1
|
Chong JA, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 1995; 80:949-57. [PMID: 7697725 DOI: 10.1016/0092-8674(95)90298-8] [Citation(s) in RCA: 860] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of the type II voltage-dependent sodium channel gene is restricted to neurons by a silencer element active in nonneuronal cells. We have cloned cDNA coding for a transcription factor (REST) that binds to this silencer element. Expression of a recombinant REST protein confers the ability to silence type II reporter genes in neuronal cell types lacking the native REST protein, whereas expression of a dominant negative form of REST in nonneuronal cells relieves silencing mediated by the native protein. REST transcripts in developing mouse embryos are detected ubiquitously outside of the nervous system. We propose that expression of the type II sodium channel gene in neurons reflects a default pathway that is blocked in nonneuronal cells by the presence of REST.
Collapse
|
|
30 |
860 |
2
|
Zheng Y, Wong ML, Alberts B, Mitchison T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 1995; 378:578-83. [PMID: 8524390 DOI: 10.1038/378578a0] [Citation(s) in RCA: 655] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The highly conserved protein gamma-tubulin is required for microtubule nucleation in vivo. When viewed in the electron microscope, a highly purified gamma-tubulin complex from Xenopus consisting of at least seven different proteins is seen to have an open ring structure. This complex acts as an active microtubule-nucleating unit which can cap the minus ends of microtubules in vitro.
Collapse
|
|
30 |
655 |
3
|
Chen G, Zhao Y, Fu G, Duchesne PN, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao CW, Lee JF, Zheng N. Interfacial Effects in Iron-Nickel Hydroxide-Platinum Nanoparticles Enhance Catalytic Oxidation. Science 2014; 344:495-9. [DOI: 10.1126/science.1252553] [Citation(s) in RCA: 502] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
11 |
502 |
4
|
Abstract
Genetic screening and biochemical studies during the past few years have led to the discovery of a family of cell growth regulatory proteins and oncogene products for which the Dbl oncoprotein is a prototype. These putative guanine nucleotide exchange factors for Rho family small GTP-binding proteins (G proteins) all contain a Dbl homology domain in tandem with a pleckstrin homology domain, and seem to activate specific members of the Rho family of proteins to elicit various biological functions in cells. The Dbl homology domain is directly responsible for binding and activating the small G proteins to mediate downstream signaling events, whereas the pleckstrin homology domain may serve to target these positive regulators of G proteins to specific cellular locations to carry out the signaling task. Despite the increasing interest in the Dbl family of proteins, there is still a good deal to learn regarding the biochemical mechanisms that underlie their diverse biological functions.
Collapse
|
Review |
29 |
432 |
5
|
Dictenberg JB, Zimmerman W, Sparks CA, Young A, Vidair C, Zheng Y, Carrington W, Fay FS, Doxsey SJ. Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol 1998; 141:163-74. [PMID: 9531556 PMCID: PMC2132723 DOI: 10.1083/jcb.141.1.163] [Citation(s) in RCA: 388] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1997] [Revised: 01/19/1998] [Indexed: 02/07/2023] Open
Abstract
Pericentrin and gamma-tubulin are integral centrosome proteins that play a role in microtubule nucleation and organization. In this study, we examined the relationship between these proteins in the cytoplasm and at the centrosome. In extracts prepared from Xenopus eggs, the proteins were part of a large complex as demonstrated by sucrose gradient sedimentation, gel filtration and coimmunoprecipitation analysis. The pericentrin-gamma-tubulin complex was distinct from the previously described gamma-tubulin ring complex (gamma-TuRC) as purified gamma-TuRC fractions did not contain detectable pericentrin. When assembled at the centrosome, the two proteins remained in close proximity as shown by fluorescence resonance energy transfer. The three- dimensional organization of the centrosome-associated fraction of these proteins was determined using an improved immunofluorescence method. This analysis revealed a novel reticular lattice that was conserved from mammals to amphibians, and was organized independent of centrioles. The lattice changed dramatically during the cell cycle, enlarging from G1 until mitosis, then rapidly disassembling as cells exited mitosis. In cells colabeled to detect centrosomes and nucleated microtubules, lattice elements appeared to contact the minus ends of nucleated microtubules. Our results indicate that pericentrin and gamma-tubulin assemble into a unique centrosome lattice that represents the higher-order organization of microtubule nucleating sites at the centrosome.
