1
|
Agam Y, Joseph RM, Barton JJ, Manoach DS. Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. Neuroimage 2010; 52:336-47. [PMID: 20394829 PMCID: PMC2883672 DOI: 10.1016/j.neuroimage.2010.04.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/27/2010] [Accepted: 04/03/2010] [Indexed: 01/18/2023] Open
Abstract
Response inhibition, or the suppression of prepotent, but contextually inappropriate behaviors, is essential to adaptive, flexible responding. In autism spectrum disorders (ASD), difficulty inhibiting prepotent behaviors may contribute to restricted, repetitive behavior (RRB). Individuals with ASD consistently show deficient response inhibition while performing antisaccades, which require one to inhibit the prepotent response of looking towards a suddenly appearing stimulus (i.e., a prosaccade), and to substitute a gaze in the opposite direction. Here, we used fMRI to identify the neural correlates of this deficit. We focused on two regions that are critical for saccadic inhibition: the frontal eye field (FEF), the key cortical region for generating volitional saccades, and the dorsal anterior cingulate cortex (dACC), which is thought to exert top-down control on the FEF. We also compared ASD and control groups on the functional connectivity of the dACC and FEF during saccadic performance. In the context of an increased antisaccade error rate, ASD participants showed decreased functional connectivity of the FEF and dACC and decreased inhibition-related activation (based on the contrast of antisaccades and prosaccades) in both regions. Decreased dACC activation correlated with a higher error rate in both groups, consistent with a role in top-down control. Within the ASD group, increased FEF activation and dACC/FEF functional connectivity were associated with more severe RRB. These findings demonstrate functional abnormalities in a circuit critical for volitional ocular motor control in ASD that may contribute to deficient response inhibition and to RRB. More generally, our findings suggest reduced cognitive control over behavior by the dACC in ASD.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
154 |
2
|
Manoach DS, Agam Y. Neural markers of errors as endophenotypes in neuropsychiatric disorders. Front Hum Neurosci 2013; 7:350. [PMID: 23882201 PMCID: PMC3714549 DOI: 10.3389/fnhum.2013.00350] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Learning from errors is fundamental to adaptive human behavior. It requires detecting errors, evaluating what went wrong, and adjusting behavior accordingly. These dynamic adjustments are at the heart of behavioral flexibility and accumulating evidence suggests that deficient error processing contributes to maladaptively rigid and repetitive behavior in a range of neuropsychiatric disorders. Neuroimaging and electrophysiological studies reveal highly reliable neural markers of error processing. In this review, we evaluate the evidence that abnormalities in these neural markers can serve as sensitive endophenotypes of neuropsychiatric disorders. We describe the behavioral and neural hallmarks of error processing, their mediation by common genetic polymorphisms, and impairments in schizophrenia, obsessive-compulsive disorder, and autism spectrum disorders. We conclude that neural markers of errors meet several important criteria as endophenotypes including heritability, established neuroanatomical and neurochemical substrates, association with neuropsychiatric disorders, presence in syndromally-unaffected family members, and evidence of genetic mediation. Understanding the mechanisms of error processing deficits in neuropsychiatric disorders may provide novel neural and behavioral targets for treatment and sensitive surrogate markers of treatment response. Treating error processing deficits may improve functional outcome since error signals provide crucial information for flexible adaptation to changing environments. Given the dearth of effective interventions for cognitive deficits in neuropsychiatric disorders, this represents a potentially promising approach.
