1
|
Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286:735-41. [PMID: 10531052 DOI: 10.1126/science.286.5440.735] [Citation(s) in RCA: 2880] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cerebral deposition of amyloid beta peptide (Abeta) is an early and critical feature of Alzheimer's disease. Abeta generation depends on proteolytic cleavage of the amyloid precursor protein (APP) by two unknown proteases: beta-secretase and gamma-secretase. These proteases are prime therapeutic targets. A transmembrane aspartic protease with all the known characteristics of beta-secretase was cloned and characterized. Overexpression of this protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of beta-secretase cleavage products, and these were cleaved exactly and only at known beta-secretase positions. Antisense inhibition of endogenous BACE messenger RNA decreased the amount of beta-secretase cleavage products, and purified BACE protein cleaved APP-derived substrates with the same sequence specificity as beta-secretase. Finally, the expression pattern and subcellular localization of BACE were consistent with that expected for beta-secretase. Future development of BACE inhibitors may prove beneficial for the treatment of Alzheimer's disease.
Collapse
|
|
26 |
2880 |
2
|
Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013; 498:82-6. [DOI: 10.1038/nature12151] [Citation(s) in RCA: 1236] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/25/2013] [Indexed: 12/12/2022]
|
|
12 |
1236 |
3
|
Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR. A. Science 2000; 289:1172-5. [PMID: 10947980 DOI: 10.1126/science.289.5482.1172] [Citation(s) in RCA: 1178] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A solid state, electronically addressable, bistable [2]catenane-based molecular switching device was fabricated from a single monolayer of the [2]catenane, anchored with phospholipid counterions, and sandwiched between an n-type polycrystalline silicon bottom electrode and a metallic top electrode. The device exhibits hysteretic (bistable) current/voltage characteristics. The switch is opened at +2 volts, closed at -2 volts, and read at approximately 0.1 volt and may be recycled many times under ambient conditions. A mechanochemical mechanism for the action of the switch is presented and shown to be consistent with temperature-dependent measurements of the device operation.
Collapse
|
|
25 |
1178 |
4
|
Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993; 75:217-27. [PMID: 8402908 DOI: 10.1016/0092-8674(93)80064-l] [Citation(s) in RCA: 917] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Repulsive guidance cues can steer neuronal growth cones during development and prevent mature axons from regenerating. We have identified a 100 kd glycoprotein in the chick brain that is a good candidate for a repulsive cue. Since it induces the collapse and paralysis of neuronal growth cones in vitro, we have named it collapsin. It is effective at concentrations of approximately 10 pM. The C-terminal half of collapsin contains a single immunoglobulin-like domain and an additional highly basic region. The N-terminal half of collapsin shares significant homology with fasciclin IV, a growth cone guidance protein in grasshopper. Recombinant collapsin causes sensory ganglion growth cones to collapse but not retinal ganglion cell growth cones. We propose that collapsin could serve as a ligand that guides specific growth cones by a motility-inhibiting mechanism.
Collapse
|
Comparative Study |
32 |
917 |
5
|
Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis JC, Hu S, Altrock BW, Fox GM. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996; 85:1113-24. [PMID: 8674117 DOI: 10.1016/s0092-8674(00)81311-2] [Citation(s) in RCA: 852] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report the expression cloning and characterization of GDNFR-alpha, a novel glycosylphosphatidylinositol-linked cell surface receptor for glial cell line-derived neurotrophic factor (GDNF). GDNFR-alpha binds GDNF specifically and mediates activation of the Ret protein-tyrosine kinase (PTK). Treatment of Neuro-2a cells expressing GDNFR-alpha with GDNF rapidly stimulates Ret autophosphorylation. Ret is also activated by treatment with a combination of GDNF and soluble GDNFR-alpha in cells lacking GDNFR-alpha, and this effect is blocked by a soluble Ret-Fc fusion protein. Ret activation by GDNF was also observed in cultured embryonic rat spinal cord motor neurons, a cell type that responds to GDNF in vivo. A model for the stepwise formation of a GDNF signal-transducing complex including GDNF, GDNFR-alpha, and the Ret PTK is proposed.
