1
|
Zhen Y, Hoganson CW, Babcock GT, Ferguson-Miller S. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. I. Biochemical, spectral, and kinetic characterization of surface mutants in subunit ii of Rhodobacter sphaeroides cytochrome aa(3). J Biol Chem 1999; 274:38032-41. [PMID: 10608872 DOI: 10.1074/jbc.274.53.38032] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the interaction site for cytochrome c (Cc) on cytochrome c oxidase (CcO), a number of conserved carboxyl residues in subunit II of Rhodobacter sphaeroides CcO were mutated to neutral forms. A highly conserved tryptophan, Trp(143), was also mutated to phenylalanine and alanine. Spectroscopic and metal analyses of the surface carboxyl mutants revealed no overall structural changes. The double mutants D188Q/E189N and D151Q/E152N exhibit similar steady-state kinetic behavior as wild-type oxidase with horse Cc and R. sphaeroides Cc(2), showing that these residues are not involved in Cc binding. The single mutants E148Q, E157Q, D195N, and D214N have decreased activities and increased K(m) values, indicating they contribute to the Cc:CcO interface. However, their reactions with horse and R. sphaeroides Cc are different, as expected from the different distribution of surface lysines on these cytochromes c. Mutations at Trp(143) severely inhibit activity without changing the K(m) for Cc or disturbing the adjacent Cu(A) center. From these data, we identify a Cc binding area on CcO with Trp(143) and Asp(214) close to the site of electron transfer and Glu(148), Glu(157), and Asp(195) providing electrostatic guidance. The results are completely consistent with time-resolved kinetic measurements (Wang, K., Zhen, Y., Sadoski, R., Grinnell, S., Geren, L., Ferguson-Miller, S., Durham, B., and Millett, F. (1999) J. Biol. Chem. 274, 38042-38050) and computational docking analysis (Roberts, V. A., and Pique, M. E. (1999) J. Biol. Chem. 274, 38051-38060).
Collapse
|
|
26 |
92 |
2
|
Fan X, Wang Y, Sun K, Zhang W, Yang X, Wang S, Zhen Y, Wang J, Li W, Han Y, Liu T, Wang X, Chen J, Wu H, Hui R. Polymorphisms of ACE2 gene are associated with essential hypertension and antihypertensive effects of Captopril in women. Clin Pharmacol Ther 2007; 82:187-96. [PMID: 17473847 DOI: 10.1038/sj.clpt.6100214] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ACE2 appears to counterbalance the vasopressor effect of angiotensin I converting enzyme (ACE) in the reninangiotensin system. We hypothesized that ACE2 polymorphisms could confer a high risk of hypertension and have an impact on the antihypertensive response to ACE inhibitors. The hypothesis was tested in two casecontrol studies and a clinical trial of 3,408 untreated hypertensive patients randomized to Atenolol, Hydrochlorothiazide, Captopril, or Nifedipine treatments for 4 weeks. ACE2 rs2106809 T allele was found to confer a 1.6-fold risk for hypertension in women (95% confidence interval (CI), 1.132.06), whereas when combined with the effect of the ACE DD genotype, the risk was 2.34-fold (95% CI, 1.754.85) in two independent samples. The adjusted diastolic blood pressure response to Captopril was 3.3 mm Hg lower in ACE2 T allele carriers than in CC genotype carriers (P=0.019) in women. We conclude that the ACE2 T allele confers a high risk for hypertension and reduced antihypertensive response to ACE inhibitors.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
77 |
3
|
Zhen Y, Fang W, Zhao M, Luo R, Liu Y, Fu Q, Chen Y, Cheng C, Zhang Y, Liu Z. miR-374a-CCND1-pPI3K/AKT-c-JUN feedback loop modulated by PDCD4 suppresses cell growth, metastasis, and sensitizes nasopharyngeal carcinoma to cisplatin. Oncogene 2016; 36:275-285. [PMID: 27270423 DOI: 10.1038/onc.2016.201] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 02/08/2023]
Abstract
miR-374a has been reported to function as an oncogene during tumor pathogenesis. In this study, miR-374a is observed to reduce nasopharyngeal carcinoma (NPC) cell proliferation, migration, invasion, metastasis and cisplatin (DDP) resistance in vitro and in vivo. Mechanistic analyses indicate that miR-374a directly targets CCND1 to inactivate pPI3K/pAKT/c-JUN forming a negative feedback loop, as well as suppressing downstream signals related to cell cycle progression and epithelial-mesenchymal transition (EMT). Interestingly, we also observed that miR-374a direct targeting of CCND1 is modulated by tumor suppressor PDCD4 via suppressing pPI3K/pAKT/c-JUN signaling. In clinical specimens, miR-374a was positively and negatively correlated with expression of PDCD4 and CCND1, respectively. Our studies are the first to demonstrate that the miR-374a-CCND1-pPI3K/AKT-c-JUN feedback loop induced by PDCD4 supresses NPC cell growth, metastasis and chemotherapy resistance.
