1
|
Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376:70-4. [PMID: 7596437 DOI: 10.1038/376070a0] [Citation(s) in RCA: 1248] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tie-1 and Tie-2 define a new class of receptor tyrosine kinases that are specifically expressed in developing vascular endothelial cells. To study the functions of Tie-1 and Tie-2 during vascular endothelial cell growth and differentiation in vivo, targeted mutations of the genes in mice were introduced by homologous recombination. Embryos deficient in Tie-1 failed to establish structural integrity of vascular endothelial cells, resulting in oedema and subsequently localized haemorrhage. However, analyses of embryos deficient in Tie-2 showed that it is important in angiogenesis, particularly for vascular network formation in endothelial cells. This result contrasts with previous reports on Tie-2 function in vasculogenesis and/or endothelial cell survival. Our in vivo analyses indicate that the structurally related receptor tyrosine kinases Tie-1 and Tie-2 have important but distinct roles in the formation of blood vessels.
Collapse
|
|
30 |
1248 |
2
|
McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, Kudrimoti H, Qin Y, Skaggs WE, Suster M, Weaver KL. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol 1996; 199:173-85. [PMID: 8576689 DOI: 10.1242/jeb.199.1.173] [Citation(s) in RCA: 468] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hippocampal 'place' cells and the head-direction cells of the dorsal presubiculum and related neocortical and thalamic areas appear to be part of a preconfigured network that generates an abstract internal representation of two-dimensional space whose metric is self-motion. It appears that viewpoint-specific visual information (e.g. landmarks) becomes secondarily bound to this structure by associative learning. These associations between landmarks and the preconfigured path integrator serve to set the origin for path integration and to correct for cumulative error. In the absence of familiar landmarks, or in darkness without a prior spatial reference, the system appears to adopt an initial reference for path integration independently of external cues. A hypothesis of how the path integration system may operate at the neuronal level is proposed.
Collapse
|
|
29 |
468 |
3
|
Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, Schedl T, Qin Y, Van Aelst L, Hengartner MO, Ravichandran KS. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 2001; 107:27-41. [PMID: 11595183 DOI: 10.1016/s0092-8674(01)00520-7] [Citation(s) in RCA: 458] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The C. elegans genes ced-2, ced-5, and ced-10, and their mammalian homologs crkII, dock180, and rac1, mediate cytoskeletal rearrangements during phagocytosis of apoptotic cells and cell motility. Here, we describe an additional member of this signaling pathway, ced-12, and its mammalian homologs, elmo1 and elmo2. In C. elegans, CED-12 is required for engulfment of dying cells and for cell migrations. In mammalian cells, ELMO1 functionally cooperates with CrkII and Dock180 to promote phagocytosis and cell shape changes. CED-12/ELMO-1 binds directly to CED-5/Dock180; this evolutionarily conserved complex stimulates a Rac-GEF, leading to Rac1 activation and cytoskeletal rearrangements. These studies identify CED-12/ELMO as an upstream regulator of Rac1 that affects engulfment and cell migration from C. elegans to mammals.
Collapse
|
|
24 |
458 |
4
|
Sato TN, Qin Y, Kozak CA, Audus KL. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci U S A 1993; 90:9355-8. [PMID: 8415706 PMCID: PMC47566 DOI: 10.1073/pnas.90.20.9355] [Citation(s) in RCA: 324] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report the molecular cloning and characterization of two structurally related putative receptor tyrosine kinases, encoded by distinct genes (tie-1 and tie-2) on mouse chromosome 4. Both tie-1 and tie-2 encode receptor proteins possessing unique multiple extracellular domains: two immunoglobulin-like loop domains flanking three epidermal growth factor repeats followed by three fibronectin-type III repeats. Both genes are expressed in early embryonic vascular system and in maternal decidual vascular endothelial cells, where the vasculature undergoes an active angiogenesis. tie-2, but not tie-1, expression was also detected in extraembryonic mesoderm of the amnion. tie-1, but not tie-2, is expressed in an acute myelogenic cell line in vitro. tie-1 and tie-2 may form another class within the receptor tyrosine kinase gene family, and further characterization of these genes and identification of their putative ligands should define the nature of the signal-transduction cascades underlying early vascular system development, as well as their differential roles in mesodermal cells of the amniotic and myeloid lineages.