Collapse
|
|
29 |
852 |
6
|
Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000; 275:28240-5. [PMID: 10858438 DOI: 10.1074/jbc.m003337200] [Citation(s) in RCA: 790] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tangier disease, a condition characterized by low levels of high density lipoprotein and cholesterol accumulation in macrophages, is caused by mutations in the ATP-binding cassette transporter ABC1. In cultured macrophages, ABC1 mRNA was induced in an additive fashion by 22(R)-hydroxycholesterol and 9-cis-retinoic acid (9CRA), suggesting induction by nuclear hormone receptors of the liver X receptor (LXR) and retinoid X receptor (RXR) family. We cloned the 5'-end of the human ABC1 transcript from cholesterol-loaded THP1 macrophages. When transfected into RAW macrophages, the upstream promoter was induced 7-fold by 22(R)-hydroxycholesterol, 8-fold by 9CRA, and 37-fold by 9CRA and 22(R)-hydroxycholesterol. Furthermore, promoter activity was increased in a sterol-responsive fashion when cotransfected with LXRalpha/RXR or LXRbeta/RXR. Further experiments identified a direct repeat spaced by four nucleotides (from -70 to -55 base pairs) as a binding site for LXRalpha/RXR or LXRbeta/RXR. Mutations in this element abolished the sterol-mediated activation of the promoter. The results show sterol-dependent transactivation of the ABC1 promoter by LXR/RXR and suggest that small molecule agonists of LXR could be useful drugs to reverse foam cell formation and atherogenesis.
Collapse
|
|
25 |
790 |
7
|
Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R. Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 2001; 4:231-2. [PMID: 11224535 DOI: 10.1038/85059] [Citation(s) in RCA: 753] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
24 |
753 |
8
|
Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Höppener JW, van Amstel HK, Romeo G. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994; 367:375-6. [PMID: 7906866 DOI: 10.1038/367375a0] [Citation(s) in RCA: 713] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Multiple endocrine neoplasia type 2 (MEN 2) comprises three clinically distinct, dominantly inherited cancer syndromes. MEN 2A patients develop medullary thyroid carcinoma (MTC) and phaeochromocytoma. MEN 2B patients show in addition ganglioneuromas of the gastrointestinal tract and skeletal abnormalities. In familial MTC, only the thyroid is affected. Germ-line mutations of the RET proto-oncogene have recently been reported in association with MEN 2A and familial MTC. All mutations occurred within codons specifying cysteine residues in the transition point between the RET protein extracellular and transmembrane domains. We now show that MEN 2B is also associated with mutation of the RET proto-oncogene. A mutation in codon 664, causing the substitution of a threonine for a methionine in the tyrosine kinase domain of the protein, was found in all nine unrelated MEN 2B patients studied. The same mutation was found in six out of 18 sporadic tumours.
Collapse
|
|
31 |
713 |
9
|
Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 1998; 273:27765-7. [PMID: 9774383 DOI: 10.1074/jbc.273.43.27765] [Citation(s) in RCA: 703] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The amyloid protein, Abeta, which accumulates in the brains of Alzheimer patients, is derived by proteolysis of the amyloid protein precursor (APP). APP can undergo endoproteolytic processing at three sites, one at the amino terminus of the Abeta domain (beta-cleavage), one within the Abeta domain (alpha-cleavage), and one at the carboxyl terminus of the Abeta domain (gamma-cleavage). The enzymes responsible for these activities have not been unambiguously identified. By the use of gene disruption (knockout), we now demonstrate that TACE (tumor necrosis factor alpha converting enzyme), a member of the ADAM family (a disintegrin and metalloprotease-family) of proteases, plays a central role in regulated alpha-cleavage of APP. Our data suggest that TACE may be the alpha-secretase responsible for the majority of regulated alpha-cleavage in cultured cells. Furthermore, we show that inhibiting this enzyme affects both APP secretion and Abeta formation in cultured cells.
Collapse
|
|
27 |
703 |
10
|
Pease AR, Jeppesen JO, Stoddart JF, Luo Y, Collier CP, Heath JR. Switching devices based on interlocked molecules. Acc Chem Res 2001; 34:433-44. [PMID: 11412080 DOI: 10.1021/ar000178q] [Citation(s) in RCA: 657] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An architectural rationale and an experimental program aimed at the development of molecular electronics switching devices for memory and computing applications are discussed. Two-terminal molecular switch tunnel junctions are identified as the critical device components of molecular electronics-based circuitry. They can be tiled in two dimensions and are tolerant of manufacturing defects. Singly and multiply configurable solid-state switching devices that are based upon electrochemically switchable molecular and supramolecular systems are discussed in terms of both the synthesis of the molecular components and the fabrication and performance of the devices.
