1
|
Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014; 343:1339-43. [DOI: 10.1126/science.1249061] [Citation(s) in RCA: 2051] [Impact Index Per Article: 186.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
11 |
2051 |
2
|
Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 1995; 81:245-52. [PMID: 7736576 DOI: 10.1016/0092-8674(95)90334-8] [Citation(s) in RCA: 490] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Of the six glutamate receptor (GluR) channel subunit families identified by molecular cloning, five have been shown to constitute either the AMPA, kainate, or NMDA receptor channel, whereas the function of the delta subunit family remains unknown. The selective localization of the delta 2 subunit of the GluR delta subfamily in cerebellar Purkinje cells prompted us to examine its possible physiological roles by the gene targeting technique. Analyses of the GluR delta 2 mutant mice reveal that the delta 2 subunit plays important roles in motor coordination, formation of parallel fiber-Purkinje cell synapses and climbing fiber-Purkinje cell synapses, and long-term depression of parallel fiber-Purkinje cell synaptic transmission. These results suggest a close relationship between synaptic plasticity and synapse formation in the cerebellum.
Collapse
|
|
30 |
490 |
3
|
Chen CR, Kang Y, Massagué J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci U S A 2001; 98:992-9. [PMID: 11158583 PMCID: PMC14697 DOI: 10.1073/pnas.98.3.992] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2000] [Indexed: 01/07/2023] Open
Abstract
Loss of growth inhibitory responses to the cytokine transforming growth factor beta (TGF-beta) in cancer cells may result from mutational inactivation of TGF-beta receptors or their signal transducers, the Smad transcription factors. In breast cancer, however, loss of TGF-beta growth inhibition often occurs without a loss of these signaling components. A genome-wide analysis of rapid TGF-beta gene responses in MCF-10A human mammary epithelial cells and MDA-MB-231 breast cancer cells shows that c-myc repression, a response that is key to the TGF-beta program of cell cycle arrest, is selectively lost in the cancer cell line. Transformation of MCF-10A cells with c-Ha-ras and c-erbB2 oncogenes also led to a selective loss of c-myc repression and cell cycle arrest response. TGF-beta stimulation of epithelial cells rapidly induces the formation of a Smad complex that specifically recognizes a TGF-beta inhibitory element in the c-myc promoter. Formation of this complex is deficient in the oncogenically transformed breast cells. These results suggest that a Smad complex that specifically mediates c-myc repression is a target of oncogenic signals in breast cancer.
Collapse
|
research-article |
24 |
257 |
4
|
Zheng H, Kang Y. Multilayer control of the EMT master regulators. Oncogene 2013; 33:1755-63. [PMID: 23604123 DOI: 10.1038/onc.2013.128] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/23/2022]
Abstract
Metastasis is the leading cause of cancer-associated death in most tumor types. Metastatic dissemination of cancer cells from the primary tumor is believed to be initiated by the reactivation of an embryonic development program referred to as epithelial-mesenchymal transition (EMT), whereby epithelial cells lose apicobasal polarity and cell-cell contacts, and gain mesenchymal phenotypes with increased migratory and invasive capabilities. EMT has also been implicated in the regulation of cancer stem cell property, immune suppression and cancer regression. Several transcription factors have been identified as master regulators of EMT, including the Snail, Zeb and Twist families, and their expression is tightly regulated at different steps of transcription, translation and protein stability control by a variety of cell-intrinsic pathways as well as extracellular cues. Here, we review the recent literature on the signaling pathways and mechanisms that control the expression of these master transcription factors during EMT and cancer progression.