Collapse
|
research-article |
27 |
388 |
6
|
Hong R, Li J, Chen L, Liu D, Li H, Zheng Y, Ding J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. POWDER TECHNOL 2009. [DOI: 10.1016/j.powtec.2008.07.004] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
|
16 |
378 |
7
|
Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y, Reynolds AB. Inhibition of RhoA by p120 catenin. Nat Cell Biol 2000; 2:637-44. [PMID: 10980705 DOI: 10.1038/35023588] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RhoA organizes actin stress fibres and is necessary for cell transformation by oncogenes such as src and ras. Moreover, RhoA is implicated in cadherin clustering during the formation of adherens junctions. The catenin p120 has also been implicated in cadherin clustering through an unknown mechanism. Here we show that p120 selectively inhibits RhoA activity in vitro and in vivo. RhoA inhibition and the interaction of p120 with cadherins are mutually exclusive, suggesting a mechanism for regulating the recruitment and exchange of RhoA at nascent cell-cell contacts. By affecting RhoA activation, p120 could modulate cadherin functions, including suppression of invasion, neurite extension and junction formation.
Collapse
|
|
25 |
366 |
8
|
Zheng Y, Jung MK, Oakley BR. Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 1991; 65:817-23. [PMID: 1904010 DOI: 10.1016/0092-8674(91)90389-g] [Citation(s) in RCA: 360] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mipA gene of A. nidulans encodes a newly discovered member of the tubulin superfamily of proteins, gamma-tubulin. In A. nidulans, gamma-tubulin is essential for nuclear division and microtubule assembly and is associated with the spindle pole body, the fungal microtubule organizing center. By low stringency hybridizations we have cloned cDNAs from D. melanogaster and H. sapiens, the predicted products of which share more than 66% amino acid identity with A. nidulans gamma-tubulin. gamma-Tubulin-specific antibodies stained centrosomes of Drosophila, human, and mouse cell lines. Staining was most intense in prophase through metaphase when microtubule assembly from centrosomes was maximal. These results demonstrate that gamma-tubulin genes are present and expressed in humans and flies; they suggest that gamma-tubulin may be a universal component of microtubule organizing centers; and they are consistent with an earlier hypothesis that gamma-tubulin is a minus-end nucleator of microtubule assembly.
Collapse
|
Comparative Study |
34 |
360 |
9
|
Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 1996; 272:279-81. [PMID: 8602515 DOI: 10.1126/science.272.5259.279] [Citation(s) in RCA: 341] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1,3-beta-D-glucan synthase [also known as beta(1-->3) glucan synthase] is a multi-enzyme complex that catalyzes the synthesis of 1,3-beta-linked glucan, a major structural component of the yeast cell wall. Temperature-sensitive mutants in the essential Rho-type guanosine triphosphatase (GTPase), Rho1p, displayed thermolabile glucan synthase activity, which was restored by the addition of recombinant Rho1p. Glucan synthase from mutants expressing constitutively active Rho1p did not require exogenous guanosine triphosphate for activity. Rho1p copurified with beta(1-->3)glucan synthase and associated with the Fks1p subunit of this complex in vivo. Both proteins were localized predominantly at sites of cell wall remodeling. Therefore, it appears that Rho1p is a regulatory subunit of beta(1-->3)glucan synthase.
Collapse
|
|
29 |
341 |
10
|
Li M, Carpio DF, Zheng Y, Bruzzo P, Singh V, Ouaaz F, Medzhitov RM, Beg AA. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7128-35. [PMID: 11390458 DOI: 10.4049/jimmunol.166.12.7128] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue damage induced by infection or injury can result in necrosis, a mode of cell death characterized by induction of an inflammatory response. In contrast, cells dying by apoptosis do not induce inflammation. However, the reasons for underlying differences between these two modes of cell death in inducing inflammation are not known. Here we show that necrotic cells, but not apoptotic cells, activate NF-kappaB and induce expression of genes involved in inflammatory and tissue-repair responses, including neutrophil-specific chemokine genes KC and macrophage-inflammatory protein-2, in viable fibroblasts and macrophages. Intriguingly, NF-kappaB activation by necrotic cells was dependent on Toll-like receptor 2, a signaling pathway that induces inflammation in response to microbial agents. These results have identified a novel mechanism by which cell necrosis, but not apoptosis, can induce expression of genes involved in inflammation and tissue-repair responses. Furthermore, these results also demonstrate that the NF-kappaB/Toll-like receptor 2 pathway can be activated both by exogenous microbial agents and endogenous inflammatory stimuli.
Collapse
|
|
24 |
339 |
11
|
Abstract
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP-GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.
