1
|
Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, Jiang Y, Fei Y, Zhu C, Tan R, Jungblut P, Pei G, Dorhoi A, Yan Q, Zhang F, Zheng R, Liu S, Liang H, Liu Z, Yang H, Chen J, Wang P, Tang T, Peng W, Hu Z, Xu Z, Huang X, Wang J, Li H, Zhou Y, Liu F, Yan D, Kaufmann SHE, Chen C, Mao Z, Ge B. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 2018; 563:131-136. [PMID: 30356214 DOI: 10.1038/s41586-018-0629-6] [Citation(s) in RCA: 445] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/22/2018] [Indexed: 12/24/2022]
Abstract
Accurate repair of DNA double-stranded breaks by homologous recombination preserves genome integrity and inhibits tumorigenesis. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that activates innate immunity by initiating the STING-IRF3-type I IFN signalling cascade1,2. Recognition of ruptured micronuclei by cGAS links genome instability to the innate immune response3,4, but the potential involvement of cGAS in DNA repair remains unknown. Here we demonstrate that cGAS inhibits homologous recombination in mouse and human models. DNA damage induces nuclear translocation of cGAS in a manner that is dependent on importin-α, and the phosphorylation of cGAS at tyrosine 215-mediated by B-lymphoid tyrosine kinase-facilitates the cytosolic retention of cGAS. In the nucleus, cGAS is recruited to double-stranded breaks and interacts with PARP1 via poly(ADP-ribose). The cGAS-PARP1 interaction impedes the formation of the PARP1-Timeless complex, and thereby suppresses homologous recombination. We show that knockdown of cGAS suppresses DNA damage and inhibits tumour growth both in vitro and in vivo. We conclude that nuclear cGAS suppresses homologous-recombination-mediated repair and promotes tumour growth, and that cGAS therefore represents a potential target for cancer prevention and therapy.
Collapse
|
|
7 |
445 |
2
|
Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt EM, Ruddy DA, Prass CE, Schatzman RC, O'Neill R, Britton RS, Bacon BR, Sly WS. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci U S A 1998; 95:2492-7. [PMID: 9482913 PMCID: PMC19387 DOI: 10.1073/pnas.95.5.2492] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/1997] [Indexed: 02/06/2023] Open
Abstract
Hereditary hemochromatosis (HH) is a common autosomal recessive disease characterized by increased iron absorption and progressive iron storage that results in damage to major organs in the body. Recently, a candidate gene for HH called HFE encoding a major histocompatibility complex class I-like protein was identified by positional cloning. Nearly 90% of Caucasian HH patients have been found to be homozygous for the same mutation (C282Y) in the HFE gene. To test the hypothesis that the HFE gene is involved in regulation of iron homeostasis, we studied the effects of a targeted disruption of the murine homologue of the HFE gene. The HFE-deficient mice showed profound differences in parameters of iron homeostasis. Even on a standard diet, by 10 weeks of age, fasting transferrin saturation was significantly elevated compared with normal littermates (96 +/- 5% vs. 77 +/- 3%, P < 0.007), and hepatic iron concentration was 8-fold higher than that of wild-type littermates (2,071 +/- 450 vs. 255 +/- 23 microg/g dry wt, P < 0.002). Stainable hepatic iron in the HFE mutant mice was predominantly in hepatocytes in a periportal distribution. Iron concentrations in spleen, heart, and kidney were not significantly different. Erythroid parameters were normal, indicating that the anemia did not contribute to the increased iron storage. This study shows that the HFE protein is involved in the regulation of iron homeostasis and that mutations in this gene are responsible for HH. The knockout mouse model of HH will facilitate investigation into the pathogenesis of increased iron accumulation in HH and provide opportunities to evaluate therapeutic strategies for prevention or correction of iron overload.
