Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. OPTICS EXPRESS 2012; 20:22158-71. [PMID: 23037364 DOI: 10.1364/oe.20.022158] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Raman spectroscopy has been explored as a promising label-free technique in discriminating apoptosis and necrosis induced cell death in leukemia cells. In addition to Principal component analysis (PCA) as commonly employed in Raman data analysis, another less commonly used but powerful method is Biochemical Component Analysis (BCA). In BCA, a Raman spectrum is decomposed into the contributions from several known basic biochemical components, such as proteins, lipid, nucleic acids and glycogen groups etc. The differences in terms of classification accuracy and interpretability of resulting data between these two methods in Raman spectroscopy have not been systematically investigated to our knowledge. In this study, we utilized both methods to analyze the Raman spectra measured from live cells, apoptotic and necrotic leukemia cells. The comparison indicates that two methods yield comparable accuracy in sample classification when the numbers of basic components are equal. The changes in the contributions of biochemical components in BCA can be interpreted by cell biology principles in apoptosis and necrosis. In contrast, the contributions of most principle components in PCA are difficult to interpret except the first one. The capability of BCA to unveil fine biochemical changes in cell spectra and excellent accuracy in classification can impel the broad application of Raman spectroscopy in biological research.
Collapse
|
Comparative Study |
13 |
62 |
2
|
Ong YH, Kim MM, Finlay JC, Dimofte A, Singhal S, Glatstein E, Cengel KA, Zhu TC. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT). Phys Med Biol 2017; 63:015031. [PMID: 29106380 DOI: 10.1088/1361-6560/aa9874] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
27 |
3
|
Ong YH, Zhu TC. Analytic function for predicting light fluence rate of circular fields on a semi-infinite turbid medium. OPTICS EXPRESS 2016; 24:26261-26281. [PMID: 27857363 PMCID: PMC5234503 DOI: 10.1364/oe.24.026261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 05/07/2023]
Abstract
Accurate determination of in-vivo light fluence rate is critical for preclinical and clinical studies involving photodynamic therapy (PDT). The light fluence distribution in tissue depends on both the tissue optical properties and the incident field size. This study compares the longitudinal light fluence distribution inside biological tissue in the central axis of circular uniform light field with different radii for a range of in-vivo tissue optical properties (absorption coefficients (µa) between 0.01 and 1 cm-1 and reduced scattering coefficients (µs') between 2 and 40 cm-1). This was done using Monte-Carlo simulations for a semi-infinite turbid medium in an air-tissue interface. The end goal is to develop simple analytical expressions that would fit the results from the Monte Carlo simulation for circular beams with different radii. A 6-parameter model (ϕ/ϕair=(1-b⋅e-λ1d)(C2e-λ2d+C3e-λ3d)) can be used to fit MC simulation. Each of these parameters (b, C2, C3, λ1, λ2, and λ3) is expressed as a function of tissue optical properties and beam radius. These results can then be compared against the existing expressions in the literature for broad beam for analysis in both accuracy and applicable range. The analytical function can be used as rapid guide in PDT to calculate in vivo light fluence distribution for known tissue optical properties.
