1
|
Abstract
Local field potentials (LFPs) are of growing importance in neurophysiological investigations. LFPs supplement action potential recordings by indexing activity relevant to EEG, magnetoencephalographic, and hemodynamic (fMRI) signals. Recent reports suggest that LFPs reflect activity within very small domains of several hundred micrometers. We examined this conclusion by comparing LFP, current source density (CSD), and multiunit activity (MUA) signals in macaque auditory cortex. Estimated by frequency tuning bandwidths, these signals' "listening areas" differ systematically with an order of MUA < CSD < LFP. Computational analyses confirm that observed LFPs receive local contributions. Direct measurements indicate passive spread of LFPs to sites more than a centimeter from their origins. These findings appear to be independent of the frequency content of the LFP. Our results challenge the idea that LFP recordings typically integrate over extremely circumscribed local domains. Rather, LFPs appear as a mixture of local potentials with "volume conducted" potentials from distant sites.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
372 |
2
|
Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A. Neuronal oscillations and visual amplification of speech. Trends Cogn Sci 2008; 12:106-13. [PMID: 18280772 DOI: 10.1016/j.tics.2008.01.002] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/29/2022]
Abstract
It is widely recognized that viewing a speaker's face enhances vocal communication, although the neural substrates of this phenomenon remain unknown. We propose that the enhancement effect uses the ongoing oscillatory activity of local neuronal ensembles in the primary auditory cortex. Neuronal oscillations reflect rhythmic shifting of neuronal ensembles between high and low excitability states. Our hypothesis holds that oscillations are 'predictively' modulated by visual input, so that related auditory input arrives during a high excitability phase and is thus amplified. We discuss the anatomical substrates and key timing parameters that enable and constrain this effect. Our hypothesis makes testable predictions for future studies and emphasizes the idea that 'background' oscillatory activity is instrumental to cortical sensory processing.
Collapse
|
Review |
17 |
362 |
3
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 2006; 496:27-71. [PMID: 16528722 DOI: 10.1002/cne.20923] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The auditory cortex of primates contains a core region of three primary areas surrounded by a belt region of secondary areas. Recent neurophysiological studies suggest that the belt areas medial to the core have unique functional roles, including multisensory properties, but little is known about their connections. In this study and its companion, the cortical and subcortical connections of the core and medial belt regions of marmoset monkeys were compared to account for functional differences between areas and refine our working model of the primate auditory cortex. Anatomical tracer injections targeted two core areas (A1 and R) and two medial belt areas (rostromedial [RM] and caudomedial [CM]). RM and CM had topographically weighted connections with all other areas of the auditory cortex ipsilaterally, but these were less widespread contralaterally. CM was densely connected with caudal auditory fields, the retroinsular (Ri) area of the somatosensory cortex, the superior temporal sulcus (STS), and the posterior parietal and entorhinal cortex. The connections of RM favored rostral auditory areas, with no clear somatosensory inputs. RM also projected to the lateral nucleus of the amygdala and tail of the caudate nucleus. A1 and R had topographically weighted connections with medial and lateral belt regions, infragranular inputs from the parabelt, and weak connections with fields outside the auditory cortex. The results indicated that RM and CM are distinct areas of the medial belt region with direct inputs from the core. CM also has somatosensory input and may correspond to an area on the posteromedial transverse gyrus of humans and the anterior auditory field of other mammals.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
144 |
4