Collapse
|
research-article |
32 |
324 |
5
|
Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 2000; 20:5343-9. [PMID: 10866690 PMCID: PMC85983 DOI: 10.1128/mcb.20.14.5343-5349.2000] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARgamma ligands, termed PGAR (for PPARgamma angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis.
Collapse
|
research-article |
25 |
323 |
6
|
Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, Xu A, Chavakis T, Bornstein AB, Ehrhart-Bornstein M, Lamounier-Zepter V, Lohmann T, Wolf T, Bornstein SR. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. THE PHARMACOGENOMICS JOURNAL 2012; 13:514-22. [PMID: 23032991 DOI: 10.1038/tpj.2012.43] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/18/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) has become a prominent therapeutic option for long-term treatment of morbid obesity and type 2 diabetes mellitus (T2D). Cross talk and pathogenetic consequences of RYGB-induced profound effects on metabolism and gut microbiome are poorly understood. The aim of the present study therefore was to characterize intra-individual changes of gut microbial composition before and 3 months after RYGB by metagenomic sequencing in morbidly obese patients (body mass index (BMI)>40 kg m(-)(2)) with T2D. Subsequently, metagenomic data were correlated with clinical indices. Based on gene relative abundance profile, 1061 species, 729 genera, 44 phyla and 5127 KO (KEGG Orthology) were identified. Despite high diversity, bacteria could mostly be assigned to seven bacterial divisions. The overall metagenomic RYGB-induced shift was characterized by a reduction of Firmicutes and Bacteroidetes and an increase of Proteobacteria. Twenty-two microbial species and 11 genera were significantly altered by RYGB. Using principal component analysis, highly correlated species were assembled into two common components. Component 1 consisted of species that were mainly associated with BMI and C-reactive protein. This component was characterized by increased numbers of Proteobacterium Enterobacter cancerogenus and decreased Firmicutes Faecalibacterium prausnitzii and Coprococcus comes. Functional analysis of carbohydrate metabolism by KO revealed significant effects in 13 KOs assigned to phosphotransferase system. Spearmen's Rank correlation indicated an association of 10 species with plasma total- or low-density lipoprotein cholesterol, and 5 species with triglycerides. F. prausnitzii was directly correlated to fasting blood glucose. This is the first clinical demonstration of a profound and specific intra-individual modification of gut microbial composition by full metagenomic sequencing. A clear correlation exists of microbiome composition and gene function with an improvement in metabolic and inflammatory parameters. This will allow to develop new diagnostic and therapeutic strategies based on metagenomic sequencing of the human gut microbiome.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
313 |
7
|
Qin Y, Duquette P, Zhang Y, Talbot P, Poole R, Antel J. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 1998; 102:1045-50. [PMID: 9727074 PMCID: PMC508971 DOI: 10.1172/jci3568] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients is characterized by increased concentrations of immunoglobulin (Ig), which on electrophoretic analysis shows restricted heterogeneity (oligoclonal bands). CSF Ig is composed of both serum and intrathecally produced components. To examine the properties of intrathecal antibody-producing B cells, we analyzed Ig heavy-chain variable (V(H)) region genes of B cells recovered from the CSF of 12 MS patients and 15 patients with other neurological diseases (OND). Using a PCR technique, we could detect rearrangements of Ig V(H) genes in all samples. Sequence analysis of complementarity-determining region 3 (CDR3) of rearranged VDJ genes revealed expansion of a dominant clone or clones in 10 of the 12 MS patients. B cell clonal expansion was identified in 3 of 15 OND. The nucleotide sequences of V(H) genes from clonally expanded CSF B cells in MS patients demonstrated the preferential usage of the V(H) IV family. There were numerous somatic mutations, mainly in the CDRs, with a high replacement-to-silent ratio; the mutations were distributed in a way suggesting that these B cells had been positively selected through their antigen receptor. Our results demonstrate that in MS CSF, there is a high frequency of clonally expanded B cells that have properties of postgerminal center memory or antibody-forming lymphocytes.