Collapse
|
research-article |
9 |
20 |
4
|
Kim MM, Zhu TC, Ong YH, Finlay JC, Dimofte A, Singhal S, Glatstein E, Cengel KA. Infrared navigation system for light dosimetry during pleural photodynamic therapy. Phys Med Biol 2020; 65:075006. [PMID: 32053799 DOI: 10.1088/1361-6560/ab7632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pleural photodynamic therapy (PDT) is performed intraoperatively for the treatment of microscopic disease in patients with malignant pleural mesothelioma. Accurate delivery of light dose is critical to PDT efficiency. As a standard of care, light fluence is delivered to the prescribed fluence using eight isotropic detectors in pre-determined discrete locations inside the pleural cavity that is filled with a dilute Intralipid solution. An optical infrared (IR) navigation system was used to monitor reflective passive markers on a modified and improved treatment delivery wand to track the position of the light source within the treatment cavity during light delivery. This information was used to calculate the light dose, incorporating a constant scattered light dose and using a dual correction method. Calculation methods were extensively compared for eight detector locations and seven patient case studies. The light fluence uniformity was also quantified by representing the unraveled three-dimensional geometry on a two-dimensional plane. Calculated light fluence at the end of treatment delivery was compared to measured values from isotropic detectors. Using a constant scattered dose for all detector locations along with a dual correction method, the difference between calculated and measured values for each detector was within 15%. Primary light dose alone does not fully account for the light delivered inside the cavity. This is useful in determining the light dose delivered to areas of the pleural cavity between detector locations, and can serve to improve treatment delivery with implementation in real-time in the surgical setting. We concluded that the standard deviation of light fluence uniformity for this method of pleural PDT is 10%.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
16 |
5
|
Ong YH, Dimofte A, Kim MM, Finlay JC, Sheng T, Singhal S, Cengel KA, Yodh AG, Busch TM, Zhu TC. Reactive Oxygen Species Explicit Dosimetry for Photofrin-mediated Pleural Photodynamic Therapy. Photochem Photobiol 2019; 96:340-348. [PMID: 31729774 DOI: 10.1111/php.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 01/10/2023]
Abstract
Explicit dosimetry of treatment light fluence and implicit dosimetry of photosensitizer photobleaching are commonly used methods to guide dose delivery during clinical PDT. Tissue oxygen, however, is not routinely monitored intraoperatively even though it is one of the three major components of treatment. Quantitative information about in vivo tissue oxygenation during PDT is desirable, because it enables reactive oxygen species explicit dosimetry (ROSED) for prediction of treatment outcome based on PDT-induced changes in tumor oxygen level. Here, we demonstrate ROSED in a clinical setting, Photofrin-mediated pleural photodynamic therapy, by utilizing tumor blood flow information measured by diffuse correlation spectroscopy (DCS). A DCS contact probe was sutured to the pleural cavity wall after surgical resection of pleural mesothelioma tumor to monitor tissue blood flow (blood flow index) during intraoperative PDT treatment. Isotropic detectors were used to measure treatment light fluence and photosensitizer concentration. Blood-flow-derived tumor oxygen concentration, estimated by applying a preclinically determined conversion factor of 1.5 × 109 μMs cm-2 to the blood flow index, was used in the ROSED model to calculate the total reacted reactive oxygen species [ROS]rx. Seven patients and 12 different pleural sites were assessed and large inter- and intrapatient heterogeneities in [ROS]rx were observed although an identical light dose of 60 J cm-2 was prescribed to all patients.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
12 |
6
|
Ong YH, Chua ASM, Lee BP, Ngoh GC. Long-term performance evaluation of EBPR process in tropical climate: start-up, process stability, and the effect of operational pH and influent C:P ratio. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2013; 67:340-346. [PMID: 23168633 DOI: 10.2166/wst.2012.552] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To date, little information is known about the operation of the enhanced biological phosphorus removal (EBPR) process in tropical climates. Along with the global concerns on nutrient pollution and the increasing array of local regulatory requirements, the applicability and compliance accountability of the EBPR process for sewage treatment in tropical climates is being evaluated. A sequencing batch reactor (SBR) inoculated with seed sludge from a conventional activated sludge (CAS) process was successfully acclimatized to EBPR conditions at 28 °C after 13 days' operation. Enrichment of Candidatus Accumulibacter phosphatis in the SBR was confirmed through fluorescence in situ hybridization (FISH). The effects of operational pH and influent C:P ratio on EBPR were then investigated. At pH 7 or pH 8, phosphorus removal rates of the EBPR processes were relatively higher when operated at C:P ratio of 3 than C:P ratio of 10, with 0.019-0.020 and 0.011-0.012 g-P/g-MLVSS•day respectively. One-year operation of the 28 °C EBPR process at C:P ratio of 3 and pH 8 demonstrated stable phosphorus removal rate of 0.020 ± 0.003 g-P/g-MLVSS•day, corresponding to effluent with phosphorus concentration <0.5 mg/L. This study provides the first evidence on good EBPR activity at relatively high temperature, indicating its applicability in a tropical climate.