Collapse
|
Review |
24 |
657 |
11
|
Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P, Voegel JC, Lavalle P. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc Natl Acad Sci U S A 2002; 99:12531-5. [PMID: 12237412 PMCID: PMC130494 DOI: 10.1073/pnas.202486099] [Citation(s) in RCA: 643] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2002] [Accepted: 08/12/2002] [Indexed: 11/18/2022] Open
Abstract
The structure of poly(l-lysine) (PLL)/hyaluronan (HA) polyelectrolyte multilayers formed by electrostatic self-assembly is studied by using confocal laser scanning microscopy, quartz crystal microbalance, and optical waveguide lightmode spectroscopy. These films exhibit an exponential growth regime where the thickness increases exponentially with the number of deposited layers, leading to micrometer thick films. Previously such a growth regime was suggested to result from an "in" and "out" diffusion of the PLL chains through the film during buildup, but direct evidence was lacking. The use of dye-conjugated polyelectrolytes now allows a direct three-dimensional visualization of the film construction by introducing fluorescent polyelectrolytes at different steps during the film buildup. We find that, as postulated, PLL diffuses throughout the film down into the substrate after each new PLL injection and out of the film after each PLL rinsing and further after each HA injection. As PLL reaches the outer layer of the film it interacts with the incoming HA, forming the new HA/PLL layer. The thickness of this new layer is thus proportional to the amount of PLL that diffuses out of the film during the buildup step, which explains the exponential growth regime. HA layers are also visualized but no diffusion is observed, leading to a stratified film structure. We believe that such a diffusion-based buildup mechanism explains most of the exponential-like growth processes of polyelectrolyte multilayers reported in the literature.
Collapse
|
research-article |
23 |
643 |
12
|
Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R, Lerone M, Kääriäinen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature 1994; 367:377-8. [PMID: 8114938 DOI: 10.1038/367377a0] [Citation(s) in RCA: 466] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hirschsprung's disease is a genetic disorder of neural crest development affecting 1 in 5,000 births. It is characterized by the absence of intramural ganglion cells in the hindgut, which often results in partial to complete intestinal obstruction during the first years of life. An autosomal dominant gene causing this disease was recently mapped to chromosome 10q11.2 (refs 1,2), using an interstitial deletion of this region isolated in a cell hybrid. It was subsequently localized to a 250-kilobase interval which contains the RET proto-oncogene. Using flanking intronic sequences as primers to amplify 12 of the 20 exons of RET from genomic DNA of 27 Hirschsprung's disease patients, we have now identified four mutations (one frameshift and three missense) that totally disrupt or partially change the structure of the tyrosine kinase domain of the RET protein (Ret). Mutations in the extracellular cysteine-rich domain of Ret have been identified previously in patients with multiple endocrine neoplasia type 2A, and a targeted mutation in the tyrosine kinase domain of the same gene produces intestinal aganglionosis and kidney agenesis in homozygous transgenic mice. Our results support the hypothesis that RET, in addition to its potential role in tumorigenesis, plays a critical role in the embryogenesis of the mammalian enteric nervous system.
Collapse
|
|
31 |
466 |
13
|
Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 2001; 194:1361-73. [PMID: 11696600 PMCID: PMC2195988 DOI: 10.1084/jem.194.9.1361] [Citation(s) in RCA: 434] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2001] [Revised: 07/11/2001] [Accepted: 07/26/2001] [Indexed: 11/16/2022] Open
Abstract
Interstitial fluid is constantly drained into lymph nodes (LNs) via afferent lymph vessels. This conduit enables monocyte-derived macrophages and dendritic cells to access LNs from peripheral tissues. We show that during inflammation in the skin, a second recruitment pathway is evoked that recruits large numbers of blood-borne monocytes to LNs via high endothelial venules (HEVs). Inhibition of monocyte chemoattractant protein (MCP)-1 blocked this inflammation-induced monocyte homing to LNs. MCP-1 mRNA in inflamed skin was over 100-fold upregulated and paralleled MCP-1 protein levels, whereas in draining LNs MCP-1 mRNA induction was much weaker and occurred only after a pronounced rise in MCP-1 protein. Thus, MCP-1 in draining LNs was primarily derived from inflamed skin. In MCP-1(-/-) mice, intracutaneously injected MCP-1 accumulated rapidly in the draining LNs where it enhanced monocyte recruitment. Intravital microscopy showed that skin-derived MCP-1 was transported via the lymph to the luminal surface of HEVs where it triggered integrin-dependent arrest of rolling monocytes. These findings demonstrate that inflamed peripheral tissues project their local chemokine profile to HEVs in draining LNs and thereby exert "remote control" over the composition of leukocyte populations that home to these organs from the blood.