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 2006; 496:72-96. [PMID: 16528728 PMCID: PMC4419740 DOI: 10.1002/cne.20924] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study and its companion, the cortical and subcortical connections of the medial belt region of the marmoset monkey auditory cortex were compared with the core region. The main objective was to document anatomical features that account for functional differences observed between areas. Injections of retrograde and bi-directional anatomical tracers targeted two core areas (A1 and R), and two medial belt areas (rostromedial [RM] and caudomedial [CM]). Topographically distinct patterns of connections were revealed among subdivisions of the medial geniculate complex (MGC) and multisensory thalamic nuclei, including the suprageniculate (Sg), limitans (Lim), medial pulvinar (PM), and posterior nucleus (Po). The dominant thalamic projection to the CM was the anterior dorsal division (MGad) of the MGC, whereas the posterior dorsal division (MGpd) targeted RM. CM also had substantial input from multisensory nuclei, especially the magnocellular division (MGm) of the MGC. RM had weak multisensory connections. Corticotectal projections of both RM and CM targeted the dorsomedial quadrant of the inferior colliculus, whereas the CM projection also included a pericentral extension around the ventromedial and lateral portion of the central nucleus. Areas A1 and R were characterized by focal topographic connections within the ventral division (MGv) of the MGC, reflecting the tonotopic organization of both core areas. The results indicate that parallel subcortical pathways target the core and medial belt regions and that RM and CM represent functionally distinct areas within the medial belt auditory cortex.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
118 |
5
|
Leszczyński M, Barczak A, Kajikawa Y, Ulbert I, Falchier AY, Tal I, Haegens S, Melloni L, Knight RT, Schroeder CE. Dissociation of broadband high-frequency activity and neuronal firing in the neocortex. SCIENCE ADVANCES 2020; 6:eabb0977. [PMID: 32851172 PMCID: PMC7423365 DOI: 10.1126/sciadv.abb0977] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/30/2020] [Indexed: 05/30/2023]
Abstract
Broadband high-frequency activity (BHA; 70 to 150 Hz), also known as "high gamma," a key analytic signal in human intracranial (electrocorticographic) recordings, is often assumed to reflect local neural firing [multiunit activity (MUA)]. As the precise physiological substrates of BHA are unknown, this assumption remains controversial. Our analysis of laminar multielectrode data from V1 and A1 in monkeys outlines two components of stimulus-evoked BHA distributed across the cortical layers: an "early-deep" and "late-superficial" response. Early-deep BHA has a clear spatial and temporal overlap with MUA. Late-superficial BHA was more prominent and accounted for more of the BHA signal measured near the cortical pial surface. However, its association with local MUA is weak and often undetectable, consistent with the view that it reflects dendritic processes separable from local neuronal firing.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
93 |
6
|
Morillon B, Hackett TA, Kajikawa Y, Schroeder CE. Predictive motor control of sensory dynamics in auditory active sensing. Curr Opin Neurobiol 2015; 31:230-8. [PMID: 25594376 PMCID: PMC4898262 DOI: 10.1016/j.conb.2014.12.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
89 |
7
|
Kajikawa Y, de La Mothe L, Blumell S, Hackett TA. A Comparison of Neuron Response Properties in Areas A1 and CM of the Marmoset Monkey Auditory Cortex: Tones and Broadband Noise. J Neurophysiol 2005; 93:22-34. [PMID: 15342713 DOI: 10.1152/jn.00248.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to compare response properties of two adjacent areas of the marmoset monkey auditory cortex. Multiunit responses to 50 ms tones and broadband noise bursts (BBN) were recorded in the core area, A1, and the caudomedial belt area, CM, of ketamine-anesthetized animals. Neurons in A1 and CM exhibited robust low-threshold short-latency responses to BBN and tones, whereas neurons in adjoining lateral belt areas were poorly responsive or unresponsive to tones and noise. Except for a population of broadly tuned units in CM, the characteristic frequency (CF) could be determined for all recording sites in A1 and CM. Both areas were tonotopically organized and shared a high CF border. Whereas the tonotopic gradient in A1 was smooth and continuous across the field, the gradient in CM was discontinuous, and the intermediate CF range was underrepresented. For BBN stimuli, rate level functions were largely monotonic in A1 and CM. Response profiles were also similar in both areas. As a population, neurons in CM were distinguished from A1 by significantly shorter response latencies, lower thresholds, and broader tuning bandwidth at higher intensities. The results indicated that, while A1 and CM represent anatomically and physiologically distinct areas, their response profiles under anesthesia overlapped considerably compared with the lateral belt areas. Therefore refinements of current models of the primate auditory cortex may be needed to account for differences in organization among the auditory belt areas.