Collapse
|
research-article |
27 |
421 |
3
|
Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K. Experimentally determined postspinel transformation boundary in Mg2SiO4using MgO as an internal pressure standard and its geophysical implications. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jb002562] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
21 |
288 |
4
|
Mao HK, Hemley RJ, Fei Y, Shu JF, Chen LC, Jephcoat AP, Wu Y, Bassett WA. Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3-perovskites to 30 GPa. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91jb00176] [Citation(s) in RCA: 263] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
34 |
263 |
5
|
Abstract
In situ synchrotron x-ray diffraction measurements of FeO at high pressures and high temperatures revealed that the high-pressure phase of FeO has the NiAs structure (B8). The lattice parameters of this NiAs phase at 96 gigapascals and 800 kelvin are a = 2.574(2) angstroms and c = 5.172(4) angstroms (the number in parentheses is the error in the last digit). Metallic behavior of the high-pressure phase is consistent with a covalently and metallically bonded NiAs structure of FeO. Transition to the NiAs structure of FeO would enhance oxygen solubility in molten iron. This transition thus provides a physiochemical basis for the incorporation of oxygen into the Earth's core.
Collapse
|
|
31 |
178 |
6
|
Stixrude L, Hemley RJ, Fei Y, Mao HK. Thermoelasticity of Silicate Perovskite and Magnesiowüstite and Stratification of the Earth's Mantle. Science 1992; 257:1099-101. [PMID: 17840278 DOI: 10.1126/science.257.5073.1099] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Analyses of x-ray-diffraction measurements on (Mg,Fe)SiO(3) perovskite and (Mg,Fe)O magnesiowüstite at simultaneous high temperature and pressure are used to determine pressure-volume-temperature equations of state and thermoelastic properties of these lower mantle minerals. Detailed comparison with the seismically observed density and bulk sound velocity profiles of the lower mantle does not support models of this region that assume compositions identical to that of the upper mantle. The data are consistent with lower mantle compositions consisting of nearly pure perovskite (>85 percent), which would indicate that the Earth's mantle is compositionally, and by implication, dynamically stratified.
Collapse
|
|
33 |
137 |
7
|
Fei Y, Prewitt CT, Mao HK, Bertka CM. Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars. Science 2010; 268:1892-4. [PMID: 17797532 DOI: 10.1126/science.268.5219.1892] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In situ x-ray diffraction measurements revealed that FeS, a possible core material for the terrestrial planets, transforms to a hexagonal NiAs superstructure with axial ratio (c/a) close to the ideal close-packing value of 1.63 at high pressure and high temperature. The high-pressure-temperature phase has shorter Fe-Fe distances than the low-pressure phase. Significant shortening of the Fe-Fe distance would lead to metallization of FeS, resulting in fundamental changes in physical properties of FeS at high pressure and temperature. Calculations using the density of the high-pressure-temperature FeS phase indicate that the martian core-mantle boundary occurs within the silicate perovskite stability field.
Collapse
|
Journal Article |
15 |
136 |
8
|
Ohashi T, Boggs S, Robbins P, Bahnson A, Patrene K, Wei FS, Wei JF, Li J, Lucht L, Fei Y. Efficient transfer and sustained high expression of the human glucocerebrosidase gene in mice and their functional macrophages following transplantation of bone marrow transduced by a retroviral vector. Proc Natl Acad Sci U S A 1992; 89:11332-6. [PMID: 1454816 PMCID: PMC50544 DOI: 10.1073/pnas.89.23.11332] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A recombinant retroviral vector (MFG-GC) was used to study the efficiency of transduction of the human gene encoding glucocerebrosidase (GC; D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45), in mouse hematopoietic stem cells and expression in their progeny. Transfer of the GC gene to CFU-S (spleen cell colony-forming units) in primary and secondary recipients was virtually 100%. In mice 4-7 months after transplantation, highly efficient transfer of the human gene to bone marrow cells capable of long-term reconstitution was confirmed by detection of one or two copies per mouse genome in hematopoietic tissues and in cultures of pure macrophages. Expression of the human gene exceeded endogenous activity by several fold in primary and secondary CFU-S, tissues from long-term reconstituted mice, and explanted macrophages cultures. These studies are evidence of the feasibility of efficient transfer of the GC gene to hematopoietic stem cells and expression in their progeny for many months after reconstitution. The results of this study strengthen the rationale for gene therapy as a treatment for Gaucher disease.