Collapse
|
|
12 |
9 |
7
|
Penjweini R, Kim MM, Ong YH, Zhu TC. 1O 2 determined from the measured PDT dose and 3O 2 predicts long-term response to Photofrin-mediated PDT. Phys Med Biol 2020; 65:03LT01. [PMID: 31751964 DOI: 10.1088/1361-6560/ab59f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) that employs the photochemical interaction of light, photosensitizer and oxygen is an established modality for the treatment of cancer. However, dosimetry for PDT is becoming increasingly complex due to the heterogeneous photosensitizer uptake by the tumor, and complicated relationship between the tissue oxygenation ([3O2]), interstitial light distribution, photosensitizer photobleaching and PDT effect. As a result, experts argue that the failure to realize PDT's true potential is, at least partly due to the complexity of the dosimetry problem. In this study, we examine the efficacy of singlet oxygen explicit dosimetry (SOED) based on the measurements of the interstitial light fluence rate distribution, changes of [3O2] and photosensitizer concentration during Photofrin-mediated PDT to predict long-term control rates of radiation-induced fibrosarcoma tumors. We further show how variation in tissue [3O2] between animals induces variation in the treatment response for the same PDT protocol. PDT was performed with 5 mg kg-1 Photofrin (a drug-light interval of 24 h), in-air fluence rates (ϕ air) of 50 and 75 mW cm-2 and in-air fluences from 225 to 540 J cm-2. The tumor regrowth was tracked for 90 d after the treatment and Kaplan-Meier analyses for local control rate were performed based on a tumor volume ⩽100 mm3 for the two dosimetry quantities of PDT dose and SOED. Based on the results, SOED allowed for reduced subject variation and improved treatment evaluation as compared to the PDT dose.
Collapse
|
Letter |
5 |
5 |
8
|
Morales RDH, Hong Ong Y, Finlay J, Dimofte A, Simone CB, Friedberg JS, Busch TM, Cengel KA, Zhu TC. In vivo spectroscopic evaluation of human tissue optical properties and hemodynamics during HPPH-mediated photodynamic therapy of pleural malignancies. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220136GR. [PMID: 36316298 PMCID: PMC9621284 DOI: 10.1117/1.jbo.27.10.105006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 05/12/2023]
Abstract
Significance Dosimetry for photodynamic therapy is dependent on multiple parameters. Critically, in vivo tissue optical properties and hemodynamics must be determined carefully to calculate the total delivered light dose. Aim Spectroscopic analysis of diffuse reflectance measurements of tissues taken during a clinical trial of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a-mediated photodynamic therapy for pleural malignancies. Approach Diffuse reflectance measurements were taken immediately before and after photodynamic therapy. Measurements were analyzed with a nonlinearly constrained multiwavelength, multi-distance algorithm to extract tissue optical properties, tissue oxygen saturation, StO2, and total hemoglobin concentration (THC). Results A total of 25 patients were measured, 23 of which produced reliable fits for optical property extraction. For all tissue types, StO2 ranged through [24, 100]% and [22, 97]% for pre-photodynamic therapy (PDT) and post-PDT conditions, respectively. Mean THC ranged through [ 69,152 ] μM and [ 48,111 ] μM, for pre-PDT and post-PDT, respectively. Absorption coefficients, μa, ranged through [ 0.024 , 3.5 ] cm - 1 and [ 0.039 , 3 ] cm - 1 for pre-PDT and post-PDT conditions, respectively. Reduced scattering coefficients, μs', ranged through [ 1.4 , 73.4 ] cm - 1 and [ 1.2 , 64 ] cm - 1 for pre-PDT and post-PDT conditions, respectively. Conclusions There were similar pre- and post-PDT tissue optical properties and hemodynamics. The high variability in each parameter for all tissue types emphasizes the importance of these measurements for accurate PDT dosimetry.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
5 |
9
|