Collapse
|
Review |
12 |
252 |
5
|
Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, Cai J, Lu B, Li B, Zhang D, Kang Y, Tan M, Qian W, Guo Y. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 2009; 28:3412-22. [PMID: 19597469 DOI: 10.1038/onc.2009.189] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis is a key step in tumor growth and metastasis. The mechanism by which osteopontin (OPN) induces the angiogenesis of endothelial cells remains unclear. Here, we show that OPN confers cytoprotection through the activation of the PI3K/Akt pathway with subsequent upregulation of Bcl-xL and activation of nuclear factor-kappaB. OPN enhances the expression of vascular endothelial growth factor (VEGF) through the phosphorylation of AKT and extracellular signal-regulated kinase (ERK). In turn, OPN-induced VEGF activates PI3K/AKT and the ERK1/2 pathway as a positive feedback signal. Blocking the feedback signal by anti-VEGF antibody, PI3-kinase inhibitor or ERK inhibitor can partially inhibit the OPN-induced human umbilical vein endothelial cell (HUVEC) motility, proliferation and tube formation, while blocking the signal by anti-OPN or anti-alphavbeta3 antibody completely abrogates the biological effects of OPN on HUVECs. In addition, blood vessel formation is also investigated in vivo. The antiangiogenesis efficacy of anti-OPN antibody in vivo is more effective than that of anti-VEGF antibody, which only blocks the feedback signals. These data show that OPN enhances angiogenesis directly through PI3K/AKT- and ERK-mediated pathways with VEGF acting as a positive feedback signal. The results suggest that OPN might be a valuable target for developing novel antiangiogenesis therapy for treatment of cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
250 |
6
|
Zhou Z, Zheng D, Wu H, Li R, Xu S, Kang Y, Cao Y, Chen X, Zhu Y, Xu S, Chen ZJ, Mol BW, Qiao J. Epidemiology of infertility in China: a population-based study. BJOG 2017; 125:432-441. [PMID: 29030908 DOI: 10.1111/1471-0528.14966] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2017] [Indexed: 11/30/2022]
|
|
8 |
231 |
7
|
Kang Y, Cullen BR. The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev 1999; 13:1126-39. [PMID: 10323864 PMCID: PMC316956 DOI: 10.1101/gad.13.9.1126] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The constitutive transport element (CTE) encoded by simian type D retroviruses directs unspliced viral RNAs into a nuclear export pathway that is congruent with the pathway used by cellular mRNAs. Here, we show that quail cells are refractory to CTE function but become highly permissive upon expression of the human Tap protein, a candidate CTE cofactor. Tap contains a novel sequence-specific RNA binding domain that is sufficient for CTE binding but inadequate to support CTE function. Using microinjection assays, we have defined two NLSs and one NES in Tap. Mutational inactivation of the Tap NES, which lies outside the RNA-binding domain, not only blocks Tap function but also generates dominant-negative forms of Tap. Whereas replacement of the Tap NES with the well-defined Rev NES rescues the ability of Tap to support CTE function, this substitution also confers sensitivity to agents that block the activity of Crm1, the Rev NES cofactor. Together, these data validate Tap as the first human sequence-specific nuclear mRNA export factor and identify a novel type of NES that can support nuclear mRNA export but does not act via Crm1.
Collapse
|
research-article |
26 |
209 |
8
|
Jin L, Chun J, Pan C, Alesi GN, Li D, Magliocca KR, Kang Y, Chen ZG, Shin DM, Khuri FR, Fan J, Kang S. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene 2017; 36:3797-3806. [PMID: 28218905 PMCID: PMC5501759 DOI: 10.1038/onc.2017.6] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
Metastases remain the major cause of death from cancer. Recent molecular advances have highlighted the importance of metabolic alterations in cancer cells, including the Warburg effect that describes an increased glycolysis in cancer cells. However, how this altered metabolism contributes to tumour metastasis remains elusive. Here, we report that phosphorylation-induced activation of lactate dehydrogenase A (LDHA), an enzyme that catalyses the interconversion of pyruvate and lactate, promotes cancer cell invasion, anoikis resistance and tumour metastasis. We demonstrate that LDHA is phosphorylated at tyrosine 10 by upstream kinases, HER2 and Src. Targeting HER2 or Src attenuated LDH activity as well as invasive potential in head and neck cancer and breast cancer cells. Inhibition of LDH activity by small hairpin ribonucleic acid or expression of phospho-deficient LDHA Y10F sensitized the cancer cells to anoikis induction and resulted in attenuated cell invasion and elevated reactive oxygen species, whereas such phenotypes were reversed by its product lactate or antioxidant N-acetylcysteine, suggesting that Y10 phosphorylation-mediated LDHA activity promotes cancer cell invasion and anoikis resistance through redox homeostasis. In addition, LDHA knockdown or LDHA Y10F rescue expression in human cancer cells resulted in decreased tumour metastasis in xenograft mice. Furthermore, LDHA phosphorylation at Y10 positively correlated with progression of metastatic breast cancer in clinical patient tumour samples. Our findings demonstrate that LDHA phosphorylation and activation provide pro-invasive, anti-anoikis and pro-metastatic advantages to cancer cells, suggesting that Y10 phosphorylation of LDHA may represent a promising therapeutic target and a prognostic marker for metastatic human cancers.