Collapse
|
|
20 |
81 |
8
|
Kajikawa Y, Saitoh N, Takahashi T. GTP-binding protein beta gamma subunits mediate presynaptic calcium current inhibition by GABA(B) receptor. Proc Natl Acad Sci U S A 2001; 98:8054-8. [PMID: 11416164 PMCID: PMC35466 DOI: 10.1073/pnas.141031298] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of GTP-binding protein (G protein)-coupled receptors are expressed at the nerve terminals of central synapses and play modulatory roles in transmitter release. At the calyx of Held, a rat auditory brainstem synapse, activation of presynaptic gamma-aminobutyric acid type B receptors (GABA(B) receptors) or metabotropic glutamate receptors inhibits presynaptic P/Q-type Ca(2+) channel currents via activation of G proteins, thereby attenuating transmitter release. To identify the heterotrimeric G protein subunits involved in this presynaptic inhibition, we loaded G protein beta gamma subunits (G beta gamma) directly into the calyceal nerve terminal through whole-cell patch pipettes. G beta gamma slowed the activation of presynaptic Ca(2+) currents (I(pCa)) and attenuated its amplitude in a manner similar to the externally applied baclofen, a GABA(B) receptor agonist. The effects of both G beta gamma and baclofen were relieved after strong depolarization of the nerve terminal. In addition, G beta gamma partially occluded the inhibitory effect of baclofen on I(pCa). In contrast, guanosine 5'-O-(3-thiotriphosphate)-bound G(o)alpha loaded into the calyx had no effect. Immunocytochemical examination revealed that the subtype of G proteins G(o), but not the G(i), subtype, is expressed in the calyceal nerve terminal. These results suggest that presynaptic inhibition mediated by G protein-coupled receptors occurs primarily by means of the direct interaction of G(o) beta gamma subunits with presynaptic Ca(2+) channels.
Collapse
|
research-article |
24 |
69 |
9
|
Hackett TA, de la Mothe LA, Camalier CR, Falchier A, Lakatos P, Kajikawa Y, Schroeder CE. Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model. Front Neurosci 2014; 8:72. [PMID: 24795550 PMCID: PMC4001064 DOI: 10.3389/fnins.2014.00072] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022] Open
Abstract
Our working model of the primate auditory cortex recognizes three major regions (core, belt, parabelt), subdivided into thirteen areas. The connections between areas are topographically ordered in a manner consistent with information flow along two major anatomical axes: core-belt-parabelt and caudal-rostral. Remarkably, most of the connections supporting this model were revealed using retrograde tracing techniques. Little is known about laminar circuitry, as anterograde tracing of axon terminations has rarely been used. The purpose of the present study was to examine the laminar projections of three areas of auditory cortex, pursuant to analysis of all areas. The selected areas were: middle lateral belt (ML); caudomedial belt (CM); and caudal parabelt (CPB). Injections of anterograde tracers yielded data consistent with major features of our model, and also new findings that compel modifications. Results supporting the model were: (1) feedforward projection from ML and CM terminated in CPB; (2) feedforward projections from ML and CPB terminated in rostral areas of the belt and parabelt; and (3) feedback projections typified inputs to the core region from belt and parabelt. At odds with the model was the convergence of feedforward inputs into rostral medial belt from ML and CPB. This was unexpected since CPB is at a higher stage of the processing hierarchy, with mainly feedback projections to all other belt areas. Lastly, extending the model, feedforward projections from CM, ML, and CPB overlapped in the temporal parietal occipital area (TPO) in the superior temporal sulcus, indicating significant auditory influence on sensory processing in this region. The combined results refine our working model and highlight the need to complete studies of the laminar inputs to all areas of auditory cortex. Their documentation is essential for developing informed hypotheses about the neurophysiological influences of inputs to each layer and area.