Gao F, Ong YH, Li G, Feng X, Liu Q, Zheng Y. Fast photoacoustic-guided depth-resolved Raman spectroscopy: a feasibility study. OPTICS LETTERS 2015; 40:3568-3571. [PMID: 26258359 DOI: 10.1364/ol.40.003568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this Letter, photoacoustic-guided Raman spectroscopy (PARS) is proposed for a fast depth-resolved Raman measurement with accurate depth localization. The approach was experimentally demonstrated to receive both photoacoustic and Raman signals from a three-layer agar phantom based on a developed synergic photoacoustic-Raman probe, showing strong depth correlation and achieving magnitude of faster operation speed due to photoacoustic time-of-flight measurement and guidance, compared with the conventional depth-resolved Raman spectroscopy method. In addition, further combination with advanced optical-focusing techniques in biological-scattering medium could potentially enable the proposed approach for cancer diagnostics with both tight and fast optical focusing at the desired depth of tumor.
Collapse
|
|
10 |
5 |
10
|
Liu W, Ong YH, Yu XJ, Ju J, Perlaki CM, Liu LB, Liu Q. Snapshot depth sensitive Raman spectroscopy in layered tissues. OPTICS EXPRESS 2016; 24:28312-28325. [PMID: 27958542 DOI: 10.1364/oe.24.028312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Depth sensitive Raman spectroscopy has been shown effective in the detection of depth dependent Raman spectra in layered tissues. However, the current techniques for depth sensitive Raman measurements based on fiber-optic probes suffer from poor depth resolution and significant variation in probe-sample contact. In contrast, those lens based techniques either require the change in objective-sample distance or suffer from slow spectral acquisition. We report a snapshot depth-sensitive Raman technique based on an axicon lens and a ring-to-line fiber assembly to simultaneously acquire Raman signals emitted from five different depths in the non-contact manner without moving any component. A numerical tool was developed to simulate ray tracing and optimize the snapshot depth sensitive setup to achieve the tradeoff between signal collection efficiency and depth resolution for Raman measurements in the skin. Moreover, the snapshot system was demonstrated to be able to acquire depth sensitive Raman spectra from not only transparent and turbid skin phantoms but also from ex vivo pork tissues and in vivo human thumbnails when the excitation laser power was limited to the maximum permissible exposure for human skin. The results suggest the great potential of snapshot depth sensitive Raman spectroscopy in the characterization of the skin and other layered tissues in the clinical setting or other similar applications such as quality monitoring of tablets and capsules in pharmaceutical industry requiring the rapid measurement of depth dependent Raman spectra.
Collapse
|
|
9 |
5 |
11
|
Sheng T, Ong YH, Busch TM, Zhu TC. Reactive oxygen species explicit dosimetry to predict local tumor control for Photofrin-mediated photodynamic therapy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10860. [PMID: 31327886 DOI: 10.1117/12.2508803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although photodynamic therapy (PDT) is an established modality for cancer treatment, current dosimetric quantities, such as light fluence and PDT dose, do not account for the differences in PDT oxygen consumption for different fluence rates (ϕ). A macroscopic model was adopted to calculate reactive oxygen species concentration ([ROS]rx) to predict Photofrin-PDT outcome in mice bearing radiation-induced fibrosarcoma (RIF) tumors. Singlet oxygen is the primary cytotoxic species for ROS, which is responsible for cell death in type II PDT, although other type I ROS is included in the parameters used in our model. Using a combination of fluences (50-250 J/cm2) and ϕ (50 - 150 mW/cm2), tumor regrowth rate, k, was determined for each condition by fitting the tumor volume vs. time to V0*exp(k*t). Treatment was delivered with a collimated laser beam of 1 cm diameter at 630 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and Photofrin concentration was used to calculate [ROS]rx,cal. ϕ was determined for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Tissue oxygenation is measured using an oxylite oxygen probe to throughout the treatment to calculate the measured [ROS]rx,mea. Cure index, CI = 1-k/k ctr , for tumor gowth up to 14 days were determined as an endpoint using five dose metrics: light fluence, PDT dose, and [ROS]rx,cal, and [ROS]rx,mea. PDT dose was defined as the product of the time-integral of photosensitizer concentration and ϕ at a 3 mm tumor depth. Preliminary studies show that [ROS]rx,mea best correlates with CI and is an effective dosimetric quantity that can predict treatment outcome.