Collapse
|
research-article |
24 |
434 |
14
|
Luo Y, Hurwitz J, Massagué J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 1995; 375:159-61. [PMID: 7753174 DOI: 10.1038/375159a0] [Citation(s) in RCA: 432] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian cell-cycle control by antimitogenic signals involves p21Cip1/WAF1 (refs 1-4), p27Kip1 (refs 5, 6) and p57Kip2 (refs 7, 8), a family of proteins that bind to and inhibit cyclin-dependent kinases (CDKs) required for initiation of S phase. The protein p21 also binds to the DNA polymerase delta processivity factor, proliferating-cell nuclear antigen (PCNA), and inhibits in vitro PCNA-dependent DNA replication. The CDK and PCNA inhibitory activities of p21 are shown here to be functionally independent and to reside in separate protein domains. The PCNA binding and inhibitory activities, which are not observed with p27 or p57, reside in the C-terminal domain of p21, whereas the CDK inhibitory activity resides in the conserved N-terminal domains of these proteins. When separately overexpressed in mammalian cells, the CDK and PCNA inhibitory domains prevent DNA replication, demonstrating a dual function of p21 as a cell-cycle inhibitor in vivo.
Collapse
|
|
30 |
432 |
15
|
Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y, Trail G, Hu S, Silbiger SM, Levy RB. Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 1992; 69:559-72. [PMID: 1349853 DOI: 10.1016/0092-8674(92)90456-m] [Citation(s) in RCA: 430] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We recently reported that a 44 kd glycoprotein secreted by transformed fibroblasts stimulates tyrosine phosphorylation of the product of the neu proto-oncogene and induces differentiation of mammary tumor cells to milk-producing, growth-arrested cells. A partial amino acid sequence of the protein, termed Neu differentiation factor (NDF), enabled cloning of the corresponding complementary DNA. The deduced structure of the precursor of NDF indicated that it is a transmembrane protein whose extracellular portion contains an EGF-like domain that probably functions as a receptor recognition site. In addition, the ectodomain contains one immunoglobulin homology unit. Despite the lack of a recognizable hydrophobic signal peptide at the N-terminus, a recombinant NDF, like the natural molecule, is released into the medium of transfected COS-7 cells in a biologically active form. Northern blot analysis indicated the existence of several NDF transcripts, the major ones being 1.8, 2.6, and 6.7 kb in size. Transformation by the ras oncogene dramatically elevated the expression of NDF in fibroblasts.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
33 |
430 |
16
|
Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 2000; 69:169-84. [PMID: 11018555 DOI: 10.1016/s0168-3659(00)00300-x] [Citation(s) in RCA: 388] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new hyaluronic acid (HA)-based hydrogel film was prepared and evaluated for use in drug delivery. This biocompatible material crosslinks and gels in minutes, and the dried film swells and rehydrates to a flexible hydrogel in seconds. HA was first converted to the adipic dihydrazide derivative and then crosslinked with the macromolecular homobifunctional reagent poly(ethylene glycol)-propiondialdehyde to give a polymer network. After gelation, a solvent casting method was used to obtain a HA hydrogel film. The dried film swelled sevenfold in volume in buffer, reaching equilibrium in less than 100 s. Scanning electron microscopy (SEM) of the hydrogel films showed a condensed and featureless structure before swelling, but a porous microstructure when hydrated. The thermal behavior of the hydrogel films was characterized by differential scanning calorimetry. The enzymatic degradation of the HA hydrogel films by hyaluronidase was studied using both SEM and a spectrophotometric assay. Drug release from the hydrogel film was evaluated in vitro using selected anti-bacterial and anti-inflammatory drugs. This novel biomaterial can be employed for controlled release of therapeutic agents at wound sites.