Collapse
|
research-article |
8 |
208 |
9
|
Yoon JW, Yoon CS, Lim HW, Huang QQ, Kang Y, Pyun KH, Hirasawa K, Sherwin RS, Jun HS. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 1999; 284:1183-7. [PMID: 10325232 DOI: 10.1126/science.284.5417.1183] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glutamic acid decarboxylase (GAD) is a pancreatic beta cell autoantigen in humans and nonobese diabetic (NOD) mice. beta Cell-specific suppression of GAD expression in two lines of antisense GAD transgenic NOD mice prevented autoimmune diabetes, whereas persistent GAD expression in the beta cells in the other four lines of antisense GAD transgenic NOD mice resulted in diabetes, similar to that seen in transgene-negative NOD mice. Complete suppression of beta cell GAD expression blocked the generation of diabetogenic T cells and protected islet grafts from autoimmune injury. Thus, beta cell-specific GAD expression is required for the development of autoimmune diabetes in NOD mice, and modulation of GAD might, therefore, have therapeutic value in type 1 diabetes.
Collapse
|
|
26 |
196 |
10
|
Plotkin JS, Scott VL, Pinna A, Dobsch BP, De Wolf AM, Kang Y. Morbidity and mortality in patients with coronary artery disease undergoing orthotopic liver transplantation. LIVER TRANSPLANTATION AND SURGERY : OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES AND THE INTERNATIONAL LIVER TRANSPLANTATION SOCIETY 1996; 2:426-30. [PMID: 9346688 DOI: 10.1002/lt.500020604] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thirty-two patients with coronary artery disease who underwent liver transplantation between 1990 and 1994 were identified. Coronary artery disease was managed medically (n = 9), by angioplasty (n = 1), or surgically (n = 22) prior to liver transplantation. Two patients underwent simultaneous coronary artery bypass grafting and liver transplantation. Complete preoperative cardiac evaluation was performed in all patients. Perioperative and postoperative morbidity and mortality were retrospectively determined. Overall mortality was 50%, whereas morbidity was 81%. Follow-up was between 1 and 3 years after liver transplantation. Subgroup analysis revealed that medically managed patients had a 56% mortality and a 100% morbidity. The patient who underwent angioplasty survived without morbidity. One patient who underwent simultaneous coronary artery bypass grafting and liver transplantation died intraoperatively. The second patient survived but required pacemaker insertion and inotropic agents postoperatively. The 20 patients with prior coronary artery bypass grafting had a 50% mortality and 80% morbidity. Further, analysis by United Network for Organ Sharing functional status revealed a higher than expected mortality in all groups. The morbidity and mortality associated with liver transplantation is significantly increased in patients with coronary artery disease and is equally high in medically and surgically treated patients. By comparison, patients without coronary artery disease have a 3-year survival of 55.4% (status I) to 79.7% (status III and IV). The increased intraoperative and postoperative risk in patients with coronary artery disease undergoing liver transplantation should be considered when determining the candidacy of these patients as well as when providing informed consent.
Collapse
|
Comparative Study |
29 |
194 |
11
|
Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y, Jun HS. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 2012; 55:2456-68. [PMID: 22722451 DOI: 10.1007/s00125-012-2592-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/24/2012] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Obesity and insulin resistance are associated with low-grade chronic inflammation. Glucagon-like peptide-1 (GLP-1) is known to reduce insulin resistance. We investigated whether GLP-1 has anti-inflammatory effects on adipose tissue, including adipocytes and adipose tissue macrophages (ATM). METHODS We administered a recombinant adenovirus (rAd) producing GLP-1 (rAd-GLP-1) to an ob/ob mouse model of diabetes. We examined insulin sensitivity, body fat mass, the infiltration of ATM and metabolic profiles. We analysed the mRNA expression of inflammatory cytokines, lipogenic genes, and M1 and M2 macrophage-specific genes in adipose tissue by real-time quantitative PCR. We also examined the activation of nuclear factor κB (NF-κB), extracellular signal-regulated kinase 1/2 and Jun N-terminal kinase (JNK) in vivo and in vitro. RESULTS Fat mass, adipocyte size and mRNA expression of lipogenic genes were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Macrophage populations (F4/80(+) and F4/80(+)CD11b(+)CD11c(+) cells), as well as the expression and production of IL-6, TNF-α and monocyte chemoattractant protein-1, were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Expression of M1-specific mRNAs was significantly reduced, but that of M2-specific mRNAs was unchanged in rAd-GLP-1-treated ob/ob mice. NF-κB and JNK activation was significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Lipopolysaccharide-induced inflammation was reduced by the GLP-1 receptor agonist, exendin-4, in 3T3-L1 adipocytes and ATM. CONCLUSIONS/INTERPRETATION We suggest that GLP-1 reduces macrophage infiltration and directly inhibits inflammatory pathways in adipocytes and ATM, possibly contributing to the improvement of insulin sensitivity.