Collapse
|
Journal Article |
9 |
75 |
4
|
Karpefors M, Adelroth P, Namslauer A, Zhen Y, Brzezinski P. Formation of the "peroxy" intermediate in cytochrome c oxidase is associated with internal proton/hydrogen transfer. Biochemistry 2000; 39:14664-9. [PMID: 11087423 DOI: 10.1021/bi0013748] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When dioxygen is reduced to water by cytochrome c oxidase a sequence of oxygen intermediates are formed at the reaction site. One of these intermediates is called the "peroxy" (P) intermediate. It can be formed by reacting the two-electron reduced (mixed-valence) cytochrome c oxidase with dioxygen (called P(m)), but it is also formed transiently during the reaction of the fully reduced enzyme with oxygen (called P(r)). In recent years, evidence has accumulated to suggest that the O-O bond is cleaved in the P intermediate and that the heme a(3) iron is in the oxo-ferryl state. In this study, we have investigated the kinetic and thermodynamic parameters for formation of P(m) and P(r), respectively, in the Rhodobacter sphaeroides enzyme. The rate constants and activation energies for the formation of the P(r) and P(m) intermediates were 1.4 x 10(4) s(-1) ( approximately 20 kJ/mol) and 3 x 10(3) s(-1) ( approximately 24 kJ/mol), respectively. The formation rates of both P intermediates were independent of pH in the range 6.5-9, and there was no proton uptake from solution during P formation. Nevertheless, formation of both P(m) and P(r) were slowed by a factor of 1.4-1.9 in D(2)O, which suggests that transfer of an internal proton or hydrogen atom is involved in the rate-limiting step of P formation. We discuss the origin of the difference in the formation rates of the P(m) and P(r) intermediates, the formation mechanisms of P(m)/P(r), and the involvement of these intermediates in proton pumping.
Collapse
|
|
25 |
65 |
5
|
Wang K, Zhen Y, Sadoski R, Grinnell S, Geren L, Ferguson-Miller S, Durham B, Millett F. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. Ii. Rapid kinetic analysis of electron transfer from cytochrome c to Rhodobacter sphaeroides cytochrome oxidase surface mutants. J Biol Chem 1999; 274:38042-50. [PMID: 10608873 DOI: 10.1074/jbc.274.53.38042] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reaction between cytochrome c (Cc) and Rhodobacter sphaeroides cytochrome c oxidase (CcO) was studied using a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine 55 (Ru-55-Cc). Flash photolysis of a 1:1 complex between Ru-55-Cc and CcO at low ionic strength results in electron transfer from photoreduced heme c to Cu(A) with an intracomplex rate constant of k(a) = 4 x 10(4) s(-1), followed by electron transfer from Cu(A) to heme a with a rate constant of k(b) = 9 x 10(4) s(-1). The effects of CcO surface mutations on the kinetics follow the order D214N > E157Q > E148Q > D195N > D151N/E152Q approximately D188N/E189Q approximately wild type, indicating that the acidic residues Asp(214), Glu(157), Glu(148), and Asp(195) on subunit II interact electrostatically with the lysines surrounding the heme crevice of Cc. Mutating the highly conserved tryptophan residue, Trp(143), to Phe or Ala decreased the intracomplex electron transfer rate constant k(a) by 450- and 1200-fold, respectively, without affecting the dissociation constant K(D). It therefore appears that the indole ring of Trp(143) mediates electron transfer from the heme group of Cc to Cu(A). These results are consistent with steady-state kinetic results (Zhen, Y., Hoganson, C. W., Babcock, G. T., and Ferguson-Miller, S. (1999) J. Biol. Chem. 274, 38032-38041) and a computational docking analysis (Roberts, V. A., and Pique, M. E. (1999) J. Biol. Chem. 274, 38051-38060).