Collapse
|
Journal Article |
12 |
54 |
3
|
Gregory MD, Agam Y, Selvadurai C, Nagy A, Vangel M, Tucker M, Robertson EM, Stickgold R, Manoach DS. Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance. Neuroimage 2014; 102 Pt 2:666-73. [PMID: 25173415 DOI: 10.1016/j.neuroimage.2014.08.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 08/06/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023] Open
Abstract
There is ongoing debate concerning the functions of resting-state brain activity. Prior work demonstrates that memory encoding enhances subsequent resting-state functional connectivity within task-relevant networks and that these changes predict better recognition. Here, we used functional connectivity MRI (fcMRI) to examine whether task-induced changes in resting-state connectivity correlate with performance improvement after sleep. In two separate sessions, resting-state scans were acquired before and after participants performed a motor task. In one session participants trained on the motor sequence task (MST), a well-established probe of sleep-dependent memory consolidation, and were tested the next day, after a night of sleep. In the other session they performed a motor control task (MCT) that minimized learning. In an accompanying behavioral control study, participants trained on the MST and were tested after either a night of sleep or an equivalent interval of daytime wake. Both the fcMRI and the sleep control groups showed significant improvement of MST performance, while the wake control group did not. In the fcMRI group, increased connectivity in bilateral motor cortex following MST training correlated with this next-day improvement. This increased connectivity did not appear to reflect initial learning since it did not correlate with learning during training and was not greater after MST training than MCT performance. Instead, we hypothesize that this increased connectivity processed the new memories for sleep-dependent consolidation. Our findings demonstrate that physiological processes immediately after learning correlate with sleep-dependent performance improvement and suggest that the wakeful resting brain prepares memories of recent experiences for later consolidation during sleep.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
47 |
4
|
Kenet T, Orekhova EV, Bharadwaj H, Shetty NR, Israeli E, Lee AKC, Agam Y, Elam M, Joseph RM, Hämäläinen MS, Manoach DS. Disconnectivity of the cortical ocular motor control network in autism spectrum disorders. Neuroimage 2012; 61:1226-34. [PMID: 22433660 DOI: 10.1016/j.neuroimage.2012.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/04/2012] [Indexed: 11/29/2022] Open
Abstract
Response inhibition, or the suppression of prepotent but contextually inappropriate behaviors, is essential to adaptive, flexible responding. Individuals with autism spectrum disorders (ASD) consistently show deficient response inhibition during antisaccades. In our prior functional MRI study, impaired antisaccade performance was accompanied by reduced functional connectivity between the frontal eye field (FEF) and dorsal anterior cingulate cortex (dACC), regions critical to volitional ocular motor control. Here we employed magnetoencephalography (MEG) to examine the spectral characteristics of this reduced connectivity. We focused on coherence between FEF and dACC during the preparatory period of antisaccade and prosaccade trials, which occurs after the presentation of the task cue and before the imperative stimulus. We found significant group differences in alpha band mediated coherence. Specifically, neurotypical participants showed significant alpha band coherence between the right inferior FEF and right dACC and between the left superior FEF and bilateral dACC across antisaccade, prosaccade, and fixation conditions. Relative to the neurotypical group, ASD participants showed reduced coherence between these regions in all three conditions. Moreover, while neurotypical participants showed increased coherence between the right inferior FEF and the right dACC in preparation for an antisaccade compared to a prosaccade or fixation, ASD participants failed to show a similar increase in preparation for the more demanding antisaccade. These findings demonstrate reduced long-range functional connectivity in ASD, specifically in the alpha band. The failure in the ASD group to increase alpha band coherence with increasing task demand may reflect deficient top-down recruitment of additional neural resources in preparation to perform a difficult task.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
31 |
5
|
Agam Y, Galperin H, Gold BJ, Sekuler R. Learning to imitate novel motion sequences. J Vis 2007; 7:1.1-17. [DOI: 10.1167/7.5.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/30/2006] [Indexed: 11/24/2022] Open
|
|
18 |
31 |
6
|
Agam Y, Bullock D, Sekuler R. Imitating Unfamiliar Sequences of Connected Linear Motions. J Neurophysiol 2005; 94:2832-43. [PMID: 16014793 DOI: 10.1152/jn.00366.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental challenge in neuroscience is to understand the mechanisms by which multicomponent actions are represented and sequenced for production. We addressed this challenge with a movement-imitation task in which subjects viewed the quasi-random, two-dimensional movements of a disc and then used a stylus to reproduce the remembered trajectory. The stimulus disc moved along straight segments, which differed sufficiently from one another that it was possible to trace individual segments' fate in the resulting movement imitation. A biologically based segmentation algorithm decomposed each imitation into segments whose directions could be compared with those of homologous segments in the model. As the number of linked segments in a stimulus model grew from three to seven, imitation became less accurate, with segments more likely to be deleted, particularly from a model's final stages. When fidelity of imitation was assessed segment by segment, the resulting serial position curves showed a strong primacy effect and a moderate recency effect. Analysis of pairwise transposition errors revealed a striking preponderance of exchanges between adjacent segments that, along with the serial position effects, supports a competitive queuing model of sequencing. In analogy to results with verbal serial recall, repetition of one directed segment in the model reduced imitation quality. Results with longer stimulus models suggest that the segment-by-segment imitation generator may be supplemented in the final stages of imitation by an error-signal driven overlay that produces a late-course, real-time correction. Results are related to neural mechanisms that are known to support sequential motor behavior and working memory.