Collapse
|
Journal Article |
11 |
47 |
10
|
Takahashi T, Hori T, Kajikawa Y, Tsujimoto T. The role of GTP-binding protein activity in fast central synaptic transmission. Science 2000; 289:460-3. [PMID: 10903208 DOI: 10.1126/science.289.5478.460] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Guanosine 5'-triphosphate (GTP)-binding proteins (G proteins) are involved in exocytosis, endocytosis, and recycling of vesicles in yeast and mammalian secretory cells. However, little is known about their contribution to fast synaptic transmission. We loaded guanine nucleotide analogs directly into a giant nerve terminal in rat brainstem slices. Inhibition of G-protein activity had no effect on basal synaptic transmission, but augmented synaptic depression and significantly slowed recovery from depression. A nonhydrolyzable GTP analog blocked recovery of transmission from activity-dependent depression. Neither effect was accompanied by a change in presynaptic calcium currents. Thus, G proteins contribute to fast synaptic transmission by refilling synaptic vesicles depleted after massive exocytosis.
Collapse
|
|
25 |
43 |
11
|
Kajikawa Y, Noda S, Komiyama H. Preferred Orientation of Chemical Vapor Deposited Polycrystalline Silicon Carbide Films. ACTA ACUST UNITED AC 2002. [DOI: 10.1002/1521-3862(20020503)8:3<99::aid-cvde99>3.0.co;2-c] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
23 |
42 |
12
|
Tamura A, Kusachi S, Nogami K, Yamanishi A, Kajikawa Y, Hirohata S, Tsuji T. Tenascin expression in endomyocardial biopsy specimens in patients with dilated cardiomyopathy: distribution along margin of fibrotic lesions. Heart 1996; 75:291-4. [PMID: 8800995 PMCID: PMC484289 DOI: 10.1136/hrt.75.3.291] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To examine the hypothesis that tenascin, an extracellular matrix glycoprotein, contributes to fibrotic changes in dilated cardiomyopathy. METHODS The localisation of tenascin in biopsy specimens of the hearts obtained from eight patients with dilated cardiomyopathy was examined using staining by the avidin-biotin-peroxidase complex method. RESULTS (1) Perimysium and endomysium. Although positive staining for tenascin was observed in the enlarged perimysium and endomysium in all patients, moderately intense staining was characteristically observed near the replacement fibrotic lesions. In the narrow perimysium and endomysium of the myocardium not containing replacement fibrotic lesions, tenascin was not present, as in the control specimens. (2) Replacement fibrotic lesions. Non-homogeneous positive staining for tenascin was detected in all replacement fibrotic lesions examined. Intense tenascin deposition was observed in the peripheral portion of the replacement fibrotic lesions. The tenascin staining observed in the small replacement fibrotic lesions was more intense than that in the large lesions. CONCLUSIONS Tenascin contributes to the development of the fibrotic changes seen in the dilated cardiomyopathic heart. Its characteristic location, specifically the distribution along the margin of the fibrosis, suggests that fibrotic change is a continuous process in hearts with dilated cardiomyopathy.
Collapse
|
research-article |
29 |
42 |
13
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 2012; 295:822-36. [PMID: 22467603 DOI: 10.1002/ar.22454] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 11/11/2022]
Abstract
The primate auditory cortex is comprised of a core region of three primary areas, surrounded by a belt region of secondary areas and a parabelt region lateral to the belt. The main sources of thalamocortical inputs to the auditory cortex are the medial geniculate complex (MGC), medial pulvinar (PM), and several adjoining nuclei in the posterior thalamus. The distribution of inputs varies topographically by cortical area and thalamic nucleus, but in a manner that has not been fully characterized in primates. In this study, the thalamocortical connections of the lateral belt and parabelt were determined by placing retrograde tracer injections into various areas of these regions in the marmoset monkey. Both regions received projections from the medial (MGm) and posterodorsal (MGpd) divisions of the medial geniculate complex (MGC); however, labeled cells in the anterodorsal (MGad) division were present only from injections into the caudal belt. Thalamic inputs to the lateral belt appeared to come mainly from the MGC, whereas the parabelt also received a strong projection from the PM, consistent with its position as a later stage of auditory cortical processing. The results of this study also indicate that the organization of the marmoset auditory cortex is similar to other primates.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
33 |
14
|
Kajikawa Y, Hackett TA. Entropy analysis of neuronal spike train synchrony. J Neurosci Methods 2005; 149:90-3. [PMID: 16026849 DOI: 10.1016/j.jneumeth.2005.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/20/2005] [Accepted: 04/22/2005] [Indexed: 11/22/2022]
Abstract