Collapse
|
|
26 |
63 |
6
|
Yi CG, Xia W, Zhang LX, Zhen Y, Shu MG, Han Y, Guo SZ. VEGF gene therapy for the survival of transplanted fat tissue in nude mice. J Plast Reconstr Aesthet Surg 2007; 60:272-8. [PMID: 17293285 DOI: 10.1016/j.bjps.2006.01.052] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 12/11/2005] [Accepted: 01/01/2006] [Indexed: 12/01/2022]
Abstract
The objective of this study was to determine the effects of adenovirus-mediated vascular endothelial growth factor (Ad-VEGF) on the angiogenesis and survival of free-fat tissue transplantation in nude mice. Thirty 6-week-old CD-1 nude male mice were injected with 1ml fat tissue (harvested by suction-assisted lipectomy from the breast of humans) in the subcutaneous of scalp and were randomised into three groups of 10 animals each. Group 1 was the study group, in which Ad-VEGF was mixed with transplanted fat tissue and injected into mice. In group 2, adenovirus-mediated green fluorescent protein (Ad-GFP) gene was mixed with transplanted fat tissue and injected into the mice. In group 3, normal saline alone was used. Both group 2 and group 3 are control groups. The animals were euthanised 15 weeks after the procedure. The fat survival weight and volume of the study group were significantly greater than those of two control groups (p<0.05). Light microscopical examination of haematoxylin and eosin-stained slides of the dissected fat 15 weeks after injection was performed in group 1 and group 2. Less cyst formation and fibrosis, indicating improved quality of the injected fat, can be obtained by the addition of Ad-VEGF. Vascular density was evaluated at the microvascular level through the use of light microscopic sections of the central part of the fat tissue at 15 weeks after injection by von Willebrand factor staining. Histological evaluation showed that capillary density increased markedly in the study group mice. Mice of the study group disclosed significantly higher VEGF protein levels detected by ELISA assay of plasma samples obtained from the mice after the fat injection (day 1, 4, 7 and 28; p<0.01) at each time point than the mice of the two control groups. The findings reported in this study indicate that the VEGF gene therapy can enhance the survival and the quality of grafted fat tissue, which may be due to induction of angiogenesis.
Collapse
|
|
18 |
63 |
7
|
Karpefors M, Adelroth P, Zhen Y, Ferguson-Miller S, Brzezinski P. Proton uptake controls electron transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 1998; 95:13606-11. [PMID: 9811847 PMCID: PMC24866 DOI: 10.1073/pnas.95.23.13606] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1998] [Accepted: 09/14/1998] [Indexed: 11/18/2022] Open
Abstract
In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the "peroxy" to "oxoferryl" transition, internal transfer of the fourth electron from CuA to heme a has the same rate as proton uptake from the bulk solution (8,000 s-1). The question was therefore raised whether the proton uptake controls electron transfer or vice versa. To resolve this question, we have studied a site-specific mutant of the Rhodobacter sphaeroides enzyme in which methionine 263 (SU II), a CuA ligand, was replaced by leucine, which resulted in an increased redox potential of CuA. During reaction of the reduced mutant enzyme with O2, a proton was taken up at the same rate as in the wild-type enzyme (8,000 s-1), whereas electron transfer from CuA to heme a was impaired. Together with results from studies of the EQ(I-286) mutant enzyme, in which both proton uptake and electron transfer from CuA to heme a were blocked, the results from this study show that the CuA --> heme a electron transfer is controlled by the proton uptake and not vice versa. This mechanism prevents further electron transfer to heme a3-CuB before a proton is taken up, which assures a tight coupling of electron transfer to proton pumping.
Collapse
|
research-article |
27 |
55 |
8
|
Zhen Y, Qian J, Follmann K, Hayward T, Nilsson T, Dahn M, Hilmi Y, Hamer AG, Hosler JP, Ferguson-Miller S. Overexpression and purification of cytochrome c oxidase from Rhodobacter sphaeroides. Protein Expr Purif 1998; 13:326-36. [PMID: 9693057 DOI: 10.1006/prep.1998.0903] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aa3-type cytochrome c oxidase of Rhodobacter sphaeroides has been overexpressed up to seven fold over that in wild-type strains by engineering a multicopy plasmid with all the required oxidase genes and by establishing optimum growth conditions. The two operons containing the three structural genes and two assembly genes for cytochrome c oxidase were ligated into a pUC19 vector and reintroduced into several oxidase-deleted R. sphaeroides strains. Under conditions of relatively high pH and maximal aeration, high levels of expression were observed. A smaller expression vector, pBBR1MCS, and a fructose promoter (fruP)5 were found not to enhance cytochrome c oxidase expression in R. sphaeroides. An improved cytochrome c oxidase purification protocol is reported, which combines histidine elution from a nickel affinity column and anion-exchange chromatography, and results in a higher yield and purity than previously obtained.