Collapse
|
|
20 |
27 |
7
|
Roffman JL, Nitenson AZ, Agam Y, Isom M, Friedman JS, Dyckman KA, Brohawn DG, Smoller JW, Goff DC, Manoach DS. A hypomethylating variant of MTHFR, 677C>T, blunts the neural response to errors in patients with schizophrenia and healthy individuals. PLoS One 2011; 6:e25253. [PMID: 21980405 PMCID: PMC3182200 DOI: 10.1371/journal.pone.0025253] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Responding to errors is a critical first step in learning from mistakes, a process that is abnormal in schizophrenia. To gain insight into the neural and molecular mechanisms of error processing, we used functional MRI to examine effects of a genetic variant in methylenetetrahydrofolate reductase (MTHFR 677C>T, rs1801133) that increases risk for schizophrenia and that has been specifically associated with increased perseverative errors among patients. MTHFR is a key regulator of the intracellular one-carbon milieu, including DNA methylation, and each copy of the 677T allele reduces MTHFR activity by 35%. METHODOLOGY/PRINCIPAL FINDINGS Using an antisaccade paradigm, we found that the 677T allele induces a dose-dependent blunting of dorsal anterior cingulate cortex (dACC) activation in response to errors, a pattern that was identical in healthy individuals and patients with schizophrenia. Further, the normal relationship between dACC activation and error rate was disrupted among carriers of the 677T allele. CONCLUSIONS/SIGNIFICANCE These findings implicate an epigenetic mechanism in the neural response to errors, and provide insight into normal cognitive variation through a schizophrenia risk gene.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
25 |
8
|
Dyckman KA, Lee AKC, Agam Y, Vangel M, Goff DC, Barton JJ, Manoach DS. Abnormally persistent fMRI activation during antisaccades in schizophrenia: a neural correlate of perseveration? Schizophr Res 2011; 132:62-8. [PMID: 21831602 PMCID: PMC3172368 DOI: 10.1016/j.schres.2011.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Impaired antisaccade performance is a consistent cognitive finding in schizophrenia. Antisaccades require both response inhibition and volitional motor programming, functions that are essential to flexible responding. We investigated whether abnormal timing of hemodynamic responses (HDRs) to antisaccades might contribute to perseveration of ocular motor responses in schizophrenia. We focused on the frontal eye field (FEF), which has been implicated in the persistent effects of antisaccades on subsequent responses in healthy individuals. METHOD Eighteen chronic, medicated schizophrenia outpatients and 15 healthy controls performed antisaccades and prosaccades during functional MRI. Finite impulse response models provided unbiased estimates of event-related HDRs. We compared groups on the peak amplitude, time-to-peak, and full-width half-max of the HDRs. RESULTS In patients, HDRs in bilateral FEF were delayed and prolonged but ultimately of similar amplitude to that of controls. These abnormalities were present for antisaccades, but not prosaccades, and were not seen in a control region. More prolonged HDRs predicted slower responses in trials that followed an antisaccade. This suggests that persistent FEF activity following an antisaccade contributes to inter-trial effects on latency. CONCLUSIONS Delayed and prolonged HDRs for antisaccades in schizophrenia suggest that the functions necessary for successful antisaccade performance take longer to implement and are more persistent. If abnormally persistent neural responses on cognitively demanding tasks are a more general feature of schizophrenia, they may contribute to response perseveration, a classic behavioral abnormality. These findings also underscore the importance of evaluating the temporal dynamics of neural activity to understand cognitive dysfunction in schizophrenia.