Collapse
|
Journal Article |
6 |
4 |
12
|
Dupre PJ, Ong YH, Friedberg J, Singhal S, Carter S, Simone CB, Finlay JC, Zhu TC, Cengel KA, Busch TM. Light Fluence Rate and Tissue Oxygenation (S t O 2 ) Distributions Within the Thoracic Cavity of Patients Receiving Intraoperative Photodynamic Therapy for Malignant Pleural Mesothelioma. Photochem Photobiol 2020; 96:417-425. [PMID: 32048732 PMCID: PMC11855480 DOI: 10.1111/php.13224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/29/2019] [Indexed: 01/22/2023]
Abstract
The distributions of light and tissue oxygenation (St O2 ) within the chest cavity were determined for 15 subjects undergoing macroscopic complete resection followed by intraoperative photodynamic therapy (PDT) as part of a clinical trial for the treatment of malignant pleural mesothelioma (MPM). Over the course of light delivery, detectors at each of eight different sites recorded exposure to variable fluence rate. Nevertheless, the treatment-averaged fluence rate was similar among sites, ranging from a median of 40-61 mW cm-2 during periods of light exposure to a detector. St O2 at each tissue site varied by subject, but posterior mediastinum and posterior sulcus were the most consistently well oxygenated (median St O2 >90%; interquartile ranges ~85-95%). PDT effect on St O2 was characterized as the St O2 ratio (post-PDT St O2 /pre-PDT St O2 ). High St O2 pre-PDT was significantly associated with oxygen depletion (St O2 ratio < 1), although the extent of oxygen depletion was mild (median St O2 ratio of 0.8). Overall, PDT of the thoracic cavity resulted in moderate treatment-averaged fluence rate that was consistent among treated tissue sites, despite instantaneous exposure to high fluence rate. Mild oxygen depletion after PDT was experienced at tissue sites with high pre-PDT St O2 , which may suggest the presence of a treatment effect.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
3 |
13
|
Ong YH, Liu Q. Axicon lens-based cone shell configuration for depth-sensitive fluorescence measurements in turbid media. OPTICS LETTERS 2013; 38:2647-2649. [PMID: 23903100 DOI: 10.1364/ol.38.002647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have developed a novel noncontact setup to implement a cone shell illumination and detection configuration using axicon lenses for depth-sensitive fluorescence measurements. The setup was demonstrated experimentally to be capable of detecting fluorescence from a two-layered turbid agar phantom with a larger sensitivity to the deep layer and a larger range of sensitivity to either layer than a conventional cone configuration implemented by a microscope objective lens. Furthermore, the axicon lens-based setup eliminates the need of moving the objective lens up or down to achieve depth-sensitive measurements, which effectively improves the consistency of optical coupling and thus would be preferred in a clinical setting.