Collapse
|
|
27 |
52 |
9
|
Zhen Y, Sørensen V, Jin Y, Suo Z, Wiedłocha A. Indirubin-3'-monoxime inhibits autophosphorylation of FGFR1 and stimulates ERK1/2 activity via p38 MAPK. Oncogene 2007; 26:6372-85. [PMID: 17533378 DOI: 10.1038/sj.onc.1210473] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Indirubin-3'-monoxime is a derivative of the bis-indole alkaloid indirubin, an active ingredient of a traditional Chinese medical preparation that exhibits anti-inflammatory and anti-leukemic activities. Indirubin-3'-monoxime is mainly recognized as an inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3. It inhibits proliferation of cultured cells, mainly through arresting the cells in the G1/S or G2/M phase of the cell cycle. Here, we report that indirubin-3'-monoxime is able to inhibit proliferation of NIH/3T3 cells by specifically inhibiting autophosphorylation of fibroblast growth factor receptor 1 (FGFR1), blocking in this way the receptor-mediated cell signaling. Indirubin-3'-monoxime inhibits the activity of FGFR1 at a concentration lower than that required for inhibition of phosphorylation of CDK2 and retinoblastoma protein and cell proliferation stimulated by fetal calf serum. The ability of indirubin-3'-monoxime to inhibit FGFR1 signaling was similar to that of the FGFR1 inhibitor SU5402. In addition, we found that indirubin-3'-monoxime activates long-term p38 mitogen-activated protein kinase activity, which stimulates extracellular signal-regulated kinase 1/2 in a way unrelated to the activity of FGFR1. Furthermore, we show that indirubin-3'-monoxime can inhibit proliferation of the myeloid leukemia cell line KG-1a through inhibition of the activity of the FGFR1 tyrosine kinase. The data presented here demonstrate previously unknown activities of indirubin-3'-monoxime that may have clinical implications.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
49 |
10
|
Guo H, Nan Y, Zhen Y, Zhang Y, Guo L, Yu K, Huang Q, Zhong Y. miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1. Tumour Biol 2016; 37:13751-13761. [DOI: 10.1007/s13277-016-5219-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/14/2016] [Indexed: 01/19/2023] Open
|
|
9 |
45 |
11
|
Hosler JP, Espe MP, Zhen Y, Babcock GT, Ferguson-Miller S. Analysis of site-directed mutants locates a non-redox-active metal near the active site of cytochrome c oxidase of Rhodobacter sphaeroides. Biochemistry 1995; 34:7586-92. [PMID: 7779804 DOI: 10.1021/bi00023a004] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Substoichiometric amounts of Mn are bound by the aa3-type cytochrome c oxidase of Rhodobacter sphaeroides and appear in the EPR spectrum of the purified enzyme as signals that overlay those of CuA in the g = 2.0 region. The Mn is tightly bound and not removed by a high degree of purification or by washing with 50 mM EDTA. The amount of bound Mn varies with the ratio of Mg to Mn in the growth medium. Oxidase containing no EPR-detectable Mn can be prepared from cells grown in low Mn/Mg, while high Mn/Mg in the growth medium gives rise to near stoichiometric levels (0.7 mol/mol of aa3). Incubation of purified Mn-deficient oxidase with 1 mM Mn does not allow incorporation into the tight binding site, indicating that this site is not accessible in the assembled protein. When bound Mn is depleted by growth in high Mg, there is no change in electron transfer activity, suggesting that Mg may substituted for Mn and maintain protein structure. Analysis of site-directed mutants in an extramembrane loop close to the active site of cytochrome oxidase identifies His-411 and Asp-412 of subunit I as probable ligands of the Mn. Mutation of either residue leads to lower activity and loss of Mn binding, even in cells grown in elevated concentrations of Mn. Since Mn binding correlates with the [Mn] to [Mg] ratio in the culture medium, we propose that Mn competes for the site that normally binds a stoichiometric Mg ion in aa3-type cytochrome c oxidases.