Collapse
|
research-article |
27 |
249 |
8
|
Jung MW, Qin Y, McNaughton BL, Barnes CA. Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb Cortex 1998; 8:437-50. [PMID: 9722087 DOI: 10.1093/cercor/8.5.437] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single cells were recorded with 'tetrodes' in regions of the rat medial prefrontal cortex, including those which are targets of hippocampal afferents, while rats were performing three different behavioral tasks: (i) an eight-arm radial maze, spatial working memory task, (ii) a figure-eight track, delayed spatial alternation task, and (iii) a random food search task in a square chamber. Among 187 recorded units, very few exhibited any evidence of place-specific firing on any of the behavioral tasks, except to the extent that different spatial locations were related to distinct phases of the task. Furthermore, no prefrontal unit showed unambiguous spatially dependent delay activity that might mediate working memory for spatial locations. Rather, the cells exhibited diverse correlates that were generally associated with the behavioral requirements of performing the task. This included firing related to intertrial intervals, onset or end of trials, selection of specific arms on the eight-arm radial maze, delay periods, approach to or departure from goals, and selection of paths on the figure-eight track. Although a small number of cells showed similar behavioral correlates across tasks, the majority of cells showed no consistent correlate when recorded across multiple tasks. Furthermore, some units did not exhibit altered firing patterns in any of the three tasks, while others showed changes in firing that were not consistently related to specific behaviors or task components. These results are in agreement with previous lesion and behavioral studies in rats that suggest a prefrontal cortical role in encoding 'rules' (i.e. structural features) or behavioral sequences within a task but not in encoding allocentric spatial information. Given that the hippocampal projection to this cortical region is capable of undergoing LTP, our data lead to the hypothesis that the role of this projection is not to impose spatial representations upon prefrontal activity, but to provide a mechanism for learning the spatial context in which particular behaviors are appropriate.
Collapse
|
|
27 |
242 |
9
|
Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harrison WR, Behringer RR, Overbeek PA. A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 2000; 26:490-4. [PMID: 11101852 DOI: 10.1038/82652] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In most mammals, male development is triggered by the transient expression of the Y-chromosome gene, Sry, which initiates a cascade of gene interactions ultimately leading to the formation of a testis from the indifferent fetal gonad. Several genes, in particular Sox9, have a crucial role in this pathway. Despite this, the direct downstream targets of Sry and the nature of the pathway itself remain to be clearly established. We report here a new dominant insertional mutation, Odsex (Ods), in which XX mice carrying a 150-kb deletion (approximately 1 Mb upstream of Sox9) develop as sterile XX males lacking Sry. During embryogenesis, wild-type XX fetal gonads downregulate Sox9 expression, whereas XY and XX Ods/+ fetal gonads upregulate and maintain its expression. We propose that Ods has removed a long-range, gonad-specific regulatory element that mediates the repression of Sox9 expression in XX fetal gonads. This repression would normally be antagonized by Sry protein in XY embryos. Our data are consistent with Sox9 being a direct downstream target of Sry and provide genetic evidence to support a general repressor model of sex determination in mammals.
Collapse
|
|
25 |
241 |
10
|
Rubin C, Turner AS, Müller R, Mittra E, McLeod K, Lin W, Qin YX. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 2002; 17:349-57. [PMID: 11811566 DOI: 10.1359/jbmr.2002.17.2.349] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The skeleton's sensitivity to mechanical stimuli represents a critical determinant of bone mass and morphology. We have proposed that the extremely low level (< 10 microstrain), high frequency (20-50 Hz) mechanical strains, continually present during even subtle activities such as standing are as important to defining the skeleton as the larger strains typically associated with vigorous activity (>2000 microstrain). If these low-level strains are indeed anabolic, then this sensitivity could serve as the basis for a biomechanically based intervention for osteoporosis. To evaluate this hypothesis, the hindlimbs of adult female sheep were stimulated for 20 minutes/day using a noninvasive 0.3g vertical oscillation sufficient to induce approximately 5 microstrain on the cortex of the tibia. After 1 year of stimulation, the physical properties of 10-mm cubes of trabecular bone from the distal femoral condyle of experimental animals (n = 8) were compared with controls (n = 9), as evaluated using microcomputed tomography (microCT) scanning and materials testing. Bone mineral content (BMC) was 10.6% greater (p < 0.05), and the trabecular number (Tb.N) was 8.3% higher in the experimental animals (p < 0.01), and trabecular spacing decreased by 11.3% (p < 0.01), indicating that bone quantity was increased both by the creation of new trabeculae and the thickening of existing trabeculae. The trabecular bone pattern factor (TBPf) decreased 24.2% (p < 0.03), indicating trabecular morphology adapting from rod shape to plate shape. Significant increases in stiffness and strength were observed in the longitudinal direction (12.1% and 26.7%, respectively; both, p < 0.05), indicating that the adaptation occurred primarily in the plane of weightbearing. These results show that extremely low level mechanical stimuli improve both the quantity and the quality of trabecular bone. That these deformations are several orders of magnitude below those peak strains which arise during vigorous activity indicates that this biomechanically based signal may serve as an effective intervention for osteoporosis.