Collapse
|
research-article |
33 |
136 |
9
|
Mackenzie B, Loo DD, Fei Y, Liu WJ, Ganapathy V, Leibach FH, Wright EM. Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J Biol Chem 1996; 271:5430-7. [PMID: 8621398 DOI: 10.1074/jbc.271.10.5430] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The hPEPT1 cDNA cloned from human intestine (Liang, R., Fei, Y.-J., Prasad, P. D., Ramamoorthy, S., Han, H., Yang-Feng, T. L., Hediger, M. A., Ganapathy, V., and Leibach, F. H. (1995) J. Biol. Chem. 270, 6456-6463) encodes a H+/oligopeptide cotransporter. Using two-microelectrode voltage-clamp in Xenopus oocytes expressing hPEPT1, we have investigated the transport mechanisms of hPEPT1 with regard to voltage dependence, steady-state kinetics, and transient charge movements. The currents evoked by 20 mM glycyl-sarcosine (Gly-Sar) at pH 5.0 were dependent upon membrane potential (Vm) between -150 mV and +50 mV. Gly-Sar-evoked currents increased hyperbolically with increasing extracellular [H+], with Hill coefficient approximately 1, and the apparent affinity constant (K0.5H) for H+ was in the range of 0.05 1 microM. K0.5 for Gly-Sar (K0.5GS) was dependent upon Vm and pH; at -50 mV, K0.5H was minimal (approximately 0.7 mM) at pH 6.0. Following step-changes in Vm, in the absence of Gly-Sar, hPEPT1 exhibited H+-dependent transient currents with characteristics similar to those of Na+-coupled transporters. These charge movements (which relaxed with time constants of 2-10 ms) were fitted to Boltzmann relations with maximal charge (Qmax) of up to 12 nC; the apparent valence was determined to be approximately 1. Qmax is an index of the level of transporter expression which for hPEPT1 was in the order of 1011/oocyte. In general our data are consistent with an ordered, simultaneous transport model for hPEPT1 in which H+ binds first.
Collapse
|
Comparative Study |
29 |
122 |
10
|
Ding Y, Fei Y, Lu B. Emerging New Concepts of Degrader Technologies. Trends Pharmacol Sci 2020; 41:464-474. [PMID: 32416934 PMCID: PMC7177145 DOI: 10.1016/j.tips.2020.04.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Traditional drug discovery focuses on identifying direct inhibitors of target proteins. This typically relies on a measurable biochemical readout and accessible binding sites whose occupancy influences the function of the target protein. These requirements preclude many disease-causing proteins from being 'druggable' targets, and these proteins are categorized as 'undruggable'. The proteolysis-targeting chimera (PROTAC) technology provides powerful tools to degrade these undruggable targets and has become a promising approach for drug discovery. However, the PROTAC technology has some limitations, and emerging new degrader technologies may greatly broaden the spectrum of targets that could be selectively degraded by harnessing a second major degradation pathway in cells. We review key emerging technologies that exploit the lysosomal degradation pathway and discuss their potential applications and limitations.
Collapse
|
Review |
5 |
118 |
11
|
Abstract
Many diseases are caused by aberrant accumulation of certain proteins that are misfolded and cytotoxic, and lowering the level of these proteins provides promising treatment strategies for these diseases. We hypothesized that compounds that interact with both the disease-causing protein and the phagophore (autophagosome precursor) protein LC3 may tether the former to phagophores for subsequent autophagic degradation. If true, this autophagosome-tethering compound (ATTEC) concept could be applied to many disease-causing proteins to treat diseases. We tested this hypothesis in the scenario of Huntington disease (HD), a neurodegenerative disorder that is caused by the mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) stretch. In our recent study, we designed a small-molecule microarray-based screening and identified four mHTT-lowering compounds that interact with both mHTT and LC3, but not wild-type (WT) HTT. These compounds target mHTT to phagophores for autophagic degradation without influencing the WT HTT level, and rescue HD-relevant phenotypes in HD cells and in vivo in the fly and mouse HD models. Interestingly, these compounds interact with the expanded polyQ stretch directly and are able to reduce other disease-causing proteins with expanded polyQ. In summary, our study provides the initial validation of lowering mHTT by ATTEC, providing entry points to new treatment strategies of HD and similar diseases.