Collapse
|
Review |
24 |
329 |
12
|
Abstract
Ran, a small guanosine triphosphatase, is suggested to have additional functions beyond its well-characterized role in nuclear trafficking. Guanosine triphosphate-bound Ran, but not guanosine diphosphate-bound Ran, stimulated polymerization of astral microtubules from centrosomes assembled on Xenopus sperm. Moreover, a Ran allele with a mutation in the effector domain (RanL43E) induced the formation of microtubule asters and spindle assembly, in the absence of sperm nuclei, in a gammaTuRC (gamma-tubulin ring complex)- and XMAP215 (Xenopus microtubule associated protein)-dependent manner. Therefore, Ran could be a key signaling molecule regulating microtubule polymerization during mitosis.
Collapse
|
|
26 |
311 |
13
|
Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2000; 2:484-91. [PMID: 10934468 DOI: 10.1038/35019518] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we show that suppression of synthesis of the microtubule motor CENP-E (centromere-associated protein E), a component of the kinetochore corona fibres of mammalian centromeres, yields chromosomes that are chronically mono-orientated, with spindles that are flattened along the plane of the substrate. Despite apparently normal microtubule numbers and the continued presence at kinetochores of other microtubule motors, spindle poles fragment in the absence of CENP-E, which implicates this protein in delivery of components from kinetochores to poles. CENP-E represents a link between attachment of spindle microtubules and the mitotic checkpoint signalling cascade, as depletion of this motor leads to profound checkpoint activation, whereas immunoprecipitation reveals a nearly stoichiometric association of CENP-E with the checkpoint kinase BubR1 during mitosis.
Collapse
|
|
25 |
291 |
14
|
Abstract
Rac1, a member of the Rho family of GTPases, is an intracellular transducer known to regulate multiple signaling pathways that control cytoskeleton organization, transcription, and cell proliferation. Deregulated expression or activation patterns of Rac1 can result in aberrant cell signaling and numerous pathological conditions. Here, we highlight the physiological functions and signaling mechanisms of Rac1 and their relevance to disease.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
281 |
15
|
Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y. Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 2001; 291:653-6. [PMID: 11229403 DOI: 10.1126/science.1057661] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The guanosine triphosphatase Ran stimulates assembly of microtubule asters and spindles in mitotic Xenopus egg extracts. A carboxyl-terminal region of the nuclear-mitotic apparatus protein (NuMA), a nuclear protein required for organizing mitotic spindle poles, mimics Ran's ability to induce asters. This NuMA fragment also specifically interacted with the nuclear transport factor, importin-beta. We show that importin-beta is an inhibitor of microtubule aster assembly in Xenopus egg extracts and that Ran regulates the interaction between importin-beta and NuMA. Importin-beta therefore links NuMA to regulation by Ran. This suggests that similar mechanisms regulate nuclear import during interphase and spindle assembly during mitosis.
Collapse
|
|
24 |
253 |
16
|
Spence SA, Farrow TF, Herford AE, Wilkinson ID, Zheng Y, Woodruff PW. Behavioural and functional anatomical correlates of deception in humans. Neuroreport 2001; 12:2849-53. [PMID: 11588589 DOI: 10.1097/00001756-200109170-00019] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Brain activity in humans telling lies has yet to be elucidated. We developed an objective approach to its investigation, utilizing a computer-based interrogation and fMRI. Interrogatory questions probed recent episodic memory in 30 volunteers studied outside and 10 volunteers studied inside the MR scanner. In a counter-balanced design subjects answered specified questions both truthfully and with lies. Lying was associated with longer response times (p < 0.001) and greater activity in bilateral ventrolateral prefrontal cortices (p < 0.05, corrected). These findings were replicated using an alternative protocol. Ventrolateral prefrontal cortex may be engaged in generating lies or withholding the truth.
Collapse
|
|
24 |
248 |
17
|
Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 1998; 273:34954-60. [PMID: 9857026 DOI: 10.1074/jbc.273.52.34954] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho-related small GTPases are critical elements involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. The Dbl-like guanine nucleotide exchange factors (GEF) have been implicated in direct activation of these GTPases. Here we have identified a new member of the Dbl family, GEF-H1, by screening a human HeLa cell cDNA library. GEF-H1 encodes a 100-kDa protein containing the conserved structural array of a Dbl homology domain in tandem with a pleckstrin homology domain and is most closely related to the lfc oncogene, but additionally it contains a unique coiled-coil domain at the carboxyl terminus. Biochemical analysis reveals that GEF-H1 is capable of stimulating guanine nucleotide exchange of Rac and Rho but is inactive toward Cdc42, TC10, or Ras. Moreover, GEF-H1 binds to Rac and Rho proteins in both the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound states without detectable affinity for Cdc42 or Ras. Immunofluorescence reveals that GEF-H1 colocalizes with microtubules through the carboxyl-terminal coiled-coil domain. Overexpression of GEF-H1 in COS-7 cells results in induction of membrane ruffles. These results suggest that GEF-H1 may have a direct role in activation of Rac and/or Rho and in bringing the activated GTPase to specific target sites such as microtubules.