Collapse
|
|
30 |
41 |
12
|
Zhang Z, Wang Z, Huang K, Liu Y, Wei C, Zhou J, Zhang W, Wang Q, Liang H, Zhang A, Wang G, Zhen Y, Han L. PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma. Cancer Lett 2019; 443:91-107. [DOI: 10.1016/j.canlet.2018.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
|
|
6 |
41 |
13
|
Kawakami T, Strakosh SC, Zhen Y, Ungerer MC. Different scales of Ty1/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species. Heredity (Edinb) 2010; 104:341-50. [PMID: 20068588 DOI: 10.1038/hdy.2009.182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation of transposable elements in species' genomes represents an important mechanism of new mutation and of potential rapid change in genome size. Thus, it is increasingly recognized that transposable elements likely have played a significant role in shaping species' evolution. In an earlier report, we showed that the genomes of three sunflower species of ancient hybrid origin have experienced large-scale proliferation events of sequences within the Ty3/gypsy-like superfamily of long terminal repeat (LTR) retrotransposons. In this report, we investigate whether another superfamily of LTR retrotransposon (Ty1/copia-like elements) have experienced similar derepression and proliferation events in the genomes of these sunflower hybrid taxa. We show that Ty1/copia-like elements also have undergone copy number increases following or associated with the origins of these species, although the scale of proliferation is less than that for Ty3/gypsy-like elements. Surveys of sequence heterogeneity of Ty1/copia-like elements in the genomes of the three hybrid and two parental species' genomes reveal that a single sub-lineage of these elements exhibits characteristics of recent amplification, and likely served as the proliferative source lineage. These findings indicate that the genomic and/or environmental conditions associated with the origins of these sunflower hybrid taxa were conducive to derepression of at least two major groups of transposable elements.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
34 |
14
|
Guo S, Zhen Y, Wang A. Transplantation of bone mesenchymal stem cells promotes angiogenesis and improves neurological function after traumatic brain injury in mouse. Neuropsychiatr Dis Treat 2017; 13:2757-2765. [PMID: 29158675 PMCID: PMC5683767 DOI: 10.2147/ndt.s141534] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) has emerged as a leading cause of mortality and morbidity worldwide. Transplantation of bone mesenchymal stem cells (BMSCs) has emerged as a promising treatment for various central nervous system diseases. This study aims to evaluate the effect of BMSCs transplantation by intravenous injection on neurological function and angiogenesis of the TBI mice. C57BL/6 male mice were randomly divided into four groups: control, sham, TBI, and BMSC. Functional neurological evaluation was performed 1, 4, 7, 14, and 21 days after TBI using neurological severity scores. The impairment of learning and memory in mice was evaluated 14 days after TBI by Morris water maze experiment. Mice were sacrificed 14 days after TBI, and then brain sections were stained by terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling staining to assess brain neuronal apoptosis. Immunohistochemistry was conducted to evaluate caspase-3 activity and identify vascular distribution and microvessel density. Protein and mRNA levels of vascular endothelial growth factor (VEGF) and angiogenin-1 (Ang-1) in brain tissues were analyzed by Western blot and quantitative real-time polymerase chain reaction, respectively. BMSCs transplantation promoted recovery of neurological function, ameliorated impairment of learning and memory, attenuated neuronal apoptosis, and diminished caspase-3 activation in mice after TBI. Also, BMSCs transplantation upregulated expressions of VEGF and Ang-1 and promoted the formation of microvessels in brain tissues after TBI. Our study demonstrated the important role of BMSCs transplantation in TBI mouse and indicated that the underlying mechanism was through promoting angiogenesis and improving neurological function. This provides a novel and effective strategy for cell-based therapy in the treatment of TBI.
Collapse
|
research-article |
8 |
31 |
15
|
Zhen Y, Nan Y, Guo S, Zhang L, Li G, Yue S, Liu X. Knockdown of NEAT1 repressed the malignant progression of glioma through sponging miR-107 and inhibiting CDK14. J Cell Physiol 2018; 234:10671-10679. [PMID: 30480816 DOI: 10.1002/jcp.27727] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/22/2018] [Indexed: 01/03/2023]
Abstract
Aberrant expressions of long noncoding RNAs (lncRNAs) contribute to carcinogenesis via regulating tumor suppressors or oncogenes. LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been recognized as an oncogene to promote tumor progression of many cancers. However, the function of NEAT1 in glioma remains poorly discovered. Currently, we focused on the role of NEAT1 in glioma. Here, we found that NEAT1 was greatly upregulated in glioma cells compared with normal human astrocytes (NHAs). Meanwhile, miR-107 was significantly downregulated in glioma cell lines. Then, we observed that knockdown of NEAT1 suppressed the growth and invasion of glioma cells including U251 and SW1783 cells. Reversely, overexpression of NEAT1 dramatically induced glioma cell survival, increased cell colony formation, and promoted cell invasion ability. Subsequently, bioinformatics analysis was performed to predict the correlation between NEAT1 and miR-107. Moreover, it was revealed that NEAT1 could modulate miR-107 via serving as an endogenous sponge of miR-107. The direct binding correlation between NEAT1 and miR-107 was validated in our study. In addition, cyclin dependent kinase 14 (CDK14) was predicted as an messenger RNA target of miR-107 and the association between them was confirmed in our research. Moreover, we implied that NEAT1 demonstrated its biological functions via regulating miR-107 and CDK14 in vivo. In summary, our findings indicated that NEAT1/miR-107/CDK14 axis participated in glioma development. NEAT1 could act as a significant prognostic biomarker in glioma progression.