Collapse
|
|
13 |
189 |
12
|
Aggarwal S, Kang Y, Freeman JA, Fortunato FL, Pinsky MR. Postreperfusion syndrome: hypotension after reperfusion of the transplanted liver. J Crit Care 1993; 8:154-60. [PMID: 8275160 DOI: 10.1016/0883-9441(93)90021-c] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sixty-nine patients undergoing liver transplantation were evaluated to elucidate the relationship between hypotension and physiological changes seen on reperfusion of the grafted liver. Measured variables included hemodynamic profiles, core temperature, serum potassium, ionized calcium levels, arterial blood-gas tensions, and acid-base state. Measurements were taken 60 minutes after skin incision (baseline), 5 minutes before reperfusion, and 30 seconds and 5 minutes after reperfusion. On the basis of changes in mean arterial pressure (MAP) patients were divided in two groups. Group 1 (n = 49) maintained MAP greater than 70% and group 2 (n = 20) had MAP less than 70% of the baseline value for at least 1 minute within 5 minutes after reperfusion. On reperfusion, changes common to both groups were 27% increase in cardiac filling pressures, 23% base deficit, and 30% serum potassium level and a decrease of 16% in cardiac output and 9% in temperature. Compared with group 1, group 2 had greater decrease in systemic vascular resistance (SVR) (1097 +/- 868 and 741 +/- 399 dyn.s-1. cm-5, respectively, P < .05) and higher potassium level (4.5 +/- 0.8 and 5.3 +/- 0.8 mmol/L, P < .05). Collectively in both groups, there was no correlation between MAP and physiological variables; however, there was a poor correlation with SVR (r = .32, P < .01). Reperfusion hypotension seen in group 2 patients correlated only with a decrease in systemic vascular resistance (r = .5, P < .05). Acute hyperkalemia, hypothermia, and acidosis do not appear to be major causes of reperfusion hypotension.
Collapse
|
|
32 |
153 |
13
|
Kang Y, Edwards LG, Thornalley PJ. Effect of methylglyoxal on human leukaemia 60 cell growth: modification of DNA G1 growth arrest and induction of apoptosis. Leuk Res 1996; 20:397-405. [PMID: 8683979 DOI: 10.1016/0145-2126(95)00162-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Methylglyoxal induced growth arrest in the G1 phase of the cell cycle and toxicity in human leukaemia 60 cells in vitro. Inhibition of DNA synthesis but not inhibition of RNA synthesis, protein synthesis or inhibition of glyceraldehyde-3-phosphate dehydrogenase activity correlated with cytotoxicity. Incubation of human leukaemia 60 cells with methylglyoxal led to the rapid accumulation of adducts of methylglyoxal with DNA, and a lower accumulation of methylglyoxal adducts with RNA and protein in the initial hour of culture; fragmentation of nuclear DNA characteristic of apoptosis developed in the second hour of culture. Methylglyoxal induced apoptosis in human leukaemia 60 cells but did not affect the growth and viability of concanavalin A-stimulated human peripheral lymphocytes in vitro. These effects confirm and further substantiate the anti-proliferative anti-tumour activity of methylglyoxal in vitro, which may mediate the anti-tumour activity of glyoxalase I inhibitors in vivo.
Collapse
|
|
29 |
141 |
14
|
Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 2006; 17:855-64. [PMID: 16547689 DOI: 10.1007/s00198-006-0074-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION In assessing cervical fractures of the proximal femur, this in vitro quantitative computed tomography (QCT) study had three objectives: to compare QCT to dual-energy X-ray absorptiometry (DXA) for predicting the failure load of the proximal femur, to compare the contributions of density and geometry to bone failure load, and to compare the contributions of cortical and trabecular bone to bone failure load. A novel three-dimensional (3D) analysis tool [medical image analysis framework (MIAF-Femur)] was used to analyze QCT scans. METHODS The proximal ends of 28 excised femurs were studied (1) using QCT to separately measure bone mineral density (BMD) and geometric variables of trabecular and cortical bone, (2) using mechanical tests to failure in a stance configuration, and (3) using DXA to measure BMD. The variables were described with mean, standard deviation, and range. Correlation matrix and multivariate linear models were computed. RESULTS Among correlations, cortical thicknesses of the femoral neck were significantly correlated with femoral failure load, especially of the inferoanterior quadrant (r2=0.41; p<0.001), as was cortical volume at the "extended neck" (r2=0.41; p<0.001). Femoral failure load variance was best explained by a combination of QCT variables. Combining densitometric and geometric variables measured by QCT explained 76% of femoral failure load variance compared with 69% with the DXA model. Geometric variables (measured by QCT) explained 43% of femoral failure load variance compared with 72% for densitometric variables (measured by QCT). A model including only trabecular variables explained 52% of femoral failure load variance compared with 59% for a model including only cortical variables. CONCLUSION The QCT-MIAF reported here provides analysis of both geometric and densitometric variables characterizing cortical and trabecular bone. Confirmation of our results in an independent sample would suggest that QCT may better explain failure load variance for cervical fracture than the gold standard DXA-provided BMD.