Collapse
|
|
25 |
388 |
17
|
Luo Y, Wan S, Hui D, Wallace LL. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 2001; 413:622-5. [PMID: 11675783 DOI: 10.1038/35098065] [Citation(s) in RCA: 370] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The latest report by the Intergovernmental Panel on Climate Change (IPCC) predicts a 1.4-5.8 degrees C average increase in the global surface temperature over the period 1990 to 2100 (ref. 1). These estimates of future warming are greater than earlier projections, which is partly due to incorporation of a positive feedback. This feedback results from further release of greenhouse gases from terrestrial ecosystems in response to climatic warming. The feedback mechanism is usually based on the assumption that observed sensitivity of soil respiration to temperature under current climate conditions would hold in a warmer climate. However, this assumption has not been carefully examined. We have therefore conducted an experiment in a tall grass prairie ecosystem in the US Great Plains to study the response of soil respiration (the sum of root and heterotrophic respiration) to artificial warming of about 2 degrees C. Our observations indicate that the temperature sensitivity of soil respiration decreases--or acclimatizes--under warming and that the acclimatization is greater at high temperatures. This acclimatization of soil respiration to warming may therefore weaken the positive feedback between the terrestrial carbon cycle and climate.
Collapse
|
|
24 |
370 |
18
|
Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C. Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol 2015; 26:1877-1883. [PMID: 26141208 DOI: 10.1093/annonc/mdv276] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/16/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The OPTIMAL study was the first study to compare efficacy and tolerability of the epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) erlotinib, versus standard chemotherapy in first-line treatment of patients with EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC). Findings from final overall survival (OS) analysis and assessment of post-study treatment impact are presented. PATIENTS AND METHODS Of 165 randomised patients, 82 received erlotinib and 72 gemcitabine plus carboplatin. Final OS analyses were conducted when 70% of deaths had occurred in the intent-to-treat population. Subgroup OS was analysed by Cox proportional hazards model and included randomisation stratification factors and post-study treatments. RESULTS Median OS was similar between the erlotinib (22.8 months) and chemotherapy (27.2 months) arms with no significant between-group differences in the overall population [hazard ratio (HR), 1.19; 95% confidence interval (CI) 0.83-1.71; P = 0.2663], the exon 19 deletion subpopulation (HR, 1.52; 95% CI 0.91-2.52; P = 0.1037) or the exon 21 L858 mutation subpopulation (HR, 0.92; 95% CI 0.55-1.54; P = 0.7392). More patients in the erlotinib arm versus the chemotherapy arm did not receive any post-study treatment (36.6% versus 22.2%). Patients who received sequential combination of EGFR-TKI and chemotherapy had significantly improved OS compared with those who received EGFR-TKI or chemotherapy only (29.7 versus 20.7 or 11.2 months, respectively; P < 0.0001). OS was significantly shorter in patients who did not receive post-study treatments compared with those who received subsequent treatments in both arms. CONCLUSION The significant OS benefit observed in patients treated with EGFR-TKI emphasises its contribution to improving survival of EGFR mutant NSCLC patients, suggesting that erlotinib should be considered standard first-line treatment of EGFR mutant patients and EGFR-TKI treatment following first-line therapy also brings significant benefits to those patients. CLINICALTRIALSGOV IDENTIFIER NCT00874419.
Collapse
|
Clinical Trial, Phase III |
10 |
361 |
19
|
Buxbaum JD, Choi EK, Luo Y, Lilliehook C, Crowley AC, Merriam DE, Wasco W. Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat Med 1998; 4:1177-81. [PMID: 9771752 DOI: 10.1038/2673] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most early-onset familial Alzheimer disease (AD) cases are caused by mutations in the highly related genes presenilin 1 (PS1) and presenilin 2 (PS2). Presenilin mutations produce increases in beta-amyloid (Abeta) formation and apoptosis in many experimental systems. A cDNA (ALG-3) encoding the last 103 amino acids of PS2 has been identified as a potent inhibitor of apoptosis. Using this PS2 domain in the yeast two-hybrid system, we have identified a neuronal protein that binds calcium and presenilin, which we call calsenilin. Calsenilin interacts with both PS1 and PS2 in cultured cells, and can regulate the levels of a proteolytic product of PS2. Thus, calsenilin may mediate the effects of wild-type and mutant presenilins on apoptosis and on Abeta formation. Further characterization of calsenilin may lead to an understanding of the normal role of the presenilins and of the role of the presenilins in Alzheimer disease.