Collapse
|
Review |
6 |
114 |
12
|
Bayramian A, Armstrong P, Ault E, Beach R, Bibeau C, Caird J, Campbell R, Chai B, Dawson J, Ebbers C, Erlandson A, Fei Y, Freitas B, Kent R, Liao Z, Ladran T, Menapace J, Molander B, Payne S, Peterson N, Randles M, Schaffers K, Sutton S, Tassano J, Telford S, Utterback E. The Mercury Project: A High Average Power, Gas-Cooled Laser for Inertial Fusion Energy Development. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst07-a1517] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
88 |
13
|
Sanloup C, Guyot F, Gillet P, Fei Y. Physical properties of liquid Fe alloys at high pressure and their bearings on the nature of metallic planetary cores. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jb000808] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
23 |
59 |
14
|
Bertka CM, Fei Y. Implications of Mars Pathfinder data for the accretion history of the terrestrial planets. Science 1998; 281:1838-40. [PMID: 9743493 DOI: 10.1126/science.281.5384.1838] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Accretion models of the terrestrial planets often assume planetary bulk compositions with nonvolatile element abundance ratios equivalent to those of C1 carbonaceous chondrites. The moment of inertia factor of Mars reported by the Pathfinder team is inconsistent with a bulk planet C1 Fe/Si ratio or Fe content, which suggests that C1 chondrite accretion models are insufficient to explain the formation of Mars and the other terrestrial planets. Future planetary accretion models will have to account for variations in bulk Fe/Si ratios among the terrestrial planets.
Collapse
|
|
27 |
58 |
15
|
Ding Y, Xing D, Fei Y, Lu B. Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev 2022; 51:8832-8876. [PMID: 36218065 PMCID: PMC9620493 DOI: 10.1039/d2cs00624c] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) provides unprecedented opportunities for drug discovery. While the proteolysis-targeting chimera (PROTAC) technology has already entered clinical trials and changed the landscape of small-molecule drugs, new degrader technologies harnessing alternative degradation machineries, especially lysosomal pathways, have emerged and broadened the spectrum of degradable targets. We have recently proposed the concept of autophagy-tethering compounds (ATTECs) that hijack the autophagy protein microtubule-associated protein 1A/1B light chain 3 (LC3) for targeted degradation. Other groups also reported degrader technologies engaging lysosomal pathways through different mechanisms including AUTACs, AUTOTACs, LYTACs and MoDE-As. In this review, we analyse and discuss ATTECs along with other lysosomal-relevant degrader technologies. Finally, we will briefly summarize the current status of these degrader technologies and envision possible future studies.
Collapse
|
Review |
3 |
57 |
16
|
|
|
32 |
56 |
17
|
Landry JP, Fei Y, Zhu X. Simultaneous measurement of 10,000 protein-ligand affinity constants using microarray-based kinetic constant assays. Assay Drug Dev Technol 2011; 10:250-9. [PMID: 22192305 DOI: 10.1089/adt.2011.0406] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence-based endpoint detection of microarrays with 10,000 or more molecular targets is a most useful tool for high-throughput profiling of biomolecular interactions, including screening large molecular libraries for novel protein ligands. However, endpoint fluorescence data such as images of reacted microarrays contain little information on kinetic rate constants, and the reliability of endpoint data as measures of binding affinity depends on reaction conditions and postreaction processing. We here report a simultaneous measurement of binding curves of a protein probe with 10,000 molecular targets in a microarray with an ellipsometry-based (label-free) optical scanner. The reaction rate constants extracted from these curves (k(on), k(off), and k(a)=k(on)/k(off)) are used to characterize the probe-target interactions instead of the endpoints. This work advances the microarray technology to a new milestone, namely, from an endpoint assay to a kinetic constant assay platform. The throughput of this binding curve assay platform is comparable to those at the National Institutes of Health Molecular Library Screening Centers, making it a practical method in screening compound libraries for novel ligands and for system-wide affinity profiling of proteins, viruses, or whole cells against diverse molecular targets.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
54 |
18
|
Liu H, Moura-Alves P, Pei G, Mollenkopf HJ, Hurwitz R, Wu X, Wang F, Liu S, Ma M, Fei Y, Zhu C, Koehler AB, Oberbeck-Mueller D, Hahnke K, Klemm M, Guhlich-Bornhof U, Ge B, Tuukkanen A, Kolbe M, Dorhoi A, Kaufmann SH. cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity. EMBO Rep 2019; 20:e46293. [PMID: 30872316 PMCID: PMC6446192 DOI: 10.15252/embr.201846293] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Abstract
Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING-dependent release of type I IFN Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe- and danger-associated molecular patterns that contribute to host-microbe crosstalk during health and disease.