Collapse
|
|
27 |
247 |
18
|
Oegema K, Wiese C, Martin OC, Milligan RA, Iwamatsu A, Mitchison TJ, Zheng Y. Characterization of two related Drosophila gamma-tubulin complexes that differ in their ability to nucleate microtubules. J Biophys Biochem Cytol 1999; 144:721-33. [PMID: 10037793 PMCID: PMC2132928 DOI: 10.1083/jcb.144.4.721] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
gamma-tubulin exists in two related complexes in Drosophila embryo extracts (Moritz, M., Y. Zheng, B.M. Alberts, and K. Oegema. 1998. J. Cell Biol. 142:1- 12). Here, we report the purification and characterization of both complexes that we name gamma-tubulin small complex (gammaTuSC; approximately 280,000 D) and Drosophila gammaTuRC ( approximately 2,200,000 D). In addition to gamma-tubulin, the gammaTuSC contains Dgrip84 and Dgrip91, two proteins homologous to the Spc97/98p protein family. The gammaTuSC is a structural subunit of the gammaTuRC, a larger complex containing about six additional polypeptides. Like the gammaTuRC isolated from Xenopus egg extracts (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578-583), the Drosophila gammaTuRC can nucleate microtubules in vitro and has an open ring structure with a diameter of 25 nm. Cryo-electron microscopy reveals a modular structure with approximately 13 radially arranged structural repeats. The gammaTuSC also nucleates microtubules, but much less efficiently than the gammaTuRC, suggesting that assembly into a larger complex enhances nucleating activity. Analysis of the nucleotide content of the gammaTuSC reveals that gamma-tubulin binds preferentially to GDP over GTP, rendering gamma-tubulin an unusual member of the tubulin superfamily.
Collapse
|
research-article |
26 |
247 |
19
|
Liliental J, Moon SY, Lesche R, Mamillapalli R, Li D, Zheng Y, Sun H, Wu H. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol 2000; 10:401-4. [PMID: 10753747 DOI: 10.1016/s0960-9822(00)00417-6] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pten (Phosphatase and tensin homolog deleted on chromosome 10) is a recently identified tumor suppressor gene which is deleted or mutated in a variety of primary human cancers and in three cancer predisposition syndromes [1]. Pten regulates apoptosis and cell cycle progression through its phosphatase activity on phosphatidylinositol (PI) 3,4,5-trisphosphate (PI(3,4,5)P(3)), a product of PI 3-kinase [2-5]. Pten has also been implicated in controlling cell migration [6], but the exact mechanism is not very clear. Using the isogenic Pten(+/+) and Pten(-/-) mouse fibroblast lines, here we show that Pten deficiency led to increased cell motility. Reintroducing the wild-type Pten, but not the catalytically inactive Pten C124S or lipid-phosphatase-deficient Pten G129E mutant, reduced the enhanced cell motility of Pten-deficient cells. Moreover, phosphorylation of the focal adhesion kinase p125(FAK) was not changed in Pten(-/-) cells. Instead, significant increases in the endogenous activities of Rac1 and Cdc42, two small GTPases involved in regulating the actin cytoskeleton [7], were observed in Pten(-/-) cells. Overexpression of dominant-negative mutant forms of Rac1 and Cdc42 reversed the cell migration phenotype of Pten(-/-) cells. Thus, our studies suggest that Pten negatively controls cell motility through its lipid phosphatase activity by down-regulating Rac1 and Cdc42.