Collapse
|
research-article |
14 |
23 |
9
|
Agam Y, Sekuler R. Interactions between working memory and visual perception: an ERP/EEG study. Neuroimage 2007; 36:933-42. [PMID: 17512216 PMCID: PMC1974846 DOI: 10.1016/j.neuroimage.2007.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/06/2007] [Accepted: 04/09/2007] [Indexed: 11/16/2022] Open
Abstract
How do working memory and perception interact with each other? Recent theories of working memory suggest that they are closely linked, and in fact share certain brain mechanisms. We used a sequential motion imitation task in combination with EEG and ERP techniques for a direct, online examination of memory load's influence on the processing of visual stimuli. Using a paradigm in which subjects tried to reproduce random motion sequences from memory, we found a systematic decrease in ERP amplitude with each additional motion segment that was viewed and memorized for later imitation. High-frequency (>20 Hz) oscillatory activity exhibited a similar position-dependent decrease. When trials were sorted according to the accuracy of subsequent imitation, the amplitude of the ERPs during stimulus presentation correlated with behavioral performance: the larger the amplitude, the more accurate the subsequent imitation. These findings imply that visual processing of sequential stimuli is not uniform. Rather, earlier information elicits stronger neural activity. We discuss possible explanations for this observation, among them competition for attention between memory and perception and encoding of serial order by means of differential activation strengths.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
20 |
10
|
Agam Y, Carey C, Barton JJS, Dyckman KA, Lee AKC, Vangel M, Manoach DS. Network dynamics underlying speed-accuracy trade-offs in response to errors. PLoS One 2013; 8:e73692. [PMID: 24069223 PMCID: PMC3772006 DOI: 10.1371/journal.pone.0073692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/30/2013] [Indexed: 11/22/2022] Open
Abstract
The ability to dynamically and rapidly adjust task performance based on its outcome is fundamental to adaptive, flexible behavior. Over trials of a task, responses speed up until an error is committed and after the error responses slow down. These dynamic adjustments serve to optimize performance and are well-described by the speed-accuracy trade-off (SATO) function. We hypothesized that SATOs based on outcomes reflect reciprocal changes in the allocation of attention between the internal milieu and the task-at-hand, as indexed by reciprocal changes in activity between the default and dorsal attention brain networks. We tested this hypothesis using functional MRI to examine the pattern of network activation over a series of trials surrounding and including an error. We further hypothesized that these reciprocal changes in network activity are coordinated by the posterior cingulate cortex (PCC) and would rely on the structural integrity of its white matter connections. Using diffusion tensor imaging, we examined whether fractional anisotropy of the posterior cingulum bundle correlated with the magnitude of reciprocal changes in network activation around errors. As expected, reaction time (RT) in trials surrounding errors was consistent with predictions from the SATO function. Activation in the default network was: (i) inversely correlated with RT, (ii) greater on trials before than after an error and (iii) maximal at the error. In contrast, activation in the right intraparietal sulcus of the dorsal attention network was (i) positively correlated with RT and showed the opposite pattern: (ii) less activation before than after an error and (iii) the least activation on the error. Greater integrity of the posterior cingulum bundle was associated with greater reciprocity in network activation around errors. These findings suggest that dynamic changes in attention to the internal versus external milieu in response to errors underlie SATOs in RT and are mediated by the PCC.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
14 |
11
|
Peeva MG, Tourville JA, Agam Y, Holland B, Manoach DS, Guenther FH. White matter impairment in the speech network of individuals with autism spectrum disorder. NEUROIMAGE-CLINICAL 2013; 3:234-41. [PMID: 24273708 PMCID: PMC3815014 DOI: 10.1016/j.nicl.2013.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/06/2013] [Accepted: 08/21/2013] [Indexed: 11/04/2022]
Abstract
Impairments in language and communication are core features of Autism Spectrum Disorder (ASD), and a substantial percentage of children with ASD do not develop speech. ASD is often characterized as a disorder of brain connectivity, and a number of studies have identified white matter impairments in affected individuals. The current study investigated white matter integrity in the speech network of high-functioning adults with ASD. Diffusion tensor imaging (DTI) scans were collected from 18 participants with ASD and 18 neurotypical participants. Probabilistic tractography was used to estimate the connection strength between ventral premotor cortex (vPMC), a cortical region responsible for speech motor planning, and five other cortical regions in the network of areas involved in speech production. We found a weaker connection between the left vPMC and the supplementary motor area in the ASD group. This pathway has been hypothesized to underlie the initiation of speech motor programs. Our results indicate that a key pathway in the speech production network is impaired in ASD, and that this impairment can occur even in the presence of normal language abilities. Therapies that result in normalization of this pathway may hold particular promise for improving speech output in ASD.
