1
|
Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, Colman A, Campbell KH. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 2000; 407:86-90. [PMID: 10993078 DOI: 10.1038/35024082] [Citation(s) in RCA: 813] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the first report of live mammals produced by nuclear transfer from a cultured differentiated cell population in 1995 (ref. 1), successful development has been obtained in sheep, cattle, mice and goats using a variety of somatic cell types as nuclear donors. The methodology used for embryo reconstruction in each of these species is essentially similar: diploid donor nuclei have been transplanted into enucleated MII oocytes that are activated on, or after transfer. In sheep and goat pre-activated oocytes have also proved successful as cytoplast recipients. The reconstructed embryos are then cultured and selected embryos transferred to surrogate recipients for development to term. In pigs, nuclear transfer has been significantly less successful; a single piglet was reported after transfer of a blastomere nucleus from a four-cell embryo to an enucleated oocyte; however, no live offspring were obtained in studies using somatic cells such as diploid or mitotic fetal fibroblasts as nuclear donors. The development of embryos reconstructed by nuclear transfer is dependent upon a range of factors. Here we investigate some of these factors and report the successful production of cloned piglets from a cultured adult somatic cell population using a new nuclear transfer procedure.
Collapse
|
|
25 |
813 |
2
|
Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283:1321-5. [PMID: 10037601 DOI: 10.1126/science.283.5406.1321] [Citation(s) in RCA: 776] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although broken chromosomes can induce apoptosis, natural chromosome ends (telomeres) do not trigger this response. It is shown that this suppression of apoptosis involves the telomeric-repeat binding factor 2 (TRF2). Inhibition of TRF2 resulted in apoptosis in a subset of mammalian cell types. The response was mediated by p53 and the ATM (ataxia telangiectasia mutated) kinase, consistent with activation of a DNA damage checkpoint. Apoptosis was not due to rupture of dicentric chromosomes formed by end-to-end fusion, indicating that telomeres lacking TRF2 directly signal apoptosis, possibly because they resemble damaged DNA. Thus, in some cells, telomere shortening may signal cell death rather than senescence.
Collapse
|
|
26 |
776 |
3
|
Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML. Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71:1842-9. [PMID: 9032314 PMCID: PMC191254 DOI: 10.1128/jvi.71.3.1842-1849.1997] [Citation(s) in RCA: 678] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two barriers prevent adenovirus-based vectors from having wide application. One is the difficulty of making new adenoviruses, and the second is the strong immunological reaction to viral proteins. Here we describe uses of Cre-lox recombination to overcome these problems. First, we demonstrate a simple method for constructing E1-substituted adenoviruses. Second, we demonstrate a method to construct adenovirus vectors carrying recombinant genes in place of all of the viral genes, so-called gutless adenovirus vectors. The pivotal feature in each method is the use of a negatively selected adenovirus named psi5. We engineered a cis-acting selection into psi5 by flanking its packaging site with loxP sites. When psi5 was grown in cells making a high level of Cre recombinase, the packaging site was deleted by recombination and the yield of psi5 was reduced to 5% of the wild-type level. To make a new E1-substituted virus, we used psi5 as a donor virus and recombined it with a shuttle vector via a loxP site. The resulting recombinant virus has a single loxP site next to the packaging site and therefore outgrows psi5 in the presence of Cre recombinase. To make a gutless virus, we used psi5 as a helper virus. The only viral sequences included in the gutless vector are those needed in cis for its replication and packaging. We found that a loxP site next to the packaging site of the gutless virus was necessary to neutralize homologous recombination between psi5 and the gutless viruses within their packaging domains.
Collapse
|
research-article |
28 |
678 |
4
|
Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 2000; 15:170-82. [PMID: 10673325 DOI: 10.1006/mcne.1999.0814] [Citation(s) in RCA: 623] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activating transcription factor 3 (ATF3), a member of ATF/CREB family of transcription factors, is induced in a variety of stressed tissue. ATF3 regulates transcription by binding to DNA sites as a homodimer or heterodimer with Jun proteins. The purpose of this study was to examine the expression and regulation of ATF3 after axonal injury in neurons in dorsal root ganglia (DRG) and spinal cord. In naive rats, ATF3 was not expressed in the DRG and spinal cord. Following the cut of peripheral nerve, ATF3 was immediately induced in virtually all DRG neurons and motoneurons that were axotomized, and the time course of induction was dependent on the distance between the injury site and the cell body. Double labeling using immunohistochemistry revealed that the population of DRG neurons expressing ATF3 included those expressing c-jun, and in motoneurons ATF3 and c-jun were concurrently expressed after axotomy. In contrast to c-jun, ATF3 was not induced transsynaptically in spinal dorsal horn neurons. We conclude that ATF3 is specifically induced in sensory and motoneurons in the spinal cord following nerve injury and should be regarded as an unique neuronal marker of nerve injury in the nervous system.