Collapse
|
Journal Article |
7 |
29 |
16
|
Guo S, Zhen Y, Zhu Z, Zhou G, Zheng X. Cinnamic acid rescues behavioral deficits in a mouse model of traumatic brain injury by targeting miR-455-3p/HDAC2. Life Sci 2019; 235:116819. [PMID: 31473194 DOI: 10.1016/j.lfs.2019.116819] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
AIMS Traumatic brain injury (TBI) not only induces physiological disabilities but also leads to cognitive impairment. However, no effective therapeutic approach for TBI-related memory decline exists. In this study, we treated TBI mice with cinnamic acid (CNA) to detect whether CNA is able to rescue the memory deficits induced by TBI and to explore the potential mechanisms. MAIN METHODS Mice were divided into the following groups: the sham group, the TBI group, the TBI + CNA group and the CNA group. Basic physiological parameters, neurological severity score and brain water content were analyzed. The Morris water maze and inhibitory avoidance step-down task were used to determine learning and memory. Golgi staining was used to measure alterations in dendritic spines. Western blot analysis and a commercial kit were used to detect the content and activity of HDAC2. qPCR was used to detect the relative level of miR-455. KEY FINDINGS CNA did not affect physiological function but effectively restored neurological function and brain edema. CNA alleviated the memory impairments induced by TBI in both the Morris water maze and step-down task. CNA also recovered abnormalities in the synapses of TBI mice by suppressing the activity of HDAC2. Furthermore, CNA did not alter HDAC mRNA because it promoted the expression of miR-455-3p, a miRNA that regulates HDAC2 at the posttranscriptional level. SIGNIFICANCE The application of CNA effectively treats TBI-induced memory deficits by increasing miR-455-3p and by inhibiting HDAC2.
Collapse
|
Journal Article |
6 |
24 |
17
|
He F, Kang D, Ren Y, Qu LJ, Zhen Y, Gu H. Genetic diversity of the natural populations of Arabidopsis thaliana in China. Heredity (Edinb) 2007; 99:423-31. [PMID: 17593944 DOI: 10.1038/sj.hdy.6801020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although extensive studies have been conducted on the genetic structure of Arabidopsis thaliana (A. thaliana) populations worldwide, the populations from China have never been studied. In this study, we collected 560 individuals from 19 natural populations of A. thaliana distributed in East China along the lower reaches of the Yangtze River, and two populations from northwest China (Xinjiang Province). We adopted two kinds of molecular marker, inter-simple sequence repeats (ISSRs) and random amplified polymorphic DNA (RAPDs) to investigate the genetic diversity within and among populations, and the correlation between the genetic and geographic distances. Thirteen ISSR primers produced 165 polymorphic bands (PPB) (96%) and 11 RAPD primers produced 162 polymorphic bands (98%) in about 560 individuals. The two marker systems generated similar patterns of genetic diversity in these natural populations. The AMOVA analysis indicated about 42-45% of the total genetic variation existed within populations, and found possible geographic structure. The Mantel test revealed a significant correlation between the geographic distance and the genetic distance of these populations in general. A close genetic relationship was found among four populations in the Jiangxi Province, and these always appeared clustered together as a monophyletic group in unweighted pair-group method with arithmetic averages dendrograms based on both ISSR and RAPD data sets. Based on the observation of recolonization and extinction of naturally distributed populations of A. thaliana, and the pattern of their genetic differentiation, the distribution of this species in China might be a result of natural dispersal under the strong influence of human activity.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
24 |
18
|
Zhen Y, Guanghui L, Xiefu Z. Knockdown of EGFR inhibits growth and invasion of gastric cancer cells. Cancer Gene Ther 2014; 21:491-7. [PMID: 25394504 DOI: 10.1038/cgt.2014.55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) is an oncogenic trans-membranous receptor, which is overexpressed in multiple human cancers. However, the role of EGFR in gastric cancer (GC) is still elusive. In this study, we aimed to investigate the expression and molecular mechanisms of EGFR in GC cells. Forty cases of GC and the corresponding adjacent non-cancerous tissues (ANCT) were collected, and the expression of EGFR was assessed using immunohistochemistry in biopsy samples. Furthermore, EGFR signaling was blocked by constructed recombinant small hairpin RNA lentiviral vector (Lv-shRAGE) used to transfect into human GC SGC-7901 cells. The expression of AKT, proliferating cell nuclear antigen (PCNA) and matrix metallopeptidase-9 (MMP-9) was detected by real-time PCR and western blotting assays. Cell proliferative activities and invasive capability were, respectively, determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and Transwell assays. Cell apoptosis and cycle distribution were analyzed by flow cytometry. EGFR was found highly expressed in cancer tissues compared with the ANCT and correlated with lymph node metastases. Knockdown of EGFR reduced cell proliferation and invasion of GC with decreased expression of AKT, PCNA and MMP-9 and induced cell apoptosis and cycle arrest. Upregulation of EGFR expression is associated with lymph node metastases of GC, and blockade of EGFR signaling suppresses growth and invasion of GC cells through AKT pathway, suggesting that EGFR may represent a potential therapeutic target for this aggressive malignancy.