We used diffusion tensor imaging to measure white matter (WM) tracts in autism. Autistic participants were high-functioning individuals with normal language skills. WM between left supplementary motor and premotor areas is impaired in autism. This tract is believed to be involved in the initiation of speech articulation. Speech production may be impaired in the absence of language deficits in autism.
Collapse
|
Journal Article |
12 |
13 |
12
|
Agam Y, Hyun JS, Danker JF, Zhou F, Kahana MJ, Sekuler R. Early neural signatures of visual short-term memory. Neuroimage 2008; 44:531-6. [PMID: 18930156 DOI: 10.1016/j.neuroimage.2008.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/24/2008] [Accepted: 09/11/2008] [Indexed: 11/30/2022] Open
Abstract
Visual short-term memory (VSTM) relies on a distributed network including sensory-related, posterior regions of the brain and frontal areas associated with attention and cognitive control. To characterize the fine temporal details of processing within this network, we recorded event-related potentials (ERPs) while human subjects performed a recognition-memory task. The task's difficulty was graded by varying the perceptual similarity between the items held in memory and the probe used to access memory. The evaluation of VSTM's contents against a test stimulus produced clear similarity-dependent differences in ERPs as early as 156 ms after probe onset. Posterior recording sites were the first to reflect the difficulty of the analysis, preceding their frontal counterparts by about 50 ms. Our results suggest an initial feed-forward interaction underlying stimulus-memory comparisons, consistent with the idea that visual areas contribute to temporary storage of visual information for use in ongoing tasks. This study provides a first look into early neural activity underlying the processing of visual information in short-term memory.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
13 |
13
|
Sternshein H, Agam Y, Sekuler R. EEG correlates of attentional load during multiple object tracking. PLoS One 2011; 6:e22660. [PMID: 21818361 PMCID: PMC3144242 DOI: 10.1371/journal.pone.0022660] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/28/2011] [Indexed: 12/04/2022] Open
Abstract
While human subjects tracked a subset of ten identical, randomly-moving objects, event-related potentials (ERPs) were evoked at parieto-occipital sites by task-irrelevant flashes that were superimposed on either tracked (Target) or non-tracked (Distractor) objects. With ERPs as markers of attention, we investigated how allocation of attention varied with tracking load, that is, with the number of objects that were tracked. Flashes on Target discs elicited stronger ERPs than did flashes on Distractor discs; ERP amplitude (0-250 ms) decreased monotonically as load increased from two to three to four (of ten) discs. Amplitude decreased more rapidly for Target discs than Distractor discs. As a result, with increasing tracking loads, the difference between ERPs to Targets and Distractors diminished. This change in ERP amplitudes with load accords well with behavioral performance, suggesting that successful tracking depends upon the relationship between the neural signals associated with attended and non-attended objects.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
12 |
14
|
Agam Y, Huang J, Sekuler R. Neural correlates of sequence encoding in visuomotor learning. J Neurophysiol 2010; 103:1418-24. [PMID: 20071631 DOI: 10.1152/jn.00662.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the neural basis of sequence learning, a fundamental but poorly understood human ability, we recorded event-related potentials (ERPs) while subjects viewed and memorized randomly directed sequences of motions for later imitation. Previously, we found that the amplitude of ERPs elicited by successive motion segments decreased as a function of each segment's serial position. This happened when subjects were required to remember the sequence, but not when they were performing a perceptual task. Here, to study the functional significance of this amplitude gradient in sequence learning, we presented each sequence several times in succession and examined changes in ERP amplitude as subjects learned the sequence through repeated observation and imitation. Behaviorally, with each repetition subjects grew more accurate in reproducing what they had seen. At the same time, ERPs grew smaller with each successive presentation, replicating and extending previous demonstrations of repetition suppression. Importantly, a comparison of ERPs to segments occupying different serial positions within a sequence revealed a decreasing amplitude gradient that grew steeper with sequence repetition. This sharpening of the amplitude gradient may reflect an explicit encoding process that relies on a magnitude code for serial order.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