Collapse
|
|
23 |
195 |
11
|
Codipilly DC, Qin Y, Dawsey SM, Kisiel J, Topazian M, Ahlquist D, Iyer PG. Screening for esophageal squamous cell carcinoma: recent advances. Gastrointest Endosc 2018; 88:413-426. [PMID: 29709526 PMCID: PMC7493990 DOI: 10.1016/j.gie.2018.04.2352] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/20/2018] [Indexed: 02/08/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer worldwide, with a high mortality due to advanced stage at diagnosis. Although most common in an area known as the Asian Esophageal Cancer Belt, which extends from the Caspian Sea to northern China, and in parts of Africa, high-risk populations also exist elsewhere in the world. Screening for ESCC has been practiced in a few geographic areas and high-risk populations, with varying levels of success. Esophageal squamous dysplasia is recognized as the precursor lesion for ESCC. Endoscopic screening for ESCC/esophageal squamous dysplasia is expensive and not sufficiently available in many high-risk regions. Recent advances in non-endoscopic screening enhanced by biomarker-based disease detection have raised the prospect of improved accuracy and availability of screening for esophageal squamous dysplasia and early stage ESCC. Development of a cost-effective, accurate, and well-tolerated screening test, if applied in endemic areas and high-risk populations, has the potential to reduce mortality from this deadly disease worldwide. In this review, we summarize recent developments in endoscopic and non-endoscopic screening modalities.
Collapse
|
research-article |
7 |
187 |
12
|
Li S, Li L, Zhu Y, Huang C, Qin Y, Liu H, Ren-Heidenreich L, Shi B, Ren H, Chu X, Kang J, Wang W, Xu J, Tang K, Yang H, Zheng Y, He J, Yu G, Liang N. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. Br J Cancer 2014; 110:2812-20. [PMID: 24743704 PMCID: PMC4037826 DOI: 10.1038/bjc.2014.210] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/14/2014] [Accepted: 03/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background: Determining the somatic mutations of epidermal growth factor receptor (EGFR)-pathway networks is the key to effective treatment for non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors (TKIs).The somatic mutation frequencies and their association with gender, smoking history and histology was analysed and reported in this study. Methods: Five thousand one hundred and twenty-five NSCLC patients' pathology samples were collected, and EGFR, KRAS, BRAF and PIK3CA mutations were detected by multiplex testing. The mutation status of EGFR, KRAS, BRAF and PIK3CA and their association with gender, age, smoking history and histological type were evaluated by appropriate statistical analysis. Results: EGFR, KRAS, BRAF and PIK3CA mutation rates revealed 36.2%, 8.4%, 0.5% and 3.3%, respectively, across the 5125 pathology samples. For the first time, evidence of KRAS mutations were detected in two female, non-smoking patients, age 5 and 14, with NSCLC. Furthermore, we identified 153 double and coexisting mutations and 7 triple mutations. Interestingly, the second drug-resistant mutations, T790M or E545K, were found in 44 samples from patients who had never received TKI treatments. Conclusions: EGFR exons 19, 20 and 21, and BRAF mutations tend to happen in females and non-smokers, whereas KRAS mutations were more inclined to males and smokers. Activating and resistant mutations to EGFR-TKI drugs can coexist and ‘second drug-resistant mutations', T790M or E545K, may be primary mutations in some patients. These results will help oncologists to decide candidates for mutation testing and EGFR-TKI treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
186 |
13
|
Su Y, Cockerill I, Wang Y, Qin YX, Chang L, Zheng Y, Zhu D. Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol 2019; 37:428-441. [PMID: 30470548 PMCID: PMC6421092 DOI: 10.1016/j.tibtech.2018.10.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/20/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
Zinc has been described as the 'calcium of the twenty-first century'. Zinc-based degradable biomaterials have recently emerged thanks to their intrinsic physiological relevance, biocompatibility, biodegradability, and pro-regeneration properties. Zinc-based biomaterials mainly include: metallic zinc alloys, zinc ceramic nanomaterials, and zinc metal-organic frameworks (MOFs). Metallic zinc implants degrade at a desirable rate, matching the healing pace of local tissues, and stimulating remodeling and formation of new tissues. Zinc ceramic nanomaterials are also beneficial for tissue engineering and therapy thanks to their nanostructures and antibacterial properties. MOFs have large surface areas and are easily functionalized, making them ideal for drug delivery and cancer therapy. This review highlights recent developments in zinc-based biomaterials, discusses obstacles to overcome, and pinpoints directions for future research.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
174 |
14
|
Mittra E, Rubin C, Qin YX. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech 2005; 38:1229-37. [PMID: 15863107 DOI: 10.1016/j.jbiomech.2004.06.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).