Collapse
|
|
25 |
623 |
5
|
Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci U S A 1995; 92:1401-5. [PMID: 7877990 PMCID: PMC42527 DOI: 10.1073/pnas.92.5.1401] [Citation(s) in RCA: 479] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recombinant adenoviruses containing the canine factor IX (FIX) cDNA were directly introduced in the hind leg muscle of mice. We show that (i) in nude mice, high expression (1-5 micrograms/ml in plasma) of FIX protein can be detected for > 300 days; (ii) in contrast, expression of FIX protein was transient (7-10 days) in normal mice; (iii) CD8+ lymphocytes could be detected within 3 days in the infected muscle tissue; (iv) use of beta 2-microglobulin and immunoglobulin M heavy chain "knockout" mice showed that lack of sustained expression of FIX protein is due to cell-mediated and humoral immune responses; (v) normal mice, once infected with recombinant adenovirus, could not be reinfected efficiently for at least 30 days due to neutralizing viral antibodies; and, finally, (vi) using immunosuppressive drugs, some normal mice can be tolerized to produce and secrete FIX protein for > 5 months. We conclude that currently available adenoviral vectors have serious limitations for use for long-term gene therapy.
Collapse
|
research-article |
30 |
479 |
6
|
O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, Hirsch B, Gennery A, Palmer SE, Seidel J, Gatti RA, Varon R, Oettinger MA, Neitzel H, Jeggo PA, Concannon P. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 2001; 8:1175-85. [PMID: 11779494 DOI: 10.1016/s1097-2765(01)00408-7] [Citation(s) in RCA: 373] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA ligase IV functions in DNA nonhomologous end-joining and V(D)J recombination. Four patients with features including immunodeficiency and developmental and growth delay were found to have mutations in the gene encoding DNA ligase IV (LIG4). Their clinical phenotype closely resembles the DNA damage response disorder, Nijmegen breakage syndrome (NBS). Some of the mutations identified in the patients directly disrupt the ligase domain while others impair the interaction between DNA ligase IV and Xrcc-4. Cell lines from the patients show pronounced radiosensitivity. Unlike NBS cell lines, they show normal cell cycle checkpoint responses but impaired DNA double-strand break rejoining. An unexpected V(D)J recombination phenotype is observed involving a small decrease in rejoining frequency coupled with elevated imprecision at signal junctions.
Collapse
|
|
24 |
373 |
7
|
Dai Y, Zhang Y, Li Q, Nan C. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(02)00582-1] [Citation(s) in RCA: 351] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
23 |
351 |
8
|
Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 2008; 16:939-46. [PMID: 18042587 DOI: 10.1177/0961203307084158] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules of 21-24 nt that regulate the expression of target genes in a post-transcriptional manner. Evidence indicates that miRNAs play essential roles in embryogenesis, cell differentiation and pathogenesis of human diseases. This study describes a comparison between the miRNA profile of the systemic lupus erythematosus (SLE) patients and the controls to develop further understanding of the pathogenesis of SLE. Peripheral blood mononuclear cells were isolated from blood samples of 23 SLE patients, 10 idiopathic thrombocytopenic purpura patients and 10 healthy controls. The miRNA microarray chip analysis identified 16 miRNAs differentially expressed in SLE. The chip results were confirmed by northern blot analysis. This work indicates that miRNAs are potential diagnosis biomarkers and probable factors involved in the pathogenesis of SLE.