Collapse
|
|
19 |
140 |
15
|
Kang Y, Kitai ST. Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata. Brain Res 1990; 535:79-95. [PMID: 2292031 DOI: 10.1016/0006-8993(90)91826-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane properties and postsynaptic responses to stimulation of the substantia nigra reticulata (SNr) of the neurons in rat pedunculopontine nucleus (PPN) were studied in an in vitro parasagittal slice preparation using intracellular recording techniques. Based on electrical membrane properties, PPN neurons were classified into 3 types (types I, II and II). The unique feature of the type I neuron was the low threshold calcium spike while the type II neuron had various inward and outward rectifications. The type III neuron showed no such features as those observed in type I or II neurons. Some recorded neurons were intracellularly labeled with biocytin to study their morphology, and their transmitter phenotype was investigated by immunocytochemistry for choline acetyltransferase (ChAT). The type I and III neurons were found to be non-cholinergic, but 50% of the labeled type II neurons were immunopositive for ChAT. Morphological features of type II neurons were also different from type I or III neurons. The soma of the type II neuron was almost always more than twice as large as that of type I and III neurons. Inhibitory postsynaptic potentials (IPSPs) were induced in all 3 types of PPN neurons following stimulation of SNr. SNr-induced IPSPs were usually followed by a slow depolarizing potential from which rebound spikes were triggered. These rebound excitations were found only in type I and II neurons. These data indicate that heterogeneous groups of neurons exist in the PPN in terms of morphology, transmitter phenotypes and electrical membrane properties.
Collapse
|
|
35 |
139 |
16
|
Thornalley PJ, Edwards LG, Kang Y, Wyatt C, Davies N, Ladan MJ, Double J. Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem Pharmacol 1996; 51:1365-72. [PMID: 8787553 DOI: 10.1016/0006-2952(96)00059-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The glyoxalase I inhibitor diester, S-p-bromobenzyl-glutathione cyclopentyl diester (BrBzGSHCp2), inhibited the growth of human leukaemia 60 (HL60) cells in vitro. The median growth inhibitory concentration GC50 value of BrBzGSHCp2 was 4.23 +/- 0.001 microM (n = 21), and the median toxic concentration TC50 value was 8.86 +/- 0.01 microM (n = 21). BrBzGSHCp2 inhibited DNA synthesis in the third hr of incubation: the median inhibitory concentration IC50 value was 6.11 +/- 0.02 microM (n = 8). Incubation of HL60 cells with 10 microM BrBzGSHCp2 delivered the diester into cells: de-esterification of the diester there in lead to formation of the S-p-bromobenzylglutathione, inhibition of glyoxalase I activity in situ, increase in the methylglyoxal concentration after 1 hr, and induction of apoptosis after 6 hr. BrBzGSHCp2 (50-200 mg/kg) also inhibited the growth of murine adenocarcinoma 15A in vivo. Glyoxalase I inhibitor diesters may, therefore, inhibit tumour growth by inducing the accumulation of methylglyoxal in tumour cells, and induction of apoptosis.
Collapse
|
|
29 |
134 |
17
|
Mitchell DR, Kang Y. Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene. J Cell Biol 1991; 113:835-42. [PMID: 1673970 PMCID: PMC2288990 DOI: 10.1083/jcb.113.4.835] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We find that two Chlamydomonas outer arm dynein assembly loci, oda6 and oda9, are located on the left arm of linkage group XII, in the vicinity of the previously mapped locus for a 70,000 Mr dynein intermediate chain protein. Restriction fragment length polymorphism mapping indicates that this dynein gene is very closely linked to the oda6 locus. A cDNA clone encoding the 70,000 Mr protein was isolated, sequenced, and used to select genomic clones spanning the corresponding locus from both wild-type and oda6 libraries. When wild-type clones were introduced into cells containing an oda6 allele, the mutant phenotype was rescued, while no rescue was observed after transformation with oda6 clones. Genetic analysis further revealed that newly introduced gene copies were responsible for the rescued phenotype and thus confirms that ODA6 encodes the 70,000 Mr dynein intermediate chain protein. The inability of oda6 mutants to assemble any major outer arm dynein subunits shows that this protein is essential for assembly of stable outer dynein arms. This is the first use of transformation with a wild-type gene to identify the product of a Chlamydomonas mutant.