Collapse
|
research-article |
6 |
52 |
19
|
Chen H, Lin W, Wang Q, Wu Q, Wang L, Fei Y, Zheng W, Fei G, Li P, Li YZ, Zhang W, Zhao Y, Zeng X, Zhang F. IgG4-related disease in a Chinese cohort: a prospective study. Scand J Rheumatol 2013; 43:70-4. [DOI: 10.3109/03009742.2013.822094] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
12 |
46 |
20
|
Fei Y, Hughes TE. Transgenic expression of the jellyfish green fluorescent protein in the cone photoreceptors of the mouse. Vis Neurosci 2001; 18:615-23. [PMID: 11829307 DOI: 10.1017/s0952523801184117] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The goal of this study was to determine whether the jellyfish green fluorescent protein (GFP) could be used in transgenic mice to label and purify cone photoreceptors from the living retina. We created a transgene containing the 5' regulatory sequence of the human red pigment gene (pR6.5 lacZ clone; kindly provided by J. Nathans & Y. Wang), fused to the GFP coding sequence. This transgene was used to generate seven lines of PCR-positive founders. Three of the lines had bright green fluorescent cone photoreceptors. The GFP fills the entire cell. Two mouse lines had only a few (-10-100) fluorescent cells per retina, and one line (R6.85933) had many thousands. In the latter, double labeling of the cones with RITC-conjugated peanut agglutinin reveals that in the ventral retina a small proportion of the cones express GFP, while in the dorsal retina the majority do. Cells dissociated from the retinae of line R6.85933 continue to fluoresce and can be readily detected and enriched with flow cytometry. The signal provides a log unit of separation between the fluorescent cone soma and the remaining retinal cells. Roughly 3% of the cells are this fluorescent, and it is possible to purify up to 30,000 cells from one mouse. RT-PCR analysis of the mRNA from these isolated cells detects both the middle and short wavelength opsins with little if any contamination from rhodopsin.
Collapse
|
|
24 |
45 |
21
|
Fei Y, Sun YS, Li Y, Lau K, Yu H, Chokhawala HA, Huang S, Landry JP, Chen X, Zhu X. Fluorescent labeling agents change binding profiles of glycan-binding proteins. MOLECULAR BIOSYSTEMS 2011; 7:3343-52. [PMID: 22009201 DOI: 10.1039/c1mb05332a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions of glycan-binding proteins (GBPs) with glycans are essential in cell adhesion, bacterial/viral infection, and cellular signaling pathways. Experimental characterization of these interactions based on glycan microarrays typically involves (1) labeling GBPs directly with fluorescent reagents before incubation with the microarrays, or (2) labeling GBPs with biotin before the incubation and detecting the captured GBPs after the incubation using fluorescently labeled streptavidin, or (3) detecting the captured GBPs after the incubation using fluorescently labeled antibodies raised against the GBPs. The fluorescent signal is mostly measured ex situ after excess fluorescent materials are washed off. In this study, by using a label-free optical scanner for glycan microarray detection, we measured binding curves of 7 plant lectins to 24 glycans: four β1-4-linked galactosides, three β1-3-linked galactosides, one β-linked galactoside, one α-linked N-acetylgalactosaminide, eight α2-3-linked sialosides, and seven α2-6-linked sialosides. From association and dissociation constants deduced by global-fitting the binding curves, we found that (1) labeling lectins directly with fluorescent agents change binding profiles of lectins, in some cases by orders of magnitude; (2) those lectin-glycan binding reactions characterized with large dissociation rates, though biologically relevant, are easily missed or deemed insignificant in ex situ fluorescence-based assays as most captured lectins are washed off before detection. This study highlights the importance of label-free real-time detection of protein-ligand interactions and the potential pitfall in interpreting fluorescence-based assays for characterization of protein-glycan interactions.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
43 |
22
|