11 |
15
|
Agam Y, Sekuler R. Geometric structure and chunking in reproduction of motion sequences. J Vis 2008; 8:11.1-12. [PMID: 18318614 DOI: 10.1167/8.1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 11/05/2007] [Indexed: 11/24/2022] Open
Abstract
Learning by imitation is fundamental to human behavior, but not all observed actions are equally easy to imitate. To understand why some actions are more difficult to imitate than others, we examined how higher-order relationships among the components of a stimulus model influenced the fidelity with which an action could be observed and then reproduced. With static contours, perception and short-term memory are strongly influenced by contour geometry, particularly by the presence and distribution of curvature extrema. To determine whether analogous relationships among subcomponents of a seen action would be important in encoding the action for subsequent reproduction, we manipulated actions' spatio-temporal geometry. In three experiments, we measured imitation fidelity for sequences of randomly directed, linked motions of a disc. The geometry of the disc's motion path strongly affected the accuracy of subsequent imitation: When the disc moved along a trajectory whose components were fairly consistent in their directions, imitation was strikingly better than when with irregular, jagged trajectories. A second experiment showed that this effect depended not upon co-variation in stimulus models' spatial extent, but rather on the relationship between successive movement directions. In a final, learning experiment, subjects had multiple opportunities to view and reproduce each model. The effect of the model's geometry persisted throughout the learning process, suggesting that it does not depend upon variables such as familiarity or expectancy but is somehow inherent to the pattern generated by the disc's motion. Our findings suggest that when analyzing seen actions, the brain privileges regular, consistent curvatures, grouping components that form a coherent shape into a unified "chunk." Inconsistencies among the directional components of a motion sequence cause the sequence to be chunked into additional components, which increases the load on working memory, undermining the fidelity with which the sequence can be imitated.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
7 |
16
|
Baran B, Karahanoğlu FI, Agam Y, Mantonakis L, Manoach DS. Failure to mobilize cognitive control for challenging tasks correlates with symptom severity in schizophrenia. NEUROIMAGE-CLINICAL 2016; 12:887-893. [PMID: 27872811 PMCID: PMC5109850 DOI: 10.1016/j.nicl.2016.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
Abstract
Deficits in the adaptive, flexible control of behavior contribute to the clinical manifestations of schizophrenia. We used functional MRI and an antisaccade paradigm to examine the neural correlates of cognitive control deficits and their relations to symptom severity. Thirty-three chronic medicated outpatients with schizophrenia and 31 healthy controls performed an antisaccade paradigm. We examined differences in recruitment of the cognitive control network and task performance for Hard (high control) versus Easy (low control) antisaccade trials within and between groups. We focused on the key regions involved in ‘top-down’ control of ocular motor structures – dorsal anterior cingulate cortex, dorsolateral and ventrolateral prefrontal cortex. In patients, we examined whether difficulty implementing cognitive control correlated with symptom severity. Patients made more errors overall, and had shorter saccadic latencies than controls on correct Hard vs. Easy trials. Unlike controls, patients failed to increase activation in the cognitive control network for Hard vs. Easy trials. Reduced activation for Hard vs. Easy trials predicted higher error rates in both groups and increased symptom severity in schizophrenia. These findings suggest that patients with schizophrenia are impaired in mobilizing cognitive control when presented with challenges and that this contributes to deficits suppressing prepotent but contextually inappropriate responses, to behavior that is stimulus-bound and error-prone rather than flexibly guided by context, and to symptom expression. Therapies aimed at increasing cognitive control may improve both cognitive flexibility and reduce the impact of symptoms.