Collapse
|
Journal Article |
17 |
261 |
9
|
Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV, Dai Y. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 2012; 31:4619-29. [PMID: 22249256 PMCID: PMC4157820 DOI: 10.1038/onc.2011.612] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/26/2011] [Accepted: 11/28/2011] [Indexed: 12/15/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial program for the invasion and metastasis of epithelial tumors that involves loss of cell-cell adhesion and increased cell mobility; however, mechanisms underlying this transition are not fully elucidated. Here, we propose a novel mechanism through which the nicotinamide adenine dinucleotide-dependent histone deacetylase SIRT1 regulates EMT in prostate cancer cells through cooperation with the EMT inducing transcription factor ZEB1. We found that forced expression of SIRT1 in non-transformed PZ-HPV-7 prostate epithelial cells disrupts the epithelial morphology concomitant with decreased expression of the epithelial marker, E-cadherin, and increased expression of mesenchymal markers. In contrast, silencing SIRT1 in metastatic prostate tumor cells restores cell-cell adhesion and induces a shift toward an epithelial morphology concomitant with increased expression of E-cadherin and decreased expression of mesenchymal markers. We also found that SIRT1 has a physiologically relevant role in endogenous EMT induced by EGF signaling in prostate cancer cells. We propose that the regulation of EMT by SIRT1 involves modulation of, and cooperation with, the EMT inducing transcription factor ZEB1. Specifically, we show that SIRT1 silencing reduces expression of ZEB1 and that SIRT1 is recruited to the E-cadherin proximal promoter by ZEB1 to deacetylate histone H3 and to reduce binding of RNA polymerase II, ultimately suppressing E-cadherin transcription. We thus identify a necessary role for ZEB1 in SIRT1-mediated EMT. Finally, we show that reduction of SIRT1 decreases prostate cancer cell migration in vitro and metastasis in vivo in immunodeficient mice, which is largely independent of any general effects of SIRT1 on prostate cancer growth and survival. We therefore identify SIRT1 as a positive regulator of EMT and metastatic growth of prostate cancer cells and our findings implicate overexpressed SIRT1 as a potential therapeutic target to reverse EMT and to prevent prostate cancer progression.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
257 |
10
|
Dinnyés A, Dai Y, Jiang S, Yang X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63:513-8. [PMID: 10906058 DOI: 10.1095/biolreprod63.2.513] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Successful cryopreservation of mammalian oocytes would provide a steady source of materials for nuclear transfer and in vitro embryo production. Our goal was to develop an effective vitrification protocol to cryopreserve bovine oocytes for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. Bovine oocytes matured in vitro were placed in 4% ethylene glycol (EG) in TCM 199 plus 20% fetal bovine serum (FBS) at 39 degrees C for 12-15 min, and then transferred to a vitrification solution (35% EG, 5% polyvinyl-pyrrolidone, 0.4 M trehalose in TCM 199 and 20% FBS). Oocytes were vitrified in microdrops on a precooled (-150 degrees C) metal surface (solid-surface vitrification). The vitrified microdrops were stored in liquid nitrogen and were either immediately thawed or were thawed after storage for 2-3 wk. Surviving oocytes were subjected to 1) parthenogenetic activation, 2) in vitro fertilization, or 3) nuclear transfer with cultured adult fibroblast cells. Treated oocytes were cultured in KSOM containing BSA or FBS for 9 to 10 days. Embryo development rates were recorded daily and morphologically high-quality blastocysts were cryopreserved for nuclear transfer-derived embryos at Day 7 or Day 8 of culture. Immediate survival of vitrified/thawed oocytes varied between 77% and 86%. Cleavage and blastocyst development rates of vitrified oocytes following in vitro fertilization or activation were lower than those of the controls. For nuclear transfer, however, vitrified oocytes supported embryonic development as equally well as fresh oocytes.
Collapse
|
|
25 |
257 |
11
|
Dai Y, Roman M, Naviaux RK, Verma IM. Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo. Proc Natl Acad Sci U S A 1992; 89:10892-5. [PMID: 1332058 PMCID: PMC50448 DOI: 10.1073/pnas.89.22.10892] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have explored the use of primary myoblasts as a somatic tissue for gene therapy of acquired and inherited diseases where systemic delivery of a gene product may have therapeutic effects. Mouse primary myoblasts were infected with replication-defective retroviruses expressing canine factor IX cDNA under the control of a mouse muscle creatine kinase enhancer and human cytomegalovirus promoter. The infected myoblasts were injected into the hindlegs of recipient mice and levels of secreted factor IX protein were monitored in the plasma. We report sustained expression of factor IX protein for over 6 months without any apparent adverse effect on the recipient mice.