Collapse
|
Comparative Study |
27 |
268 |
20
|
Kessel D, Luo Y, Deng Y, Chang CK. The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 1997; 65:422-6. [PMID: 9077123 PMCID: PMC4569128 DOI: 10.1111/j.1751-1097.1997.tb08581.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rapid initiation of apoptosis can be induced by photodynamic therapy, depending on the cell line and sensitizer employed. In this study, we evaluated the photodynamic responses to two structurally related photosensitizing agents, using the P388 murine leukemia cell line in culture. Photodamage mediated by tin etiopurpurin involved lysosomes and mitochondria and yielded a rapid apoptotic response; apoptotic nuclei were observed within 60 min after PDT. A drug analog, tin octaethylpurpurin amidine, targeted lysosomes, mitochondria and cell membranes; apoptotic nuclei were not observed until 24 h after PDT. These results, together with other recent reports, are consistent with the hypothesis that membrane photodamage can delay or prevent an apoptotic response to PDT.
Collapse
|
research-article |
28 |
267 |
21
|
Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S. Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 1999; 274:962-71. [PMID: 9873038 DOI: 10.1074/jbc.274.2.962] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Preferential cleavage sites have been determined for Fe2+/H2O2-mediated oxidations of DNA. In 50 mM H2O2, preferential cleavages occurred at the nucleoside 5' to each of the dG moieties in the sequence RGGG, a sequence found in a majority of telomere repeats. Within a plasmid containing a (TTAGGG)81 human telomere insert, 7-fold more strand breakage occurred in the restriction fragment with the insert than in a similar-sized control fragment. This result implies that telomeric DNA could protect coding DNA from oxidative damage and might also link oxidative damage and iron load to telomere shortening and aging. In micromolar H2O2, preferential cleavage occurred at the thymidine within the sequence RTGR, a sequence frequently found to be required in promoters for normal responses of many procaryotic and eucaryotic genes to iron or oxygen stress. Computer modeling of the interaction of Fe2+ with RTGR in B-DNA suggests that due to steric hindrance with the thymine methyl, Fe2+ associates in a specific manner with the thymine flipped out from the base stack so as to allow an octahedrally-oriented coordination of the Fe2+ with the three purine N7 residues. Fe2+-dependent changes in NMR spectra of duplex oligonucleotides containing ATGA versus those containing AUGA or A5mCGA were consistent with this model.
Collapse
|
|
26 |
264 |
22
|
Luo Y, Umegaki H, Wang X, Abe R, Roth GS. Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 1998; 273:3756-64. [PMID: 9452508 DOI: 10.1074/jbc.273.6.3756] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA) is a neurotransmitter, but it also exerts a neurotoxic effect under certain pathological conditions, including age-related neurodegeneration such as Parkinson's disease. By using both the 293 cell line and primary neonatal rat postmitotic striatal neuron cultures, we show here that DA induces apoptosis in a time- and concentration-dependent manner. Concomitant with the apoptosis, DA activates the JNK pathway, including increases in JNK activity, phosphorylation of c-Jun, and subsequent increase in c-Jun protein. This DA-induced JNK activation precedes apoptosis and is persistently sustained during the process of apoptosis. Transient expression of a dominant negative mutant SEK1(Lys --> Arg), an upstream kinase of JNK, prevents both DA-induced JNK activation and apoptosis. A dominant negative c-Jun mutant FLAGDelta169 also reduces DA-induced apoptotic cell death. Anti-oxidants N-acetylcysteine and catalase, which serve as scavengers of reactive oxygen species generated by metabolic DA oxidation, effectively block DA-induced JNK activation and subsequent apoptosis. Thus, our data suggest that DA triggers an apoptotic death program through an oxidative stress-involved JNK activation signaling pathway. Given the fact that the anti-oxidative defense system declines during aging, this molecular event may be implicated in the age-related striatal neuronal cell loss and age-related dopaminergic neurodegenerative disorders, such as Parkinson's and Huntington's diseases.