Collapse
|
research-article |
34 |
121 |
18
|
Neufeld KL, Nix DA, Bogerd H, Kang Y, Beckerle MC, Cullen BR, White RL. Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc Natl Acad Sci U S A 2000; 97:12085-90. [PMID: 11035805 PMCID: PMC17298 DOI: 10.1073/pnas.220401797] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutational inactivation of the adenomatous polyposis coli (APC) tumor suppressor initiates most hereditary and sporadic colon carcinomas. Although APC protein is located in both the cytoplasm and the nucleus, the protein domains required to maintain a predominantly cytoplasmic localization are unknown. Here, we demonstrate that nuclear export of APC is mediated by two intrinsic, leucine-rich, nuclear export signals (NESs) located near the amino terminus. Each NES was able to induce the nuclear export of a fused carrier protein. Both APC NESs were independently able to interact with the Crm1 nuclear export factor and substitute for the HIV-1 Rev NES to mediate nuclear mRNA export. Both APC NESs functioned within the context of APC sequence: an amino-terminal APC peptide containing both NESs interacted with Crm1 and showed nuclear export in a heterokaryon nucleocytoplasmic shuttling assay. Also, mutation of both APC NESs resulted in the nuclear accumulation of the full-length, approximately 320-kDa APC protein, further establishing that the two intrinsic APC NESs are necessary for APC protein nuclear export. Moreover, endogenous APC accumulated in the nucleus of cells treated with the Crm1-specific nuclear export inhibitor leptomycin B. Together, these data indicate that APC is a nucleocytoplasmic shuttle protein whose predominantly cytoplasmic localization requires NES function and suggests that APC may be important for signaling between the nuclear and cytoplasmic compartments of epithelial cells.
Collapse
|
research-article |
25 |
119 |
19
|
Aggarwal S, Kramer D, Yonas H, Obrist W, Kang Y, Martin M, Policare R. Cerebral hemodynamic and metabolic changes in fulminant hepatic failure: a retrospective study. Hepatology 1994. [PMID: 8276371 DOI: 10.1002/hep.1840190114] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this retrospective study was to determine cerebral hemodynamic and metabolic changes in comatose patients with fulminant hepatic failure. Computerized tomography of the brain and cerebral blood flow measurements by the xenon-computerized tomography scan or intravenous xenon-133 methods were obtained in 33 patients with fulminant hepatic failure. In a subgroup of 22 patients, arteriojugular venous oxygen content difference and cerebral metabolic rate for oxygen were determined. Carbon dioxide reactivity was tested in 17 patients, and intracranial pressure was recorded by an epidural monitor in 8 patients. Cerebral blood flow and arteriojugular venous oxygen content difference were adjusted to the average arterial carbon dioxide pressure of the sample (32 mm Hg). Adjusted cerebral blood flow varied from 16.5 to 94.7 ml/100 gm/min; 52% of the patients had reduced adjusted cerebral blood flows (less than 33 ml/100 gm/min), whereas 24% had hyperemic values (greater than 50 ml/100 gm/min). Patients with higher adjusted cerebral blood flows showed cerebral swelling on computerized tomography scan (p < 0.002), were in deeper coma (p < 0.05) and had greater mortality (p < 0.002). The adjusted arteriojugular venous oxygen content difference was negatively correlated with adjusted cerebral blood flow (r = -0.61, p < 0.002). The majority of patients with reduced adjusted cerebral blood flows had low adjusted arteriojugular venous oxygen content differences (less than 5 vol%), indicating hyperemia rather than ischemia. The average cerebral metabolic rate for oxygen was 50% of normal (1.6 +/- 0.4 ml/100 gm/min); even patients with low cerebral metabolic rates for oxygen recovered neurologically.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
31 |
110 |
20
|
Liu H, Kang Y, Genin S, Schell MA, Denny TP. Twitching motility of Ralstonia solanacearum requires a type IV pilus system. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3215-29. [PMID: 11739754 DOI: 10.1099/00221287-147-12-3215] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Twitching motility is a form of bacterial translocation over firm surfaces that requires retractile type IV pili. Microscopic colonies of Ralstonia solanacearum strains AW1, K60 and GMI1000 growing on the surface of a rich medium solidified with 1.6% agar appeared to exhibit twitching motility, because early on they divided into motile 'rafts' of cells and later developed protruding 'spearheads' at their margins. Individual motile bacteria were observed only when they were embedded within masses of other cells. Varying degrees of motility were observed for 33 of 35 strains of R. solanacearum in a selected, diverse collection. Timing was more important than culture conditions for observing motility, because by the time wild-type colonies were easily visible by eye (about 48 h) this activity ceased and the spearheads were obscured by continued bacterial multiplication. In contrast, inactivation of PhcA, a transcriptional regulator that is essential for R. solanacearum to cause plant disease, resulted in colonies that continued to expand for at least several additional days. Multiple strains with mutations in regulatory genes important for virulence were tested, but all exhibited wild-type motility. Many of the genes required for production of functional type IV pili, and hence for twitching motility, are conserved among unrelated bacteria, and pilD, pilQ and pilT orthologues were identified in R. solanacearum. Colonies of R. solanacearum pilQ and pilT mutants did not develop spearheads or rafts, confirming that the movement of cells that had been observed was due to twitching motility. Compared to the wild-type parents, both pilQ and pilT mutants caused slower and less severe wilting on susceptible tomato plants. This is the first report of twitching motility by a phytopathogenic bacterium, and the first example where type IV pili appear to contribute significantly to plant pathogenesis.