Collapse
|
research-article |
33 |
241 |
12
|
Dai Y, Rashba-Step J, Cederbaum AI. Stable expression of human cytochrome P4502E1 in HepG2 cells: characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry 1993; 32:6928-37. [PMID: 7687464 DOI: 10.1021/bi00078a017] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Experiments were carried out to stably and constitutively express the coding sequence of the human cytochrome P4502E1 in HepG2, a human-hepatoma-derived cell line, by recombinant retroviral expression. Southern blot analysis showed a successful integration of a single copy of unaltered viral DNA into the genome of each transduced clone tested. Northern blot analysis showed that the transduced clones produced an RNA species which hybridized to the CYP2E1 cDNA probe. Western blot analysis using anti-human P4502E1 IgG indicated that the transduced clones produced a protein band with molecular weight of 54 000. Microsomes from transduced clones were catalytically active with p-nitrophenol, dimethylnitrosamine, aniline, and ethanol as substrates; little or no activity was found with control clones. Oxidation of p-nitrophenol was inhibited by anti-human P4502E1 IgG, diethyl dithiocarbamate, 4-methylpyrazole, and ethanol. ESR spectroscopy showed that microsomes from clone MV2E1-9 produced superoxide radical. Rates were an order of magnitude higher than that for control microsomes, most likely reflecting the loose coupling associated with P4502E1. The rate of H2O2 production by microsomes from MV2E1-9 was 2-fold greater than that of control clones. The elevated rate of H2O2 production in clone MV2E1-9 is about half the rate of superoxide radical production, suggesting that this H2O2 is largely derived from superoxide radical dismutation. Microsomal lipid peroxidation was determined using ferric-ATP as the iron catalyst. When the concentration of iron was "high" (0.025 mM), rates of production of thiobarbituric acid reactive components were identical for microsomes from MV2E1-9 and control clones. However, when the concentration of iron was lowered to 0.005 mM, control clones did not display lipid peroxidation, whereas microsomes from MV2E1-9 were reactive. This peroxidation was sensitive to antioxidants such as trolox, propyl gallate, and glutathione but not to catalase or superoxide dismutase. Rates of superoxide and H2O2 production and of lipid peroxidation were 7-20-fold higher on a per nanomole of P450 basis with clone MV2E1-9 compared to human liver microsomes, indicating that the human P4502E1 is especially reactive in production of reactive oxygen intermediates and in catalysis of lipid peroxidation.
Collapse
|
|
32 |
181 |
13
|
Ahmad QR, Allen RC, Andersen TC, Anglin JD, Bühler G, Barton JC, Beier EW, Bercovitch M, Bigu J, Biller S, Black RA, Blevis I, Boardman RJ, Boger J, Bonvin E, Boulay MG, Bowler MG, Bowles TJ, Brice SJ, Browne MC, Bullard TV, Burritt TH, Cameron K, Cameron J, Chan YD, Chen M, Chen HH, Chen X, Chon MC, Cleveland BT, Clifford ET, Cowan JH, Cowen DF, Cox GA, Dai Y, Dai X, Dalnoki-Veress F, Davidson WF, Doe PJ, Doucas G, Dragowsky MR, Duba CA, Duncan FA, Dunmore J, Earle ED, Elliott SR, Evans HC, Ewan GT, Farine J, Fergani H, Ferraris AP, Ford RJ, Fowler MM, Frame K, Frank ED, Frati W, Germani JV, Gil S, Goldschmidt A, Grant DR, Hahn RL, Hallin AL, Hallman ED, Hamer A, Hamian AA, Haq RU, Hargrove CK, Harvey PJ, Hazama R, Heaton R, Heeger KM, Heintzelman WJ, Heise J, Helmer RL, Hepburn JD, Heron H, Hewett J, Hime A, Howe M, Hykawy JG, Isaac MC, Jagam P, Jelley NA, Jillings C, Jonkmans G, Karn J, Keener PT, Kirch K, Klein JR, Knox AB, Komar RJ, Kouzes R, Kutter T, Kyba CC, Law J, Lawson IT, Lay M, Lee HW, Lesko KT, Leslie JR, Levine I, Locke W, Lowry MM, Luoma S, Lyon J, Majerus S, Mak HB, Marino AD, McCauley N, McDonald AB, McDonald DS, McFarlane K, McGregor G, McLatchie W, Meijer Drees R, Mes H, Mifflin C, Miller GG, Milton G, Moffat BA, Moorhead M, Nally CW, Neubauer MS, Newcomer FM, Ng HS, Noble AJ, Norman EB, Novikov VM, O'Neill M, Okada CE, Ollerhead RW, Omori M, Orrell JL, Oser SM, Poon AW, Radcliffe TJ, Roberge A, Robertson BC, Robertson RG, Rowley JK, Rusu VL, Saettler E, Schaffer KK, Schuelke A, Schwendener MH, Seifert H, Shatkay M, Simpson JJ, Sinclair D, Skensved P, Smith AR, Smith MW, Starinsky N, Steiger TD, Stokstad RG, Storey RS, Sur B, Tafirout R, Tagg N, Tanner NW, Taplin RK, Thorman M, Thornewell P, Trent PT, Tserkovnyak YI, Van Berg R, Van de Water RG, Virtue CJ, Waltham CE, Wang JX, Wark DL, West N, Wilhelmy JB, Wilkerson JF, Wilson J, Wittich P, Wouters JM, Yeh M. Measurement of the rate of nu(e) + d --> p + p + e(-) interactions produced by (8)B solar neutrinos at the Sudbury Neutrino Observatory. PHYSICAL REVIEW LETTERS 2001; 87:071301. [PMID: 11497878 DOI: 10.1103/physrevlett.87.071301] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2001] [Indexed: 05/23/2023]
Abstract
Solar neutrinos from (8)B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of nu(e)'s is measured by the CC reaction rate to be straight phi(CC)(nu(e)) = 1.75 +/- 0.07(stat)(+0.12)(-0.11)(syst) +/- 0.05(theor) x 10(6) cm(-2) s(-1). Comparison of straight phi(CC)(nu(e)) to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3 sigma difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- nu(e) component in the solar flux. The total flux of active 8B neutrinos is determined to be 5.44+/-0.99 x 10(6) cm(-2) s(-1).