Collapse
|
|
20 |
135 |
15
|
Shen H, Xu Y, Qian Y, Yu R, Qin Y, Zhou L, Wang X, Spitz MR, Wei Q. Polymorphisms of the DNA repair gene XRCC1 and risk of gastric cancer in a Chinese population. Int J Cancer 2000; 88:601-6. [PMID: 11058877 DOI: 10.1002/1097-0215(20001115)88:4<601::aid-ijc13>3.0.co;2-c] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gastric cancer remains the leading cause of cancer death in China and other countries in eastern Asia. Studies of gastric cancer have revealed that it is a disease of complex etiology involving dietary, infectious, environmental, occupational and genetic factors. DNA repair capacity has been suggested as a genetic factor contributing to variation in susceptibility to cancer. In the present study, we described an association between 2 polymorphisms of the DNA repair gene XRCC1 and risk of gastric cancer in a Chinese population. We used a polymerase chain reaction-based assay to detect Pvu II and Nci I restriction fragment length polymorphisms (XRCC1 26304 C-->T and XRCC1 28152 G-->A, respectively) in 188 patients with gastric cancer and 166 healthy controls. The XRCC1 26304 T allele (194Trp) frequency (34.6%) was higher and the XRCC1 28152 A allele (399Gln) frequency (25.6%) was lower in healthy Chinese controls than previously reported healthy U.S. Caucasian controls (7.2% and 34.1%, respectively). Multivariate logistic regression analysis revealed that the putative high-risk genotypes XRCC1 26304 CC and XRCC1 28152 GA/AA were associated with a non-significant increased risk for gastric cancer (adjusted odds ratio [OR]=1.45, 95% confidence interval [CI]= 0.93-2.25 and OR=1.53, 95% CI= 0.98-2.39, respectively) compared with other genotypes. However, the XRCC1 26304 CC genotype was associated with a significantly increased risk for gastric cardia cancer (adjusted OR=1.86, 95% CI=1.09-3.20). Individuals with both putative high-risk genotypes (CC and GA/AA) had a significantly higher risk (adjusted OR=1.73, 95% CI=1.12-2.69), particularly for gastric cardia cancer (adjusted OR=2.18, 95% CI=1.21-3.94) than individuals with other genotypes. These findings support the hypothesis that these 2 XRCC1 variants may contribute to the risk of developing gastric cancer, particularly gastric cardia cancer.
Collapse
|
|
25 |
135 |
16
|
Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res 1998; 16:482-9. [PMID: 9747791 DOI: 10.1002/jor.1100160414] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The daily stress stimulus theory of bone adaptation was formulated to describe the loading conditions necessary to maintain bone mass. This theory identifies stress/strain magnitude and loading cycle number as sufficient to define an appropriate maintenance loading signal. Here, we extend the range over which loading cycle number has been evaluated to determine whether the daily stress stimulus theory can be applied to conditions of very high numbers of loading cycles at very low strain magnitudes. The ability of a relatively high-frequency (30-Hz) and moderate-duration (60-minute) loading regimen to maintain bone mass in a turkey ulna model of disuse osteopenia was evaluated by correlating the applied strain distributions to site-specific remodeling activity. Changes in morphology were investigated following 8 weeks of disuse compared with disuse plus daily exposure to 108,000 applied loading cycles sufficient to induce peak strains of approximately 100 microstrain. A strong correlation was observed between the preservation of bone mass and longitudinal normal strain (R = 0.91) (p < 0.01). The results confirm the strong antiresorptive influence of mechanical loading and identify a threshold near 70 microstrain for a daily loading cycle regimen of approximately 100,000 strain cycles. These results are not consistent with the daily stress stimulus theory and suggest that the frequency or strain rate associated with the loading stimulus must also play a critical role in the mechanism by which bone responds to mechanical strain.