Collapse
|
|
27 |
261 |
23
|
Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug Chem 1999; 10:755-63. [PMID: 10502340 DOI: 10.1021/bc9900338] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cell-targeted prodrug was developed for the anti-cancer drug Taxol, using hyaluronic acid (HA) as the drug carrier. HA-Taxol bioconjugates were synthesized by linking the Taxol 2'-OH via a succinate ester to adipic dihydrazide-modified HA (HA-ADH). The coupling of Taxol-NHS ester and HA-ADH provided several HA bioconjugates with different levels of ADH modification and different Taxol loadings. A fluorescent BODIPY-HA was also synthesized to illustrate cell targeting and uptake of chemically modified HA using confocal microscopy. HA-Taxol conjugates showed selective toxicity toward the human cancer cell lines (breast, colon, and ovarian) that are known to overexpress HA receptors, while no toxicity was observed toward a mouse fibroblast cell line at the same concentrations used with the cancer cells. The drug carrier HA-ADH was completely nontoxic. The selective cytotoxicity is consistent with the results from confocal microscopy, which demonstrated that BODIPY-HA only entered the cancer cell lines.
Collapse
|
|
26 |
257 |
24
|
Brayer GD, Luo Y, Withers SG. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci 1995; 4:1730-42. [PMID: 8528071 PMCID: PMC2143216 DOI: 10.1002/pro.5560040908] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structure of human pancreatic alpha-amylase has been determined to 1.8 A resolution using X-ray diffraction techniques. This enzyme is found to be composed of three structural domains. The largest is Domain A (residues 1-99, 169-404), which forms a central eight-stranded parallel beta-barrel, to one end of which are located the active site residues Asp 197, Glu 233, and Asp 300. Also found in this vicinity is a bound chloride ion that forms ligand interactions to Arg 195, Asn 298, and Arg 337. Domain B is the smallest (residues 100-168) and serves to form a calcium binding site against the wall of the beta-barrel of Domain A. Protein groups making ligand interactions to this calcium include Asn 100, Arg 158, Asp 167, and His 201. Domain C (residues 405-496) is made up of anti-parallel beta-structure and is only loosely associated with Domains A and B. It is notable that the N-terminal glutamine residue of human pancreatic alpha-amylase undergoes a posttranslational modification to form a stable pyrrolidone derivative that may provide protection against other digestive enzymes. Structure-based comparisons of human pancreatic alpha-amylase with functionally related enzymes serve to emphasize three points. Firstly, despite this approach facilitating primary sequence alignments with respect to the numerous insertions and deletions present, overall there is only approximately 15% sequence homology between the mammalian and fungal alpha-amylases. Secondly, in contrast, these same studies indicate that significant structural homology is present and of the order of approximately 70%. Thirdly, the positioning of Domain C can vary considerably between alpha-amylases. In terms of the more closely related porcine enzyme, there are four regions of polypeptide chain (residues 237-250, 304-310, 346-354, and 458-461) with significantly different conformations from those in human pancreatic alpha-amylase. At least two of these could play a role in observed differential substrate and cleavage pattern specificities between these enzymes. Similarly, amino acid differences between human pancreatic and salivary alpha-amylases have been localized and a number of these occur in the vicinity of the active site.
Collapse
|
research-article |
30 |
257 |
25
|
Luo Y, Tall AR. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J Clin Invest 2000; 105:513-20. [PMID: 10683381 PMCID: PMC289164 DOI: 10.1172/jci8573] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cholesterol ester transfer protein (CETP) facilitates the transfer of HDL cholesterol esters from plasma to the liver. Transgenic mice expressing human CETP, controlled by its natural flanking region, increase expression of this gene in response to hypercholesterolemia. We established a CETP promoter-luciferase reporter assay in differentiated 3T3-L1 adipocytes to map the sterol upregulatory element. Promoter mutagenesis suggested that a direct repeat of a nuclear receptor binding sequence separated by 4 nucleotides (DR4 element, -384 to -399) was responsible for this activity. Using mice carrying normal or mutated promoter sequences, we confirmed the importance of this element for gene induction by dietary sterol. A gel retardation complex containing LXR/RXR was identified using the CETP DR4 element and adipocyte nuclear extracts. Both LXRalpha/RXRalpha and LXRbeta/RXRalpha transactivated the CETP promoter via its DR4 element in a sterol-responsive fashion. Thus, the positive sterol response of the CETP gene is mediated by a nuclear receptor binding site that is activated by LXRs. That Cyp7a, the rate-limiting enzyme for conversion of cholesterol into bile acids in the liver, is also regulated by LXRalpha suggests that this class of nuclear receptor coordinates the regulation of HDL cholesterol ester catabolism and bile acid synthesis in the liver.
Collapse
|
research-article |
25 |
256 |