Collapse
|
|
25 |
239 |
20
|
Hart M, Eva A, Zangrilli D, Aaronson S, Evans T, Cerione R, Zheng Y. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42313-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
31 |
238 |
21
|
Suzuki A, Zheng Y, Kondo R, Kusakabe M, Takada Y, Fukao K, Nakauchi H, Taniguchi H. Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology 2000; 32:1230-9. [PMID: 11093729 DOI: 10.1053/jhep.2000.20349] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cells responsible for tissue maintenance and repair are found in a number of organs. However, hepatic stem cells assumed to play a key role in liver development and regeneration remain to be well characterized. To address this issue, we set up a culture system in which primitive hepatic progenitor cells formed colonies. By combining this culture system with fluorescence-activated cell sorting (FACS), cells forming colonies containing distinct hepatocytes and cholangiocytes were identified in the fetal mouse liver. These cells express both CD49f and CD29 (alpha6 and beta1 integrin subunits), but do not mark for hematopoietic antigens such as CD45, TER119, and c-Kit. When transplanted into the spleen, these cells migrated to the recipient liver and differentiated into liver parenchymal cells. Our data demonstrate that hepatic progenitor cells are enriched by FACS and suggest approaches to supplanting organ allografting and improving artificial-organ hepatic support.
Collapse
|
|
25 |
235 |
22
|
Mayhew JE, Askew S, Zheng Y, Porrill J, Westby GW, Redgrave P, Rector DM, Harper RM. Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity. Neuroimage 1996; 4:183-93. [PMID: 9345508 DOI: 10.1006/nimg.1996.0069] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Imaging of scattered and reflected light from the surface of neural structures can reveal the functional architecture within large populations of neurons. These techniques exploit, as one of the principal signal sources, reflectance changes produced by local variation in blood volume and oxygen saturation related to neural activity. We found that a major source of variability in the captured light signal is a pervasive low-frequency (0.1-Hz) oscillation which apparently results from regional cerebral blood flow. This signal is present in brain parenchyma as well as the microvasculature and exhibits many characteristics of the low-frequency "vasomotion" signals observed in peripheral microcirculation. Concurrent measurements in brain with a laser Doppler flow meter contained an almost identical low-frequency signal. The presence of the 0.1-Hz oscillation in the cerebral microcirculation could underlie a portion of the previously described characteristics reported in reflected-light imaging studies. The prevalence of the oscillatory phenomena in the brain raises substantial temporal sampling issues for optical imaging and for other visualization techniques which depend on changes in regional cerebral blood dynamics, such as functional magnetic resonance imaging.
Collapse
|
|
29 |
232 |
23
|
Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV. Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron 1999; 24:347-61. [PMID: 10571229 DOI: 10.1016/s0896-6273(00)80849-1] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
How simple neuronal circuits control behavior is not well understood at the molecular or genetic level. In Caenorhabditis elegans, foraging behavior consists of long, forward movements interrupted by brief reversals. To determine how this pattern is generated and regulated, we have developed novel perturbation techniques that allow us to depolarize selected neurons in vivo using the dominant glutamate receptor mutation identified in the Lurcher mouse. Transgenic worms that expressed a mutated C. elegans glutamate receptor in interneurons that control locomotion displayed a remarkable and unexpected change in their behavior-they rapidly alternated between forward and backward coordinated movement. Our findings suggest that the gating of movement reversals is controlled in a partially distributed fashion by a small subset of interneurons and that this gating is modified by sensory input.
Collapse
|
|
26 |
212 |
24
|
Farrow TF, Zheng Y, Wilkinson ID, Spence SA, Deakin JF, Tarrier N, Griffiths PD, Woodruff PW. Investigating the functional anatomy of empathy and forgiveness. Neuroreport 2001; 12:2433-8. [PMID: 11496124 DOI: 10.1097/00001756-200108080-00029] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous functional brain imaging studies suggest that the ability to infer the intentions and mental states of others (social cognition) is mediated by medial prefrontal cortex. Little is known about the anatomy of empathy and forgiveness. We used functional MRI to detect brain regions engaged by judging others' emotional states and the forgivability of their crimes. Ten volunteers read and made judgements based on social scenarios and a high level baseline task (social reasoning). Both empathic and forgivability judgements activated left superior frontal gyrus, orbitofrontal gyrus and precuneus. Empathic judgements also activated left anterior middle temporal and left inferior frontal gyri, while forgivability judgements activated posterior cingulate gyrus. Empathic and forgivability judgements activate specific regions of the human brain, which we propose contribute to social cohesion.
Collapse
|
|
24 |
206 |
25
|
Hao S, Cui L, Jiang D, Han X, Ren Y, Jiang J, Liu Y, Liu Z, Mao S, Wang Y, Li Y, Ren X, Ding X, Wang S, Yu C, Shi X, Du M, Yang F, Zheng Y, Zhang Z, Li X, Brown DE, Li J. A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength. Science 2013; 339:1191-4. [DOI: 10.1126/science.1228602] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
12 |
202 |