Collapse
|
|
27 |
134 |
17
|
Schlaeger TM, Qin Y, Fujiwara Y, Magram J, Sato TN. Vascular endothelial cell lineage-specific promoter in transgenic mice. Development 1995; 121:1089-98. [PMID: 7743922 DOI: 10.1242/dev.121.4.1089] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular endothelial cells play essential roles in the function and development of the cardiovascular system. However, due to the lack of lineage-specific markers suitable for molecular and biochemical analyses, very little is known about the molecular mechanisms that regulate endothelial cell differentiation. We report the first vascular endothelial cell lineage-specific (including angioblastic precursor cells) 1.2 kb promoter in transgenic mice. Moreover, deletion analysis of this promoter region in transgenic embryos revealed multiple elements that are required for the maximum endothelial cell lineage-specific expression. This is a powerful molecular tool that will enable us to identify factors and cellular signals essential for the establishment of vascular endothelial cell lineage. It will also allow us to deliver genes specifically into this cell type in vivo to test specifically molecules that have been implicated in cardiovascular development. Furthermore, we have established embryonic stem (ES) cells from the blastocysts of the transgenic mouse that carry the 1.2 kb promoter-LacZ reporter transgene. These ES cells were able to differentiate in vitro to form cystic embryoid bodies (CEB) that contain endothelial cells determined by PECAM immunohistochemistry. However, these in vitro differentiated endothelial cells did not express the LacZ reporter gene. This indicates the lack of factors and/or cellular interactions which are required to induce the expression of the reporter gene mediated by this 1.2 kb promoter in this in vitro differentiation system. Thus this system will allow us to screen for the putative inducers that exist in vivo but not in vitro. These putative inducers are presumably important for in vivo differentiation of vascular endothelial cells.
Collapse
|
|
30 |
128 |
18
|
Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK, Qin YX, Mikos AG, Sitharaman B. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules 2013; 14:900-9. [PMID: 23405887 DOI: 10.1021/bm301995s] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study investigates the efficacy of two-dimensional (2D) carbon and inorganic nanostructures as reinforcing agents for cross-linked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multiwalled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum disulfide nanoplatelets (MSNPs) at 0.01-0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multiwalled carbon nanotubes (SWCNTs, MWCNTs) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35-108%, compressive yield strength = 26-93%, flexural modulus = 15-53%, and flexural yield strength = 101-262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNP nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNP showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2D nanostructures (GONPs, MSNPs) are better reinforcing agents compared to one-dimensional (1D) nanostructures (e.g., SWCNTs). The results also indicated that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicated good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01-0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1-0.2 wt %). The analysis of surface area and aspect ratio of the nanostructures taken together with the above results indicated differences in nanostructure architecture (2D vs 1D nanostructures), and the chemical compositions (inorganic vs carbon nanostructures), number of functional groups, and structural defects for the 2D nanostructures may be key properties that affect the mechanical properties of 2D nanostructure-reinforced PPF nanocomposites and the reason for the enhanced mechanical properties compared to the controls.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
124 |
19
|
Qin Y, Luo ZQ, Smyth AJ, Gao P, Beck von Bodman S, Farrand SK. Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J 2000; 19:5212-21. [PMID: 11013223 PMCID: PMC302097 DOI: 10.1093/emboj/19.19.5212] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2000] [Revised: 08/01/2000] [Accepted: 08/07/2000] [Indexed: 11/13/2022] Open
Abstract
Promoter binding by TraR and LuxR, the activators of two bacterial quorum-sensing systems, requires their cognate acyl-homoserine lactone (acyl-HSL) signals, but the role the signal plays in activating these transcription factors is not known. Soluble active TraR, when purified from cells grown with the acyl-HSL, contained bound signal and was solely in dimer form. However, genetic and cross-linking studies showed that TraR is almost exclusively in monomer form in cells grown without signal. Adding signal resulted in dimerization of the protein in a concentration-dependent manner. In the absence of signal, monomer TraR localized to the inner membrane while growth with the acyl-HSL resulted in the appearance of dimer TraR in the cytoplasmic compartment. Affinity chromatography indicated that the N-terminus of TraR from cells grown without signal is hidden. Analysis of heterodimers formed between TraR and its deletion mutants localized the dimerization domain to a region between residues 49 and 156. We conclude that binding signal drives dimerization of TraR and its release from membranes into the cytoplasm.