Patients with schizophrenia fail to mobilize the cognitive control network during a challenging cognitive task. This deficit results in behavior that is stimulus-bound and error-prone rather than flexibly guided by context. Therapies aimed at increasing cognitive control may improve both cognitive flexibility and reduce the impact of symptoms.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
2 |
17
|
Frazel PW, Fricano-Kugler K, May-Zhang AA, O'Dea MR, Prakash P, Desmet NM, Lee H, Meltzer RH, Fontanez KM, Hettige P, Agam Y, Lithwick-Yanai G, Lipson D, Luikart BW, Dasen JD, Liddelow SA. Single-cell analysis of the nervous system at small and large scales with instant partitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549051. [PMID: 37503160 PMCID: PMC10370061 DOI: 10.1101/2023.07.14.549051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Single-cell RNA sequencing is a new frontier across all biology, particularly in neuroscience. While powerful for answering numerous neuroscience questions, limitations in sample input size, and initial capital outlay can exclude some researchers from its application. Here, we tested a recently introduced method for scRNAseq across diverse scales and neuroscience experiments. We benchmarked against a major current scRNAseq technology and found that PIPseq performed similarly, in line with earlier benchmarking data. Across dozens of samples, PIPseq recovered many brain cell types at small and large scales (1,000-100,000 cells/sample) and was able to detect differentially expressed genes in an inflammation paradigm. Similarly, PIPseq could detect expected and new differentially expressed genes in a brain single cell suspension from a knockout mouse model; it could also detect rare, virally-la-belled cells following lentiviral targeting and gene knockdown. Finally, we used PIPseq to investigate gene expression in a nontraditional model species, the little skate (Leucoraja erinacea). In total, PIPSeq was able to detect single-cell gene expression changes across models and species, with an added benefit of large scale capture and sequencing of each sample.
Collapse
|
Preprint |
2 |
|
18
|
Peretz CAC, Kennedy VE, Walia A, Delley CL, Koh A, Tran E, Clark IC, Hayford CE, D'Amato C, Xue Y, Fontanez KM, May-Zhang AA, Smithers T, Agam Y, Wang Q, Dai HP, Roy R, Logan AC, Perl AE, Abate A, Olshen A, Smith CC. Multiomic single cell sequencing identifies stemlike nature of mixed phenotype acute leukemia. Nat Commun 2024; 15:8191. [PMID: 39294124 PMCID: PMC11411136 DOI: 10.1038/s41467-024-52317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Despite recent work linking mixed phenotype acute leukemia (MPAL) to certain genetic lesions, specific driver mutations remain undefined for a significant proportion of patients and no genetic subtype is predictive of clinical outcomes. Moreover, therapeutic strategy for MPAL remains unclear, and prognosis is overall poor. We performed multiomic single cell profiling of 14 newly diagnosed adult MPAL patients to characterize the inter- and intra-tumoral transcriptional, immunophenotypic, and genetic landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. Despite this, we find that MPAL blasts express a shared stem cell-like transcriptional profile indicative of high differentiation potential. Patients with the highest differentiation potential demonstrate inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in the most stem-like MPAL cells, is applicable to bulk RNA sequencing data and is predictive of survival in an independent patient cohort, suggesting a potential strategy for clinical risk stratification.
Collapse
|
research-article |
1 |
|
19
|
Kreiman G, Agam Y, Liu H, Buia C, Papanastassiou A, Golby A, Madsen J. Robustness to image clutter in human visual cortex. J Vis 2010. [DOI: 10.1167/10.7.983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
|
15 |
|