Collapse
|
|
24 |
109 |
21
|
Kang Y, Kitai ST. Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra. Neurosci Res 1993; 18:195-207. [PMID: 7907413 DOI: 10.1016/0168-0102(93)90055-u] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to study a possible mechanism for rhythmic firing of dopaminergic (DA) neurons, intracellular recordings were obtained from 56 rhythmically firing DA neurons in the rat substantia nigra compacta (SNc), using in vitro slice preparations. In the presence of TTX, spontaneous oscillation of the membrane potential was induced in SNc DA neurons when the membrane potential was depolarized more positive from -60 to -40 mV. Each oscillation wave was characterized by a pacemaker-like slow depolarization (PLSD) followed by a relatively prompt repolarization. As the DC depolarization was increased from -60 to -40 mV, the oscillation frequency increased from 0.5 to 5 Hz, but the amplitude of the wave decreased. Of 17 neurons tested in the presence of TTX, the maximum amplitudes of the oscillation varied from 10-15 mV in 8 neurons and were less than 5 mV in 9 neurons. In those 9 neurons, an application of TEA greatly enhanced (up to 15 mV) the amplitude of oscillation. The oscillation ceased when the membrane was hyperpolarized more negative than -60 mV. At the membrane potential more negative than -60 mV in the presence of TTX an injection of a depolarizing current pulse could evoke PLSD which was an all-or-nothing regenerative spike potential. The rate of rise of the PLSD changed depending on the intensity of injected current pulses but their amplitude remained constant. Its time-to-peak was slow (up to 1400 ms), while the decay time was relatively brief (< 500 ms). The threshold membrane potential for evoking PLSD was -53.7 +/- 3.2 mV (n = 10). This was higher than the previously reputed threshold for low threshold Ca2+ spike (LTS) (< -60 mV) and lower than that for high threshold Ca2+ spike (HTS) (> -35 mV) in SNc DA neurons. Even at a holding potential of -45 mV, a depolarizing current pulse could trigger PLSD while LTS was completely inactivated. Cd2+ (0.4 mM) abolished the oscillation and PLSD without marked effects on the LTS (n = 6). A low Ca2+ and high Mg2+ Ringer's solution also abolished the oscillation and PLSD (n = 4). An intracellular injection of EGTA markedly prolonged the decay time course of PLSD characterized by a slow and a relatively fast falling phase (n = 5). This would suggest an involvement of Ca(2+)-dependent K+ conductance and/or Ca2+ dependent inactivation of Ca2+ conductance during repolarization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
32 |
103 |
22
|
Cook DR, Freeman JA, Lai AA, Kang Y, Stiller RL, Aggarwal S, Harrelson JC, Welch RM, Samara B. Pharmacokinetics of mivacurium in normal patients and in those with hepatic or renal failure. Br J Anaesth 1992; 69:580-5. [PMID: 1334687 DOI: 10.1093/bja/69.6.580] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have determined the pharmacokinetics and duration of action of a bolus dose of mivacurium (0.15 mg kg-1) during isoflurane and nitrous oxide anaesthesia in nine patients with normal renal and liver function, nine patients undergoing cadaveric kidney transplantation and nine patients undergoing cadaveric liver transplantation. Total plasma concentrations of mivacurium were measured for 2.5 h after administration using a high-pressure liquid chromatographic assay. Plasma concentration vs time data for what were presumed to be the two active mivacurium isomers were analysed by a non-compartmental method based on statistical moments. Neuromuscular block was assessed by measuring the electromyographic evoked response of the adductor pollicis muscle to train-of-four stimulation of the ulnar nerve. The mean time to recovery of 25% neuromuscular transmission, T25, was greater in the patients with liver failure (57.2 min) than in control patients (18.7 min). The volume of distribution at steady rate (Vdss) was comparable in the three groups. Patients with impaired liver function had significantly longer mean residence time and smaller plasma clearance than did patients with renal failure or control patients. There were significant negative correlations between plasma cholinesterase activity and both T25 (r = 0.79) and mean residence time (r = 0.62).