Collapse
|
|
24 |
172 |
14
|
Kato M, Takahashi M, Akhand AA, Liu W, Dai Y, Shimizu S, Iwamoto T, Suzuki H, Nakashima I. Transgenic mouse model for skin malignant melanoma. Oncogene 1998; 17:1885-8. [PMID: 9778055 DOI: 10.1038/sj.onc.1202077] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report here on a novel metallothionein-I (MT)/ret transgenic mouse line in which skin melanosis, benign melanocytic tumor and malignant melanoma metastasizing to distant organs develop stepwise. The process of tumor development and its malignant transformation in this line may resemble that of the human giant congenital melanocytic nevus that is present at birth and that frequently gives rise to malignant melanoma during aging. We observed an increase in the expression level and activity of the ret transgene during the disease progression. That increase in transgene expression accompanied an activation of mitogen-activated protein kinases (MAPKs) and c-Jun as well as matrix metalloproteinases. These results suggest that progressive dysregulation of the expression level of the ret transgene might play a crucial role in the malignant transformation of melanocytic tumors developed in the MT/ret transgenic mouse line.
Collapse
|
|
27 |
166 |
15
|
Dean TP, Dai Y, Shute JK, Church MK, Warner JO. Interleukin-8 concentrations are elevated in bronchoalveolar lavage, sputum, and sera of children with cystic fibrosis. Pediatr Res 1993; 34:159-61. [PMID: 8233718 DOI: 10.1203/00006450-199308000-00010] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Concurrent pulmonary inflammation and neutrophil infiltration are characteristic of children with cystic fibrosis (CF). The production of the major neutrophil chemotactic cytokine IL-8 by alveolar macrophages or other cells could be of great importance in the pathology of acute lung disease, but its role in the persistent lung inflammation characteristic of CF has not been evaluated. In this study, we have measured, by ELISA, the concentration of IL-8 in sputum, bronchoalveolar lavage, and sera specimens obtained from children with CF. For comparison, IL-8 in bronchoalveolar lavage obtained from asthmatic patients and from non-CF children with or without lung infection and in sera from age-matched controls was measured. High levels of IL-8 were measured in sputum (mean = 2952 pM) and in bronchoalveolar lavage (mean = 6624 pM) from CF patients. In both cases, there was a significant correlation between clinical status (Schwachman score) and IL-8 levels. This was not true for IL-8 levels measured in sera, which nevertheless were significantly higher in CF patients (p = 0.0001) than in normal controls in the over-10-y age group.
Collapse
|
|
32 |
158 |
16
|
Kim DR, Dai Y, Mundy CL, Yang W, Oettinger MA. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev 1999; 13:3070-80. [PMID: 10601033 PMCID: PMC317176 DOI: 10.1101/gad.13.23.3070] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RAG1 and RAG2 proteins collaborate to initiate V(D)J recombination by binding recombination signal sequences (RSSs) and making a double-strand break between the RSS and adjacent coding DNA. Like the reactions of their biochemical cousins, the bacterial transposases and retroviral integrases, cleavage by the RAG proteins requires a divalent metal ion but does not involve a covalent protein/DNA intermediate. In the transposase/integrase family, a triplet of acidic residues, commonly called a DDE motif, is often found to coordinate the metal ion used for catalysis. We show here that mutations in each of three acidic residues in RAG1 result in mutant derivatives that can bind the RSS but whose ability to catalyze either of the two chemical steps of V(D)J cleavage (nicking and hairpin formation) is severely impaired. Because both chemical steps are affected by the same mutations, a single active site appears responsible for both reactions. Two independent lines of evidence demonstrate that at least two of these acidic residues are directly involved in coordinating a divalent metal ion: The substitution of Cys for Asp allows rescue of some catalytic function, whereas an alanine substitution is no longer subject to iron-induced hydroxyl radical cleavage. Our results support a model in which the RAG1 protein contains the active site of the V(D)J recombinase and are interpreted in light of predictions about the structure of RAG1.