Rausch JL, Johnson ME, Corley KM, Hobby HM, Shendarkar N, Fei Y, Ganapathy V, Leibach FH. Depressed patients have higher body temperature: 5-HT transporter long promoter region effects. Neuropsychobiology 2003; 47:120-7. [PMID: 12759553 DOI: 10.1159/000070579] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depression has been associated with a decrease in intracellular serotonin (5-HT) reuptake through its transporter, SERT. The 5-HT transporter long promoter region (5-HTTLPR) deletion in the SERT gene has also been associated with a decrease in 5-HT reuptake. Conversely, increases in extracellular 5-HT have been associated with increased temperature. It has not been established, however, whether body temperature in depressed patients is different from controls. Here, we hypothesized that temperature would be increased in depressed patients as well as in those with the 5-HTTLPR deletion. METHODS A strict oral temperature protocol employed single, cross-sectional, naturalistic time-of-day temperature measures in 125 subjects (46 normal controls, 79 outpatients with major depression). Controls and depressed patients were free of psychotropic medication and classified by the Structured Clinical Interview for Psychiatric Diagnoses. Eighty-one of the subjects (68 depressed, 13 normal) were additionally genotyped for 5-HTTLPR polymorphisms. RESULTS Depressed patients had a significantly higher uncorrected body temperature (mean +/- SD 98.38 +/- 0.61 degrees F) than controls (mean +/- SD 98.13 +/- 0.59 degrees F; F = 4.8, p = 0.03). An age (F = 14.09, p < 0.001) and time-of-day (11.4, p = 0.001) correction revealed a more robust (F = 14.02, p < 0.001) difference between depressed patients (mean +/- SD 98.44 +/- 0.55 degrees F) and controls (mean +/- SD 98.02 +/- 0.56 degrees F). When normalized for age and circadian differences between subjects, random, outpatient oral temperatures had a sensitivity of 63% and a specificity of 76% in identifying the depressed subjects from the controls. Independent of depression, subjects with the 5-HTTLPR deletion (short SERT allele) were warmer (mean +/- SD 98.33 +/- 0.65 degrees F) than those lacking the short allele on either chromosome (mean +/- SD 97.91 +/- 0.69 degrees F; F = 7.0, p = 0.01). However, the genotype did not explain the temperature differences between controls and depressed patients. CONCLUSION This is the first demonstration of an increased daytime body temperature in cases with major depression. Subjects with a corrected temperature above 98.3 degrees F were 2.6-fold more likely to be depressed. The results may strengthen the hypothesis of an inflammatory component of depression. In addition, the findings suggest a potential link between genetic differences in 5-HT transport and body temperature.
Collapse
|
|
22 |
40 |
23
|
Fei Y, Sun YS, Li Y, Yu H, Lau K, Landry JP, Luo Z, Baumgarth N, Chen X, Zhu X. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform. Biomolecules 2015; 5:1480-98. [PMID: 26193329 PMCID: PMC4598760 DOI: 10.3390/biom5031480] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/09/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
36 |
24
|
Wang J, Zhu C, Song D, Xia R, Yu W, Dang Y, Fei Y, Yu L, Wu J. Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity. Cell Death Discov 2017; 3:17034. [PMID: 28698806 PMCID: PMC5502302 DOI: 10.1038/cddiscovery.2017.34] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/12/2017] [Accepted: 05/07/2017] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are ADP-ribosylating enzymes and play important roles in a variety of cellular processes. Most small-molecule PARP inhibitors developed to date have been against PARP1, a poly-ADP-ribose transferase, and suffer from poor selectivity. PARP16, a mono-ADP-ribose transferase, has recently emerged as a potential therapeutic target, but its inhibitor development has trailed behind. Here we newly characterized epigallocatechin-3-gallate (EGCG) as a potential inhibitor of PARP16. We found that EGCG was associated with PARP16 and dramatically inhibited its activity in vitro. Moreover, EGCG suppressed the ER stress-induced phosphorylation of PERK and the transcription of unfolded protein response-related genes, leading to dramatically increase of cancer cells apoptosis under ER stress conditions, which was dependent on PARP16. These findings newly characterized EGCG as a potential inhibitor of PARP16, which can enhance the ER stress-induced cancer cell apoptosis, suggesting that a combination of EGCG and ER stress-induced agents might represent a novel approach for cancer therapy or chemoprevention.
Collapse
|
Journal Article |
8 |
32 |
25
|
Fei Y, Hu J, Li WQ, Wang W, Zong GQ. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis. J Thromb Haemost 2017; 15:439-445. [PMID: 27960048 DOI: 10.1111/jth.13588] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/18/2022]
Abstract
Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. SUMMARY Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10-20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability.
Collapse
|
|
8 |
31 |