Collapse
|
|
12 |
3 |
14
|
Wei D, Chen S, Ong YH, Perlaki C, Liu Q. Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation. OPTICS LETTERS 2016; 41:2783-2786. [PMID: 27304288 DOI: 10.1364/ol.41.002783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Raman spectroscopic imaging is a powerful label-free tool for studying cells and tissues in biology and medicine, but it suffers from extremely slow data acquisition. In this Letter, a novel multi-channel Raman imaging technique is proposed to speed up Raman acquisition. Wide-field Raman images are taken in multiple narrow-band channels, each through a different bandpass filter, simultaneously in one camera frame. Then Wiener estimation is used to quickly reconstruct the full Raman spectrum at each pixel from narrow-band measurements. The proposed system with four channels was evaluated in the mixtures of two and three chemicals exhibiting strong Raman scattering because of convenience in the verification of reconstructed spectra. This new technique is expected to overcome the limitation of traditional Raman spectroscopic imaging in speed, and expand its applications in the label-free analysis of both biological and non-biological samples, where potential species are known and fast imaging is required to investigate temporally varying events.
Collapse
|
|
9 |
3 |
15
|
Ong YH, Finlay JC, Zhu TC. Monte Carlo modelling of fluorescence in semi-infinite turbid media. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10492. [PMID: 29853731 DOI: 10.1117/12.2290137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incident field size and the interplay of absorption and scattering can influence the in-vivo light fluence rate distribution and complicate the absolute quantification of fluorophore concentration in-vivo. In this study, we use Monte Carlo simulations to evaluate the effect of incident beam radius and optical properties to the fluorescence signal collected by isotropic detector placed on the tissue surface. The optical properties at the excitation and emission wavelengths are assumed to be identical. We compute correction factors to correct the fluorescence intensity for variations due to incident field size and optical properties. The correction factors are fitted to a 4-parameters empirical correction function and the changes in each parameter are compared for various beam radius over a range of physiologically relevant tissue optical properties (μa = 0.1 - 1 cm-1, μs'= 5 - 40 cm-1).
Collapse
|
Journal Article |
7 |
3 |
16
|
Chen S, Ong YH, Lin X, Liu Q. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background. BIOMEDICAL OPTICS EXPRESS 2015. [PMID: 26203387 PMCID: PMC4505715 DOI: 10.1364/boe.6.002633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging.
Collapse
|
research-article |
10 |
3 |
17
|
Sun H, Kim MM, Ong YH, Dimoft A, Singhal S, Busch TM, Cengel KA, Zhu TC. Evaluation of Detector Position and Light Fluence Distribution Using an Infrared Navigation System during Pleural Photodynamic Therapy †. Photochem Photobiol 2023; 99:814-825. [PMID: 35996976 PMCID: PMC9947188 DOI: 10.1111/php.13697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) has been used to treat malignant pleural mesothelioma. Current practice involves delivering light to a prescribed light fluence with a point source, monitored by eight isotropic detectors inside the pleural cavity. An infrared (IR) navigation system was used to track the location of the point source throughout the treatment. The recorded data were used to reconstruct the pleural cavity and calculate the light fluence to the whole cavity. An automatic algorithm was developed recently to calculate the detector positions based on recorded data within an hour. This algorithm was applied to patient case studies and the calculated results were compared to the measured positions, with an average difference of 2.5 cm. Calculated light fluence at calculated positions were compared to measured values. The differences between the calculated and measured light fluence were within 14% for all cases, with a fixed scattering constant and a dual correction method. Fluence-surface histogram (FSH) was calculated for photofrin-mediated PDT to be able to cover 80% of pleural surface area to 50 J cm-2 (83.3% of 60 J cm-2 ). The study demonstrates that it will be possible to eliminate the manual measurement of the detector positions, reducing the patient's time under anesthesia.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
2 |
18
|
Ong YH, Li AQ, Zhu TC. Monte Carlo investigation of the effect of skin tissue optical properties on detected Cherenkov emission. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10862. [PMID: 31057198 DOI: 10.1117/12.2509854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, we use Monte Carlo modelling to investigate the effect of tissue optical properties on Cherenkov emission detected from tissue surface. MC simulations are performed for wavelength between 400-1000nm and the values of absorption coefficient at each wavelength are determined based on the molar extinction coefficients of oxy- and deoxy-hemoglobin, with varying total haemoglobin concentration and tissue oxygen saturation of 70%. Tissue reduced scattering coefficient is approximated using μs'(λ) = Aλ-0.838. A range of clinically relevant tissue optical properties was investigated, with absorption coefficient between 0.1 and 1 cm-1 and reduced scattering coefficient between 5 and 40 cm-1 at 665nm. The angular distribution, depth of origins and the effect of tissue optical properties on Cherenkov emission on tissue surface are evaluated.