Collapse
|
research-article |
26 |
157 |
17
|
Miles GB, Dai Y, Brownstone RM. Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurones. J Physiol 2005; 566:519-32. [PMID: 15878947 PMCID: PMC1464745 DOI: 10.1113/jphysiol.2005.086033] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/28/2005] [Indexed: 12/13/2022] Open
Abstract
Spike frequency adaptation (SFA) is a fundamental property of repetitive firing in motoneurones (MNs). Early SFA (occurring over several hundred milliseconds) is thought to be important in the initiation of muscular contraction. To date the mechanisms underlying SFA in spinal MNs remain unclear. In the present study, we used both whole-cell patch-clamp recordings of MNs in lumbar spinal cord slices prepared from motor functionally mature mice and computer modelling of spinal MNs to investigate the mechanisms underlying SFA. Pharmacological blocking agents applied during whole-cell recordings in current-clamp mode demonstrated that the medium AHP conductance (apamin), BK-type Ca2+ -dependent K+ channels (iberiotoxin), voltage-activated Ca2+ channels (CdCl2), M-current (linopirdine) and persistent Na+ currents (riluzole) are all unnecessary for SFA. Measurements of Na+ channel availability including action potential amplitude, action potential threshold and maximum depolarization rate of the action potential were found to correlate with instantaneous firing frequency suggesting that the availability of fast, inactivating Na+ channels is involved in SFA. Characterization of this Na+ conductance in voltage-clamp mode demonstrated that it undergoes slow inactivation with a time course similar to that of SFA. When experimentally measured parameters for the fast, inactivating Na+ conductance (including slow inactivation) were incorporated into a MN model, SFA could be faithfully reproduced. The removal of slow inactivation from this model was sufficient to remove SFA. These data indicate that slow inactivation of the fast, inactivating Na+ conductance is likely to be the key mechanism underlying early SFA in spinal MNs.
Collapse
|
research-article |
20 |
145 |
18
|
Dai Y, Kysela B, Hanakahi LA, Manolis K, Riballo E, Stumm M, Harville TO, West SC, Oettinger MA, Jeggo PA. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 2003; 100:2462-7. [PMID: 12604777 PMCID: PMC151363 DOI: 10.1073/pnas.0437964100] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA nonhomologous end-joining (NHEJ) is the major pathway for repairing DNA double-strand breaks in mammalian cells. It also functions to carry out rearrangements at the specialized breaks introduced during V(D)J recombination. Here, we describe a patient with T(-)B(-) severe combined immunodeficiency, whose cells have defects closely resembling those of NHEJ-defective rodent cells. Cells derived from this patient show dramatic radiosensitivity, decreased double-strand break rejoining, and reduced fidelity in signal and coding joint formation during V(D)J recombination. Detailed examination indicates that the patient is defective neither in the known factors involved in NHEJ in mammals (Ku70, Ku80, DNA-dependent protein kinase catalytic subunit, Xrcc4, DNA ligase IV, or Artemis) nor in the Mre11/Rad50/Nbs1 complex, whose homologue in Saccharomyces cerevisiae functions in NHEJ. These results provide strong evidence that additional activities are crucial for NHEJ and V(D)J recombination in mammals.