Collapse
|
Journal Article |
11 |
19 |
19
|
Wu Y, Niu Y, Zhong S, Liu H, Zhen Y, Saint-Leger D, Verschoore M. A preliminary investigation of the impact of oily skin on quality of life and concordance of self-perceived skin oiliness and skin surface lipids (sebum). Int J Cosmet Sci 2013; 35:442-7. [PMID: 23651406 DOI: 10.1111/ics.12063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/02/2013] [Indexed: 11/30/2022]
|
|
12 |
14 |
20
|
Sun H, Wang Z, Zhang Z, Xiao Q, Mawed S, Xu Z, Zhang X, Yang H, Zhu M, Xue M, Liu X, Zhang W, Zhen Y, Wang Q, Pan Y. Genomic signatures reveal selection of characteristics within and between Meishan pig populations. Anim Genet 2018; 49:119-126. [PMID: 29508928 DOI: 10.1111/age.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
The Chinese Meishan pig breed is well known for its high prolificacy. Moreover, this breed can be divided into three types based on their body size: big Meishan, middle Meishan (MMS) and small Meishan (SMS) pigs. Few studies have reported on the genetic signatures of Meishan pigs, particularly on a genome-wide scale. Exploring for genetic signatures could be quite valuable for revealing the genetic architecture of phenotypic variation. Thus, we performed research in two parts based on the genome reducing and sequencing data of 143 Meishan pigs (74 MMS pigs, 69 SMS pigs). First, we detected the selection signatures among all Meishan pigs studied using the relative extended haplotype homozygosity test. Second, we detected the selection signatures between MMS and SMS pigs using the cross-population extended haplotype homozygosity and FST methods. A total of 111 398 SNPs were identified from the sequenced genomes. In the population analysis, the most significant genes were associated with the mental development (RGMA), reproduction (HDAC4, FOXL2) and lipid metabolism (ACACB). From the cross-population analysis, we detected genes related to body weight (SPDEF, PACSIN1) in both methods. We suggest that rs341373351, located within the PACSIN1 gene, might be the causal variant. This study may have achieved consistency between selection signatures and characteristics within and between Meishan pig populations. These findings can provide insight into investigating the molecular background of high prolificacy and body size in pig.
Collapse
|
Journal Article |
7 |
14 |
21
|
Jiang X, Zhen Y. Cinnamamide, an antitumor agent with low cytotoxicity acting on matrix metalloproteinase. Anticancer Drugs 2000; 11:49-54. [PMID: 10757563 DOI: 10.1097/00001813-200001000-00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The antitumor activity of cinnamamide (CNM), an agent acting on matrix metalloproteinase (MMP), was investigated in the present study. CNM displayed low cytotoxicity. By the MTT assay the IC50 (50% inhibitory concentration) values of CNM on cell proliferation ranged from 1.29 to 1.94 mM in human oral epidermoid carcinoma KB cells, human hepatoma BEL-7402 cells and human fibrosarcoma HT-1080 cells. Moreover, the IC50 for human fetal lung 2BS cells reached 4.33 mM. The administration of CNM in the range of 50-150 mg/kg (i.p. or p.o.) showed moderate antitumor effects in mice. When administered i.p. or p.o., CNM (150 mg/kg) inhibited the growth of transplanted hepatoma 22 by 48.8 or 40.5%, respectively. At the dose of 100 mg/kg, CNM inhibited the growth of colon 26 carcinoma by 39.0% and that of Lewis lung carcinoma by 53.9%. In the Lewis lung carcinoma model, CNM at the dose of 100 mg/kg (i.p.) also reduced the lung metastasis by 59.1%. Gelatine zymography revealed that CNM was able to decrease the level of MMP-2 in conditioned medium of HT-1080 tumor cells in a concentration-dependent manner. These results indicate that CNM is an antitumor agent with low cytotoxicity acting on MMP and may serve as a lead compound in the development of antitumor drugs.