Collapse
|
research-article |
25 |
122 |
20
|
Hiltunen JK, Qin Y. beta-oxidation - strategies for the metabolism of a wide variety of acyl-CoA esters. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:117-28. [PMID: 10760462 DOI: 10.1016/s1388-1981(00)00013-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living organisms are exposed to a number of different fatty acids and their various derivatives arising either via endogenous synthesis or from exogenous sources. These hydrophobic compounds can play specific metabolic, structural or endocrinic functions in the organisms before their elimination, which can be metabolism to CO(2) or to more polar lipid metabolites allowing their excretion. Quantitatively, one of the major pathways metabolizing fatty acids is beta-oxidation, which consists of a set of four reactions operating at the carbons 2 or 3 of acyl-CoA esters and shortening of the acyl-chain. To allow the beta-oxidation of acyl groups with various steric variants to proceed, different strategies have been developed. These strategies include evolution of beta-oxidation enzymes as paralogues showing specificity with respect to either chain-length or modified acyl-chain, metabolic compartmentalization in eukaryotic cells, controlling of substrate transport across membranes, development of auxiliary enzyme systems, acquisition of enzymes with adaptive active sites and recruiting and optimizing enzymes from non-homologous sources allowing them to catalyze a parallel set of reactions with different substrate specificities.
Collapse
|
Review |
25 |
102 |
21
|
Demes B, Qin YX, Stern JT, Larson SG, Rubin CT. Patterns of strain in the macaque tibia during functional activity. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2001; 116:257-65. [PMID: 11745077 DOI: 10.1002/ajpa.1122] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The strain environment of the tibial midshaft of two female macaques was evaluated through in vivo bone strain experiments using three rosette gauges around the circumference of the bones. Strains were collected for a total of 123 walking and galloping steps as well as several climbing cycles. Principal strains and the angle of the maximum (tensile) principal strain with the long axis of the bone were calculated for each gauge site. In addition, the normal strain distribution throughout the cross section was determined from the longitudinal normal strains (strains in the direction of the long axis of the bone) at each of the three gauge sites, and at the corresponding cross-sectional geometry of the bone. This strain distribution was compared with the cross-sectional properties (area moments) of the midshaft. For both animals, the predominant loading regime was found to be bending about an oblique axis running from anterolateral to posteromedial. The anterior and part of the medial cortex are in tension; the posterior and part of the lateral cortex are in compression. The axis of bending does not coincide with the maximum principal axis of the cross section, which runs mediolaterally. The bones are not especially buttressed in the plane of bending, but offer the greatest strength anteroposteriorly. The cross-sectional geometry therefore does not minimize strain or bone tissue. Peak tibial strains are slightly higher than the peak ulnar strains reported earlier for the same animals (Demes et al. [1998] Am J Phys Anthropol 106:87-100). Peak strains for both the tibia and the ulna are moderate in comparison to strains recorded during walking and galloping activities in nonprimate mammals.
Collapse
|
|
24 |
102 |
22
|
Su Y, Wang K, Gao J, Yang Y, Qin YX, Zheng Y, Zhu D. Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomater 2019; 98:174-185. [PMID: 30930304 PMCID: PMC6766429 DOI: 10.1016/j.actbio.2019.03.055] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Zinc (Zn) has recently emerged as a promising biodegradable metal thanks to its critical physiological roles and promising degradation behavior. However, cytocompatibility and antibacterial property of Zn is still suboptimal, in part, due to the excessive Zn ions released during degradation. Inspired by the calcium phosphate-based minerals in natural bone tissue, zinc phosphate (ZnP) coatings were prepared on pure Zn using a chemical conversion method in this study. The coating morphology was then optimized through controlling the pH of coating solution, resulting in a homogeneous micro-/nano-ZnP coating structure. The ZnP coating significantly increased the cell viability, adhesion, and differentiation of pre-osteoblasts and vascular endothelial cells, while significantly reduced the adhesion of the platelets and E. coli. Additionally, ZnP coating significantly reduced the Zn ion release from the bulk material during degradation process, resulting in a much lower Zn2+ concentration and pH change in the surrounding environment. The improved hemocompatibility, cytocompatibility and antibacterial performance of ZnP coated Zn biomaterials could be mainly attributed to the controlled Zn ion release and micro-/nano-scaled coating structure. Taken together, ZnP coating on Zn-based biomaterial appears to be a viable approach to enhance its biocompatibility and antibacterial property as well as to control its degradation rate. Statement of Significance Zn and its alloys are promising biodegradable implant materials for orthopedic and cardiovascular applications. However, notable cytotoxicity has been reported due to degradation products accumulated in the local environment, largely overdosed Zn2+. Thus, controlling burst Zn2+ release is the key to minimize the toxicity of Zn implants. To achieve this goal, we prepared a homogenous ZnP coating on Zn metals thanks to its easy synthesis, stable chemical property, and good biocompatibility. Results showed that ZnP not only improved the cell viability, adhesion and proliferation, but also significantly reduced the attachment of platelet and bacterial. Therefore, ZnP could be a promising approach to improve the functional performance of Zn-based implants, and potentially be applied to many other medical implants.