Although vector strength (VS) and the Rayleigh tests are widely used to quantify neuronal firing synchrony to cyclic events, their use is valid only for singly peaked, unimodal distributions. In this report, we propose a new method to quantify synchrony, applicable to both unimodal and multimodal distributions. We also propose a statistical test to examine temporal structure under a null hypothesis of no synchrony.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
32 |
15
|
Kajikawa Y, Schroeder CE. Generation of field potentials and modulation of their dynamics through volume integration of cortical activity. J Neurophysiol 2014; 113:339-51. [PMID: 25274348 DOI: 10.1152/jn.00914.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Field potentials (FPs) recorded within the brain, often called "local field potentials" (LFPs), are useful measures of net synaptic activity in a neuronal ensemble. However, due to volume conduction, FPs spread beyond regions of underlying synaptic activity, and thus an "LFP" signal may not accurately reflect the temporal patterns of synaptic activity in the immediately surrounding neuron population. To better understand the physiological processes reflected in FPs, we explored the relationship between the FP and its membrane current generators using current source density (CSD) analysis in conjunction with a volume conductor model. The model provides a quantitative description of the spatiotemporal summation of immediate local and more distant membrane currents to produce the FP. By applying the model to FPs in the macaque auditory cortex, we have investigated a critical issue that has broad implications for FP research. We have shown that FP responses in particular cortical layers are differentially susceptible to activity in other layers. Activity in the supragranular layers has the strongest contribution to FPs in other cortical layers, and infragranular FPs are most susceptible to contributions from other layers. To define the physiological processes generating FPs recorded in loci of relatively weak synaptic activity, strong effects produced by synaptic events in the vicinity have to be taken into account. While outlining limitations and caveats inherent to FP measurements, our results also suggest specific peak and frequency band components of FPs can be related to activity in specific cortical layers. These results may help improving the interpretability of FPs.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
31 |
16
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 2012; 295:800-21. [PMID: 22461313 DOI: 10.1002/ar.22451] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 03/01/2012] [Indexed: 11/12/2022]
Abstract
The current working model of primate auditory cortex is constructed from a number of studies of both new and old world monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organization has not been fully established. In previous studies, we focused on the architecture and connections of the core and medial belt areas (de la Mothe et al., 2006a, J Comp Neurol 496:27-71; de la Mothe et al., 2006b, J Comp Neurol 496:72-96). In this study, the corticocortical connections of the lateral belt and parabelt were examined in the marmoset. Tracers were injected into both rostral and caudal portions of the lateral belt and parabelt. Both regions revealed topographic connections along the rostrocaudal axis, where caudal areas of injection had stronger connections with caudal areas, and rostral areas of injection with rostral areas. The lateral belt had strong connections with the core, belt, and parabelt, whereas the parabelt had strong connections with the belt but not the core. Label in the core from injections in the parabelt was significantly reduced or absent, consistent with the idea that the parabelt relies mainly on the belt for its cortical input. In addition, the present and previous studies indicate hierarchical principles of anatomical organization in the marmoset that are consistent with those observed in other primates.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
26 |
17
|
Kajikawa Y, de la Mothe LA, Blumell S, Sterbing-D'Angelo SJ, D'Angelo W, Camalier CR, Hackett TA. Coding of FM sweep trains and twitter calls in area CM of marmoset auditory cortex. Hear Res 2008; 239:107-25. [PMID: 18342463 DOI: 10.1016/j.heares.2008.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/18/2022]
Abstract
The primate auditory cortex contains three interconnected regions (core, belt, parabelt), which are further subdivided into discrete areas. The caudomedial area (CM) is one of about seven areas in the belt region that has been the subject of recent anatomical and physiological studies conducted to define the functional organization of auditory cortex. The main goal of the present study was to examine temporal coding in area CM of marmoset monkeys using two related classes of acoustic stimuli: (1) marmoset twitter calls; and (2) frequency-modulated (FM) sweep trains modeled after the twitter call. The FM sweep trains were presented at repetition rates between 1 and 24 Hz, overlapping the natural phrase frequency of the twitter call (6-8 Hz). Multiunit recordings in CM revealed robust phase-locked responses