Collapse
|
Journal Article |
6 |
2 |
19
|
Ong YH, Zhu C, Liu Q. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:085006. [PMID: 25117077 DOI: 10.1117/1.jbo.19.8.085006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/21/2014] [Indexed: 05/24/2023]
Abstract
Experimental investigation and optimization of various optical parameters in the design of depth sensitive optical measurements in layered tissues would require a huge amount of time and resources. A computational method to model light transport in layered tissues using Monte Carlo simulations has been developed for decades to reduce the cost incurred during this process. In this work, we employed the Monte Carlo method to investigate the depth sensitivity achieved by various illumination and detection configurations including both the traditional cone configurations and new cone shell configurations, which are implemented by convex or axicon lenses. Phantom experiments have been carried out to validate the Monte Carlo modeling of fluorescence in a two-layered turbid, epithelial tissue model. The measured fluorescence and depth sensitivity of different illumination–detection configurations were compared with each other. The results indicate excellent agreement between the experimental and simulation results in the trends of fluorescence intensity and depth sensitivity. The findings of this study and the development of the Monte Carlo method for noncontact setups provide useful insight and assistance in the planning and optimization of optical designs for depth sensitive fluorescence measurements.
Collapse
|
Validation Study |
11 |
2 |
20
|
Ong YH, Liu Q. Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:110503. [PMID: 24247742 DOI: 10.1117/1.jbo.18.11.110503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
Depth-sensitive fluorescence spectroscopy in a two-layered epithelial tissue phantom was demonstrated using a cone shell configuration implemented by an axicon lens and a fiber assembly including five rings of collection fibers. Each collection fiber ring was located at a different radial distance away from the center, for which fluorescence measurements from all rings showed a larger range of sensitivities to the top and bottom layers compared to the previously reported cone shell configuration. Furthermore, multiple fluorescence spectra corresponding to a range of successive targeted depths can be obtained simultaneously, which shortened data acquisition dramatically and eliminated the mechanical moving components required for depth-sensitive optical measurements in the previous setup. This new setup therefore would be preferred in a clinical setting.
Collapse
|
|
12 |
2 |
21
|
Ong YH, Kim MM, Huang Z, Zhu TC. Reactive Oxygen Species Explicit Dosimetry (ROSED) of a Type 1 Photosensitizer. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10476:104760V. [PMID: 29861531 PMCID: PMC5975967 DOI: 10.1117/12.2291385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Type I photodynamic therapy (PDT) is based on the use of photochemical reactions mediated through an interaction between a tumor-selective photosensitizer, photoexcitation with a specific wavelength of light, and production of reactive oxygen species (ROS). The goal of this study is to develop a model to calculate reactive oxygen species concentration ([ROS]rx) after Tookad®-mediated vascular PDT. Mice with radiation-induced fibrosarcoma (RIF) tumors were treated with different light fluence and fluence rate conditions. Explicit measurements of photosensitizer drug concentration were made via diffuse reflective absorption spectrum using a contact probe before and after PDT. Blood flow and tissue oxygen concentration over time were measured during PDT as a mean to validate the photochemical parameters for the ROSED calculation. Cure index was computed from the rate of tumor regrowth after treatment and was compared against three calculated dose metrics: total light fluence, PDT dose, reacted [ROS]rx. The tumor growth study demonstrates that [ROS]rx serves as a better dosimetric quantity for predicting treatment outcome, as a clinically relevant tumor growth endpoint.