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
95 |
23
|
Guan ZH, Chen G, Qin Y. On equilibria, stability, and instability of Hopfield neural networks. ACTA ACUST UNITED AC 2000; 11:534-40. [PMID: 18249783 DOI: 10.1109/72.839023] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
25 |
91 |
24
|
Su Y, Cockerill I, Zheng Y, Tang L, Qin YX, Zhu D. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater 2019; 4:196-206. [PMID: 31193406 PMCID: PMC6529680 DOI: 10.1016/j.bioactmat.2019.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 01/07/2023] Open
Abstract
Metallic materials have been extensively applied in clinical practice due to their unique mechanical properties and durability. Recent years have witnessed broad interests and advances on surface functionalization of metallic implants for high-performance biofunctions. Calcium phosphates (CaPs) are the major inorganic component of bone tissues, and thus owning inherent biocompatibility and osseointegration properties. As such, they have been widely used in clinical orthopedics and dentistry. The new emergence of surface functionalization on metallic implants with CaP coatings shows promise for a combination of mechanical properties from metals and various biofunctions from CaPs. This review provides a brief summary of state-of-art of surface biofunctionalization on implantable metals by CaP coatings. We first glance over different types of CaPs with their coating methods and in vitro and in vivo performances, and then give insight into the representative biofunctions, i.e. osteointegration, corrosion resistance and biodegradation control, and antibacterial property, provided by CaP coatings for metallic implant materials.
Collapse
|
Review |
6 |
89 |
25
|
Rubin C, Gross T, Qin YX, Fritton S, Guilak F, McLeod K. Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna. J Bone Joint Surg Am 1996; 78:1523-33. [PMID: 8876580 DOI: 10.2106/00004623-199610000-00010] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of bone tissue to differentiate between axial and torsional loading was determined with use of a functionally isolated turkey-ulna model of bone adaptation. Surface modeling and intracortical remodeling were quantified after four weeks of 5000 cycles per day of axial loading sufficient to cause 1000 microstrain normal to the long axis of the bone (five ulnae), 5000 cycles per day of torsional loading sufficient to cause 1000 microstrain of shear strain (five ulnae), or disuse (six ulnae). Of these three distinct regimens, only disuse caused a significant change in gross areal properties (12 per cent loss of bone; p < 0.05) as compared with those in the contralateral, intact control ulnae (sixteen ulnae). This finding suggested that both axial and torsional loading conditions were suitable substitutes for functional signals normally responsible for bone homeostasis. However, the intracortical response was strongly dependent on the manner in which the bone was loaded. Axial loading increased the number of intracortical pores by a factor of seven as compared with that in the controls (246 +/- 40.5 compared with 36 +/- 8.5 pores); it also increased the area lost because of porosis as compared with that in the controls (1.39 +/- 0.252 compared with 0.202 +/- 0.062 square millimeter); however, the mean size of the individual pores was similar to that in the controls (0.00565 +/- 0.0019 compared with 0.00561 +/- 0.0029 square millimeter). Conversely, torsional loading failed to increase substantially the number of pores (67 +/- 22.6 pores), the area of bone lost because of porosis (0.352 +/- 0.114 square millimeter), or the size of the pores (0.00525 +/- 0.0035 square millimeter) as compared with those in the controls. Although disuse failed to increase substantially the number of intracortical pores (59 +/- 22.4 pores), significant area (1.05 +/- 0.35 square millimeters; p < 0.05) was lost within the cortex because of a threefold increase in the mean size of each pore (0.0178 +/- 0.0126 square millimeter). It appears that bone tissue can readily differentiate between distinct components of the strain environment, with strain per se necessary to retain coupled formation and resorption, shear strain achieving this goal by maintaining the status quo, and axial strain increasing intracortical turnover but retaining coupling. While it is clear that load influences bone mass and morphology, it is also clear that specific parameters within the strain environment have distinct strategic roles in defining this architecture.
Collapse
|
|
29 |
88 |