Collapse
|
research-article |
22 |
142 |
19
|
Abstract
Embryonic development is readily compromised by imperfections introduced during the process of oocyte maturation. We discuss the nature and causes of these imperfections, particularly in oocytes exposed to inappropriate hormonal regimes in vivo or to culture systems designed to induce the maturation of oocytes in vitro. The acquisition of developmental competence involves the synthesis and storage of a wide range of molecules during oocyte growth followed by the reprogramming and ordered utilization of these stored products during maturation, fertilization and early embryogenesis. The regulatory signals for these molecular changes are produced by the follicle cells in response to circulating levels of gonadotrophins; we report that some ovarian stimulation protocols distort these signals thereby disrupting molecular reprogramming of the oocyte and reducing subsequent developmental competence. The aspiration of immature oocytes from antral follicles followed by their maturation in vitro is a potential alternative to hormonal stimulation of patients in IVF treatment. Although relatively successful in a variety of animals, the production of fully viable human embryos by in-vitro maturation is still unsatisfactory despite the use of a wide variety of culture protocols. Our data suggests that the key to maturation and embryo viability in vitro resides in the follicle cell compartment rather than the oocyte. Because of rapid luteinization changes, follicle cells in culture probably fail to provide the maturing oocyte with the necessary ordered set of instructive signals and nutrients needed for the acquisition of developmental competence. Although much remains to be discovered about the nature, concentration and transmission of signals, nevertheless it is already clear that different steroids, matrix metalloproteinases and growth factors are involved in conferring viability on the maturing oocyte. Major improvements in the yield of viable embryos from in-vitro matured oocytes can be anticipated from a systematic analysis of somatic signals from the pre-ovulatory follicle.
Collapse
|
Review |
27 |
138 |
20
|
Wang HY, Altman Y, Fang D, Elly C, Dai Y, Shao Y, Liu YC. Cbl promotes ubiquitination of the T cell receptor zeta through an adaptor function of Zap-70. J Biol Chem 2001; 276:26004-11. [PMID: 11353765 DOI: 10.1074/jbc.m010738200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triggering of the T cell antigen receptor (TCR).CD3 complex induces its ubiquitination. However, the molecular events that lead to ubiquitin conjugation to these cell surface molecules have not been defined. Here we report that Cbl, a RING-type E3 ubiquitin-protein ligase, promotes ubiquitination of TCR zeta chain, which requires its functional variant Src homology 2 domain and an intact RING finger. The tyrosine kinase Zap-70, which binds to both TCR zeta and Cbl, plays an adaptor role in these events. Mutations in TCR zeta, Zap-70, or Cbl that disrupt the interaction between TCR zeta and Zap-70 or between Zap-70 and Cbl reduce ubiquitination of TCR zeta. Our results suggest a novel mechanism by which Cbl negatively regulates T cell development and activation by inducing ubiquitination of the TCR.CD3 components.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
136 |
21
|
Dai Y, Whittal RM, Li L. Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal Chem 1999; 71:1087-91. [PMID: 10079766 DOI: 10.1021/ac980684h] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The analytical performance of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for direct analysis of peptide and protein mixtures is strongly dependent on the sample and matrix preparation. A two-layer sample preparation method is demonstrated to be very effective for analyzing complex mixtures. In this method, the first layer on the MALDI probe is the densely packed matrix microcrystals formed by fast solvent evaporation of a matrix solution. A mixture solution containing both matrix and sample is then deposited onto the first layer to form uniform analyte/matrix micrococrystals. It is found that the addition of matrix to the second-layer sample solution proves to be critical in analyzing mixtures of peptides and proteins covering a broad mass range. The effect of solvent conditions for preparing the second-layer solution is discussed. The application of this method is demonstrated for the analysis of cow's milk where milk proteins as well as peptide fragments produced from proteins by indigenous proteinases are detected. Direct analyses of peptides and proteins from a bacteria extract and crude egg white are also illustrated.
Collapse
|
|
26 |
127 |
22
|
Abstract
Two enzymes, designated, E-2 and E-2', catalyze different oxidation reactions of an aci-reductone intermediate in the methionine salvage pathway. E-2 and E-2', overproduced in Escherichia coli from the same gene, have the same protein component. E-2 and E-2' are separable on an anion exchange column or a hydrophobic column. Their distinct catalytic and chromatographic properties result from binding different metals. The apo-enzyme, obtained after metal is removed from either enzyme, is catalytically inactive. Addition of Ni2+ or Co2+ to the apo-protein yields E-2 activity. E-2' activity is obtained when Fe2+ is added. Production in intact E. coli of E-2 and E-2' depends on the availability of the corresponding metals. These observations suggest that the metal component dictates reaction specificity.