to twitter calls and FM sweep trains. For the latter, phase-locking quantified by vector strength (VS) was best at repetition rates between 2 and 8 Hz, with a mean of about 5 Hz. Temporal response patterns were not strictly phase-locked, but exhibited dynamic features that varied with the repetition rate. To examine these properties, classification of the repetition rate from the temporal response pattern evoked by twitter calls and FM sweep trains was examined by Fisher's linear discrimination analysis (LDA). Response classification by LDA revealed that information was encoded not only by phase-locking, but also other components of the temporal response pattern. For FM sweep trains, classification was best for repetition rates from 2 to 8 Hz. Thus, the majority of neurons in CM can accurately encode the envelopes of temporally complex stimuli over the behaviorally-relevant range of the twitter call. This suggests that CM could be engaged in processing that requires relatively precise temporal envelope discrimination, and supports the hypothesis that CM is positioned at an early stage of processing in the auditory cortex of primates.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
25 |
18
|
Luczak A, Hackett TA, Kajikawa Y, Laubach M. Multivariate receptive field mapping in marmoset auditory cortex. J Neurosci Methods 2004; 136:77-85. [PMID: 15126048 DOI: 10.1016/j.jneumeth.2003.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 12/23/2003] [Accepted: 12/23/2003] [Indexed: 11/22/2022]
Abstract
We describe a novel method for estimation of multivariate neuronal receptive fields that is based on least-squares (LS) regression. The method is shown to account for the relationship between the spike train of a given neuron, the activity of other neurons that are recorded simultaneously, and a variety of time-varying features of acoustic stimuli, e.g. spectral content, amplitude, and sound source direction. Vocalization-evoked neuronal responses from the marmoset auditory cortex are used to illustrate the method. Optimal predictions of single-unit activity were obtained by using the recent-time history of the target neuron and the concurrent activity of other simultaneously recorded neurons (R: 0.82 +/- 0.01, approximately 67% of variance). Predictions based on ensemble activity alone (R: 0.63 +/- 0.18) were equivalent to those based on the combination of ensemble activity and spectral features of the vocal calls (R: 0.61 +/- 0.24). This result suggests that all information derived from the spectrogram is embodied in ensemble activity and that there is a high level of redundancy in the marmoset auditory cortex. We also illustrate that the method allows for quantification of relative and shared contributions of each variable (spike train, spectral feature) to predictions of neuronal activity and describe a novel "neurolet" transform that arises from the method and that may serve as a tool for computationally efficient processing of natural sounds.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
22 |
19
|
Kajikawa Y, Tsuchiya T, Noda S, Komiyama H. Incubation Time during Chemical Vapor Deposition of Si onto SiO2 from Silane. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/cvde.200304165] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
21 |
18 |
20
|
Inoue K, Kusachi S, Niiya K, Kajikawa Y, Tsuji T. Sequential changes in the distribution of type I and III collagens in the infarct zone: immunohistochemical study of experimental myocardial infarction in the rat. Coron Artery Dis 1995; 6:153-8. [PMID: 7780621 DOI: 10.1097/00019501-199502000-00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AIM Ventricular remodeling following acute myocardial infarction is an important factor in prognosis. The healing process, involving changes in type I and III collagens, is one of the major factors in remodelling. We therefore examined sequential changes in type I and III collagens after experimental myocardial infarction. MATERIALS AND METHODS Hearts were excised from 1 day to 10 weeks after permanent left coronary ligation in rats. Immunohistochemical staining with a polyclonal antibody to each collagen was performed by the avidin-biotin-peroxidase method. RESULTS Type I collagen initially appeared in the peripheral zone of the infarct from 3 days after ligation, the extent of staining gradually increasing until it reached a maximal level on days 21-28, after which the distribution remained unchanged. Type III collagen appeared in the peripheral zone of the infarct from 3 days after ligation; the extent of staining reached the maximal level after 11-28 days, after which a slight decrease in the distribution was observed, although the staining did not entirely disappear. CONCLUSIONS Type I collagen was a major factor in collagen matrix formation, especially in the relatively late phase. Type III collagen, however, contributed particularly to collagen matrix formation in the relatively early phase. This study improves current understanding of the time-dependent alterations in type I and III collagens involved in the healing process after coronary artery occlusion.