Collapse
|
research-article |
7 |
1 |
22
|
Zhu C, Ong YH, Liu Q. Multifocal noncontact color imaging for depth-sensitive fluorescence measurements of epithelial cancer. OPTICS LETTERS 2014; 39:3250-3253. [PMID: 24876025 DOI: 10.1364/ol.39.003250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We propose a multifocal noncontact setup to perform depth-sensitive fluorescence imaging on a two-layered epithelial tissue model. The combination of a microlens array and a tunable lens enables the depth of the multifocal plane to be conveniently adjusted without any mechanical movement of the imaging lens or the sample. This advantage is particularly desirable in the clinical setting. Results from the phantom study demonstrate that the setup can achieve depth-sensitive color imaging for fluorescence measurements, which is further confirmed by spectral measurements.
Collapse
|
|
11 |
1 |
23
|
Chong SH, Markel VA, Parthasarathy AB, Ong YH, Abramson K, Moscatelli FA, Yodh AG. Algorithms and instrumentation for rapid spatial frequency domain fluorescence diffuse optical imaging. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:116002. [PMID: 36348511 PMCID: PMC9641268 DOI: 10.1117/1.jbo.27.11.116002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Rapid estimation of the depth and margins of fluorescence targets buried below the tissue surface could improve upon current image-guided surgery techniques for tumor resection. AIM We describe algorithms and instrumentation that permit rapid estimation of the depth and transverse margins of fluorescence target(s) in turbid media; the work aims to introduce, experimentally demonstrate, and characterize the methodology. APPROACH Spatial frequency domain fluorescence diffuse optical tomography (SFD-FDOT) technique is adapted for rapid and computationally inexpensive estimation of fluorophore target depth and lateral margins. The algorithm utilizes the variation of diffuse fluorescence intensity with respect to spatial-modulation-frequency to compute target depth. The lateral margins are determined via analytical inversion of the data using depth information obtained from the first step. We characterize method performance using fluorescent contrast targets embedded in tissue-simulating phantoms. RESULTS Single and multiple targets with significant lateral size were imaged at varying depths as deep as 1 cm. Phantom data analysis showed good depth-sensitivity, and the reconstructed transverse margins were mostly within ∼30 % error from true margins. CONCLUSIONS The study suggests that the rapid SFD-FDOT approach could be useful in resection surgery and, more broadly, as a first step in more rigorous SFD-FDOT reconstructions. The experiments permit evaluation of current limitations.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
1 |
24
|
Ong YH, Zhu TC. Estimation of fluorescence probing depth dependence on the distance between source and detector using Monte Carlo modeling. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 11628. [PMID: 34083858 DOI: 10.1117/12.2582818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Photosensitizer fluorescence emission during photodynamic therapy (PDT) can be used to estimate for in vivo photosensitizer concentration. We built a surface contact probe with 405nm excitation light source to obtain Photofrin fluorescence signal during clinical PDT. The probe was equipped with multiple detector fibers that were located at distances between 0.14 to 0.87 cm laterally from the excitation source fiber. In this study, we investigated the probing depth of fluorescence in biological tissue with different source-detector separation using our contact probe setup. We used Monte Carlo method to simulate the 405nm excitation light and 630nm fluorescence probing depth at various source and detector (SD) separations. The results provided insight to the most probable depth of origin of detected fluorescence at each SD separation and help to understand the in vivo depth distribution of clinically measured Photofrin concentration.
Collapse
|
Journal Article |
4 |
1 |
25
|
Dimofte A, Finlay J, Ong YH, Zhu TC. A quality assurance program for clinical PDT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10476. [PMID: 29861532 DOI: 10.1117/12.2288561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4″ integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of ±4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.
Collapse
|
|
7 |
1 |