Collapse
|
|
25 |
11 |
22
|
Wei C, Zhao L, Liang H, Zhen Y, Han L. Recent advances in unraveling the molecular mechanisms and functions of HOXA11‑AS in human cancers and other diseases (Review). Oncol Rep 2020; 43:1737-1754. [PMID: 32236611 PMCID: PMC7160552 DOI: 10.3892/or.2020.7552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
A large number of previously published research articles have demonstrated that the expression levels of long noncoding RNAs (lncRNAs) are generally dysregulated, either through overexpression or underexpression, in cancer and other types of disease. As a recently discovered lncRNA, HOXA11 antisense RNA (HOXA11‑AS) is able to serve as an oncogenic or tumor‑suppressor gene and serves a vital role in the processes of proliferation, invasion, and migration of cancer cells. HOXA11‑AS appears to be a major factor contributing to epigenetic modification, and exerts transcriptional, post‑transcriptional, translational and post‑translational regulatory effects on genes through a variety of mechanisms; for example, by competing endogenous RNA (ceRNA) and a molecular scaffold mechanism. A number of reports have demonstrated that HOXA11‑AS functions as a protein scaffold for polycomb repressive complex 2 (PRC2), lysine‑specific histone demethylase 1 (LSD1) and DNA methyltransferase 1 (DNMT1) to perform epigenetic modifications on chromosomes in the nucleus. Furthermore, HOXA11‑AS is also located in the cytoplasm and can act as a ceRNA, which sponges miRNAs. In addition, HOXA11‑AS may be useful as a biomarker for the diagnosis and prognosis of cancer. In the present review article, the clinical value, phenotype and mechanism of HOXA11‑AS in a variety of tumors types are briefly summarized, as well as its clinical value in certain additional diseases. The perspective of the authors is that HOXA11‑AS may represent an effective tumor marker and therapeutic target for cancer diagnosis and therapy.
Collapse
|
Review |
5 |
11 |
23
|
Zhiqiang M, Chenggao F, Lei S, Zhen Y, Li Y, Yu W, Yuheng Z. Multiple Bi2Sr2-xBaxCuOy microstructures and the effect of element doping (Ba,La,Pb) on the 2:2:0:1 phase. PHYSICAL REVIEW. B, CONDENSED MATTER 1993; 47:14467-14475. [PMID: 10005798 DOI: 10.1103/physrevb.47.14467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
|
32 |
11 |
24
|
Luo L, Zhen Y, Peng D, Wei C, Zhang X, Liu X, Han L, Zhang Z. The role of N6-methyladenosine-modified non-coding RNAs in the pathological process of human cancer. Cell Death Discov 2022; 8:325. [PMID: 35851061 PMCID: PMC9293946 DOI: 10.1038/s41420-022-01113-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) account for the majority of the widespread transcripts of mammalian genomes. They rarely encode proteins and peptides, but their regulatory role is crucial in numerous physiological and pathological processes. The m6A (N6-methyladenosine) modification is one of the most common internal RNA modifications in eukaryotes and is associated with all aspects of RNA metabolism. Accumulating researches have indicated a close association between m6A modification and ncRNAs, and suggested m6A-modified ncRNAs played a crucial role in tumor progression. The correlation between m6A modification and ncRNAs offers a novel perspective for investigating the potential mechanisms of cancer pathological processes, which suggests that both m6A modification and ncRNAs are critical prognostic markers and therapeutic targets in numerous malignancies. In the present report, we summarized the interaction between m6A modification and ncRNA, emphasizing how their interaction regulates pathological processes in cancer.
Collapse
|
Review |
3 |
9 |
25
|
Wang Y, Xu N, Luo Q, Li Y, Sun L, Wang H, Xu K, Wang B, Zhen Y. In vivo assessment of chitosan/β-glycerophosphate as a new liquid embolic agent. Interv Neuroradiol 2011; 17:87-92. [PMID: 21561564 DOI: 10.1177/159101991101700114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/13/2011] [Indexed: 11/15/2022] Open
Abstract
We sought to assess the feasibility of using thermosensitive chitosan/β-glycerophosphate forembolotherapy. The renal arteries in nine rabbits were embolized with chitosan/β-glycero-phosphate. The animals were studied angiographically and sacrificed at one week (n = 3), four weeks (n = 3), and eight weeks (n = 3) after embolotherapy. Histology was obtained at these three time points. Delivery of chitosan/β-glycerophosphate was successful in all cases. Complete occlusion was achieved in all cases. No recanalization was observed in the follow-up angiograms. No untoward inflammatory reactions were observed in the target renal arteries and infarcted kidneys during the histological examinations. Our preliminary feasibility evaluation in rabbit renal arteries indicates that C/GP is a satisfactory embolization agent.
Collapse
|
|
14 |
9 |