Collapse
|
|
26 |
121 |
23
|
Wang Y, Butros SR, Shuai X, Dai Y, Chen C, Liu M, Haacke EM, Hu J, Xu H. Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging. AJNR Am J Neuroradiol 2011; 33:266-73. [PMID: 22051807 DOI: 10.3174/ajnr.a2765] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE MSA-P and IPD have similar clinical presentations that may complicate accurate clinical diagnosis. Different iron-deposition patterns of those 2 diseases have been demonstrated in histopathology. The aim was to demonstrate the different iron-deposition patterns of MSA-P and IPD by using SWI phase images. MATERIALS AND METHODS Sixteen patients with IPD, 8 with MSA-P, and 44 age-matched healthy controls underwent SWI of brain. The different phase shifts as well as the high iron percentage of the area in several gray nuclei were statistically evaluated. The putamen was divided into 4 subregions for further analysis. RESULTS Patients with MSA-P had significantly higher iron deposition in the putamen and PT compared with those with IPD (P < .05). Moreover, ROC curves indicated slightly more sensitivity in differentiating MSA-P from IPD, by means of the high-iron-deposition-percentage area than the average phase shift (putamen: AUC = 0.88 versus 0.78; PT: AUC = 0.79 versus 0.62). Moreover, the lower inner region of the putamen was the most valuable subregion in differentiating MSA-P from IPD among the 4 subregions (AUC = 0.92 and 0.91 for high-iron-percentage area and average phase shift, respectively). CONCLUSIONS Higher iron deposition in the putamen and PT may differentiate MSA-P from IPD, but the lower inner region of the putamen may be better compared with the PT and other subregions of the putamen. Moreover, the high iron percentage makes it possible to detect smaller increases in iron content more confidently in comparison with average phase shift.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
109 |
24
|
Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao L, Li X, Zeng J, Wang Q. Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int 2019; 30:1003-1013. [PMID: 30666372 DOI: 10.1007/s00198-019-04855-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022]
Abstract
UNLABELLED We explored the association between gut microbiota composition and bone mineral loss in Chinese elderly people by high-throughput 16S ribosomal RNA (rRNA) gene sequencing. Compared with controls, a smaller number of operational taxonomic units (OTUs), several taxa with altered abundance, and specific functional pathways were found in individuals with low-bone mineral density (BMD). INTRODUCTION Gut microbiota plays important roles in human health and associates with a number of diseases. However, few studies explored its association with bone mineral loss in human. METHODS We collected 102 fecal samples from each eligible individual belonging to low-BMD and control groups for high-throughput 16S rRNA gene sequencing. RESULTS The low-BMD individuals had a smaller number of OTUs and bacterial taxa at each level. At the phylum level, Bacteroidetes were more abundant in the low-BMD group; Firmicutes were enriched in the control group; Firmicutes and Actinobacteria positively correlated and Bacteroidetes negatively correlated with the BMD and T-score in all subjects. At the family level, the abundance of Lachnospiraceae in low-BMD individuals reduced and positively correlated with BMD and T-score; meanwhile, BMD increased with increasing Bifidobacteriaceae. At the genus level, low-BMD individuals had decreased proportions of Roseburia compared with control ones (P < 0.05). Roseburia, Bifidobacterium, and Lactobacillus positively correlated with BMD and T-score. Furthermore, BMD increased with rising abundance of Bifidobacterium. Functional prediction revealed that 93 metabolic pathways significantly differed between the two groups (FDR-corrected P < 0.05). Most pathways, especially pathways related to LPS biosynthesis, were more abundant in low-BMD individuals than in control ones. CONCLUSIONS Several taxa with altered abundance and specific functional pathways were discovered in low-BMD individuals. Our findings provide novel epidemiologic evidence to elucidate the underlying microbiota-relevant mechanism in bone mineral loss and osteoporosis.
Collapse
|
|
6 |
107 |
25
|
Mou Z, He Y, Dai Y, Liu X, Li J. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. THE PLANT CELL 2000; 12:405-18. [PMID: 10715326 PMCID: PMC139840 DOI: 10.1105/tpc.12.3.405] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/1999] [Accepted: 01/10/2000] [Indexed: 05/18/2023]
Abstract
An Arabidopsis mosaic death1 (mod1) mutant, which has premature cell death in multiple organs, was isolated. mod1 plants display multiple morphological phenotypes, including chlorotic and curly leaves, distorted siliques, premature senescence of primary inflorescences, reduced fertility, and semidwarfism. The phenotype of the mod1 mutant results from a single nuclear recessive mutation, and the MOD1 gene was isolated by using a map-based cloning approach. The MOD1 gene encodes an enoyl-acyl carrier protein (ACP) reductase, which is a subunit of the fatty acid synthase complex that catalyzes de novo synthesis of fatty acids. An amino acid substitution in the enoyl-ACP reductase of the mod1 mutant causes a marked decrease in its enzymatic activity, impairing fatty acid biosynthesis and decreasing the amount of total lipids in mod1 plants. These results demonstrate that a deficiency in fatty acid biosynthesis has pleiotropic effects on plant growth and development and causes premature cell death.
Collapse
|
research-article |
25 |
105 |