Collapse
|
|
33 |
103 |
23
|
Perry RR, Kang Y, Greaves B. Effects of tamoxifen on growth and apoptosis of estrogen-dependent and -independent human breast cancer cells. Ann Surg Oncol 1995; 2:238-45. [PMID: 7641021 DOI: 10.1007/bf02307030] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Apoptosis ("programmed cell death") is an active process characterized by prominent nuclear changes and DNA cleavage, which distinguishes it from cellular necrosis. In this study we investigated whether tamoxifen (TAM) treatment of estrogen receptor ER(+) MCF-7 and ER(-) MDA-231 human breast cancer cells resulted in cytotoxicity and cellular changes typical of apoptosis. METHODS Cytotoxicity was measured using a tetrazolium assay. Cellular morphologic changes were observed using transmission electron microscopy. DNA cleavage was assessed using 1.6% agarose gel electrophoresis and was also quantitated biochemically. RESULTS Exposure of cells to TAM for 24 h resulted in dose-dependent cytotoxicity, and MCF-7 cells were somewhat more sensitive to TAM. TAM induced chromatin condensation around the nuclear periphery in both cell lines, changes typical of apoptosis. TAM-induced cytotoxicity correlated with dose-dependent DNA cleavage, which showed the characteristic "internucleosomal ladder." DNA cleavage occurred at a slightly lower TAM dose and occurred somewhat sooner in MCF-7 cells. TAM-induced DNA cleavage in MCF-7 cells was inhibited by the protein synthesis inhibitor cycloheximide, the RNA synthesis inhibitor actinomycin D, and by 17 beta-estradiol. However, in MDA-231 cells, DNA cleavage was inhibited by cycloheximide, partially but not significantly inhibited by actinomycin D, and not inhibited by 17 beta-estradiol. CONCLUSIONS TAM induces typical apoptosis in ER(+) or ER(-) human breast cancer cells. TAM induction of apoptosis in MCF-7 cells involves the estrogen receptor, and requires the synthesis of new protein and mRNA. TAM induction of apoptosis in MDA-231 cells depends primarily on protein synthesis. TAM-induced cytotoxicity and DNA damage appear to be explained in part by the induction of apoptosis.
Collapse
|
|
30 |
102 |
24
|
Hashimoto N, Kim C, Kikuchi H, Kojima M, Kang Y, Hazama F. Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 1987; 67:903-5. [PMID: 3681429 DOI: 10.3171/jns.1987.67.6.0903] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Saccular cerebral aneurysms were successfully induced in two monkeys treated with ligation of the common carotid artery, experimental hypertension, and beta-aminopropionitrile feeding. The cerebral aneurysms developed on the large arteries at the base of the brain, such as the anterior communicating artery and the internal carotid artery at the origin of the posterior communicating artery. Because of the similarity of the monkey to man as a species, the present results strongly suggest the significance of postnatal aggravating factors in the development of cerebral aneurysms in man.
Collapse
|
|
38 |
99 |
25
|
Agarwal RK, Kang Y, Zambidis E, Scott DW, Chan CC, Caspi RR. Retroviral gene therapy with an immunoglobulin-antigen fusion construct protects from experimental autoimmune uveitis. J Clin Invest 2000; 106:245-52. [PMID: 10903340 PMCID: PMC517488 DOI: 10.1172/jci9168] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Immunoglobulins can serve as tolerogenic carriers for antigens, and B cells can function as tolerogenic antigen-presenting cells. We used this principle to design a strategy for gene therapy of experimental autoimmune uveitis, a cell-mediated autoimmune disease model for human uveitis induced with the uveitogenic interphotoreceptor retinoid-binding protein (IRBP). A retroviral vector was constructed containing a major uveitogenic IRBP epitope in frame with mouse IgG1 heavy chain. This construct was used to transduce peripheral B cells, which were infused into syngeneic recipients. A single infusion of transduced cells, 10 days before uveitogenic challenge, protected mice from clinical disease induced with the epitope or with the native IRBP protein. Protected mice had reduced antigen-specific responses, but showed no evidence for a classic Th1/Th2 response shift or for generalized anergy. Protection was not transferable, arguing against a mechanism dependent on regulatory cells. Importantly, the treatment was protective when initiated 7 days after uveitogenic immunization or concurrently with adoptive transfer of primed uveitogenic T cells. We suggest that this form of gene therapy can induce epitope-specific protection not only in naive, but also in already primed recipients, thus providing a protocol for treatment of established autoimmunity.
Collapse
|
research-article |
25 |
97 |