Collapse
|
|
30 |
15 |
21
|
Tsuboyama S, Sakurai T, Kobayashi K, Azuma N, Kajikawa Y, Ishizu K. pH dependence of binding site in complexation of CuII with picolinamide groups: crystallographic studies of mono- and binuclear complexes with N,N'-dipicolinoyl-1,3-propanediamine. ACTA CRYSTALLOGRAPHICA SECTION B: STRUCTURAL SCIENCE 1984. [DOI: 10.1107/s0108768184002494] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
41 |
15 |
22
|
Hackett TA, Karmos G, Schroeder CE, Ulbert I, Sterbing-D'Angelo SJ, D'Angelo WR, Kajikawa Y, Blumell S, de la Mothe L. Neurosurgical access to cortical areas in the lateral fissure of primates. J Neurosci Methods 2005; 141:103-13. [PMID: 15585294 DOI: 10.1016/j.jneumeth.2004.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 05/13/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
In this report, a method is presented for gaining direct access to cortical areas within the lateral fissure of primates for neuroanatomical tracer injections and electrode array implantation. Compared to areas on the surface of the brain, the anatomical and physiological properties of areas within the fissure are poorly understood. Typically, access to these areas is indirectly achieved by ablating or passing through intervening areas. To enable direct experimental access, a neurosurgical technique was developed in primates whereby the banks of the lateral fissure were retracted with sparing of the vascular network and intervening areas. In some animals, anatomical tracers were directly injected into target fields without contamination of other areas. In others, multichannel electrode arrays were implanted into target areas for chronic recording of neural activity. Since, these techniques could be adapted for exploration of areas within other sulci, the approach represents an important advance in efforts to elucidate the functional organization of the primate cerebral cortex.
Collapse
|
|
20 |
11 |
23
|
Kajikawa Y. Well-width dependence of the optical anisotropies in (001) and (110) semiconductor quantum wells: The effect of spin-orbit split-off bands. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 51:16790-16800. [PMID: 9978687 DOI: 10.1103/physrevb.51.16790] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
|
30 |
10 |
24
|
Qi HX, Reed JL, Franca JG, Jain N, Kajikawa Y, Kaas JH. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates. J Neurophysiol 2016; 115:2105-23. [PMID: 26912593 DOI: 10.1152/jn.00634.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/19/2016] [Indexed: 01/05/2023] Open
Abstract
In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary somatosensory cortex of New World monkeys and prosimian galagos, we recorded neuronal responses from single units and neuron clusters. In 66% of our sample, neuron activity tended to display suppression of firing when regions of skin outside of the excitatory RF were stimulated. In a small proportion of neurons, single-site indentations suppressed firing without initial increases in response to any of the tested sites on the hand. Latencies of suppressive responses to skin indentation (usually 12-34 ms) were similar to excitatory response latencies. The duration of inhibition varied across neurons. Although most observations were from anesthetized animals, we also found similar neuron response properties in one awake galago. Notably, suppression of ongoing neuronal activity did not require conditioning stimuli or multi-site stimulation. The suppressive effects were generally seen following single-site skin indentations outside of the neuron's minimal RF and typically on different digits and palm pads, which have not often been studied in this context. Overall, the characteristics of widespread suppressive or inhibitory response properties with and without initial facilitative or excitatory responses add to the growing evidence that neurons in primary somatosensory cortex provide essential processing for integrating sensory stimulation from across the hand.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
9 |
25
|
Kajikawa Y, Noda S, Komiyama H. A Simple Index to Restrain Abnormal Protrusions in Films Fabricated Using CVD under Diffusion-Limited Conditions. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/cvde.200306285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
21 |
9 |