1
|
Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382:722-5. [PMID: 8751444 DOI: 10.1038/382722a0] [Citation(s) in RCA: 2057] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HIV-1 and related viruses require co-receptors, in addition to CD4, to infect target cells. The chemokine receptor CCR-5 (ref.1) was recently demonstrated to be a co-receptor for macrophage-tropic (M-tropic) HIV-1 strains, and the orphan receptor LESTR (also called fusin) allows infection by strains adapted for growth in transformed T-cell lines (T-tropic strains). Here we show that a mutant allele of CCR-5 is present at a high frequency in caucasian populations (allele frequency, 0.092), but is absent in black populations from Western and Central Africa and Japanese populations. A 32-base-pair deletion within the coding region results in a frame shift, and generates a non-functional receptor that does not support membrane fusion or infection by macrophage- and dual-tropic HIV-1 strains. In a cohort of HIV-1 infected caucasian subjects, no individual homozygous for the mutation was found, and the frequency of heterozygotes was 35% lower than in the general population. White blood cells from an individual homozygous for the null allele were found to be highly resistant to infection by M-tropic HIV-1 viruses, confirming that CCR-5 is the major co-receptor for primary HIV-1 strains. The lower frequency of heterozygotes in seropositive patients may indicate partial resistance.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Cohort Studies
- DNA Primers
- Frameshift Mutation
- Gene Frequency
- Genotype
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Seropositivity/genetics
- HIV Seropositivity/immunology
- HIV-1/immunology
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Membrane Fusion
- Molecular Sequence Data
- Polymerase Chain Reaction
- Protein Conformation
- Receptors, CCR5
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, HIV/chemistry
- Receptors, HIV/genetics
- Receptors, HIV/immunology
- White People/genetics
Collapse
|
|
29 |
2057 |
2
|
Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996; 85:1149-58. [PMID: 8674120 DOI: 10.1016/s0092-8674(00)81314-8] [Citation(s) in RCA: 1452] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here, we show that the beta-chemokine receptor CKR-5 serves as a cofactor for M-tropic HIV viruses. Expression of CKR-5 with CD4 enables nonpermissive cells to form syncytia with cells expressing M-tropic, but not T-tropic, HIV-1 env proteins. Expression of CKR-5 and CD4 enables entry of a M-tropic, but not a T-tropic, virus strain. A dual-tropic primary HIV-1 isolate (89.6) utilizes both Fusin and CKR-5 as entry cofactors. Cells expressing the 89.6 env protein form syncytia with QT6 cells expressing CD4 and either Fusin or CKR-5. The beta-chemokine receptors CKR-3 and CKR-2b support HIV-1 89.6 env-mediated syncytia formation but do not support fusion by any of the T-tropic or M-tropic strains tested. Our results suggest that the T-tropic viruses characteristic of disease progression may evolve from purely M-tropic viruses prevalent early in virus infection through changes in the env protein that enable the virus to use multiple entry cofactors.
Collapse
|
|
29 |
1452 |
3
|
Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 2000; 97:2626-31. [PMID: 10716993 PMCID: PMC15979 DOI: 10.1073/pnas.97.6.2626] [Citation(s) in RCA: 666] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The activin receptor-like kinase 1 (ALK1) is a type I receptor for transforming growth factor-beta (TGF-beta) family proteins. Expression of ALK1 in blood vessels and mutations of the ALK1 gene in human type II hereditary hemorrhagic telangiectasia patients suggest that ALK1 may have an important role during vascular development. To define the function of ALK1 during development, we inactivated the ALK1 gene in mice by gene targeting. The ALK1 homozygous embryos die at midgestation, exhibiting severe vascular abnormalities characterized by excessive fusion of capillary plexes into cavernous vessels and hyperdilation of large vessels. These vascular defects are associated with enhanced expression of angiogenic factors and proteases and are characterized by deficient differentiation and recruitment of vascular smooth muscle cells. The blood vessel defects in ALK1-deficient mice are reminiscent of mice lacking TGF-beta1, TGF-beta type II receptor (TbetaR-II), or endoglin, suggesting that ALK1 may mediate TGF-beta1 signal in endothelial cells. Consistent with this hypothesis, we demonstrate that ALK1 in endothelial cells binds to TGF-beta1 and TbetaR-II. Furthermore, the ALK1 signaling pathway can inhibit TGF-beta1-dependent transcriptional activation mediated by the known TGF-beta1 type I receptor, ALK5. Taken together, our results suggest that the balance between the ALK1 and ALK5 signaling pathways in endothelial cells plays a crucial role in determining vascular endothelial properties during angiogenesis.
Collapse
|
research-article |
25 |
666 |
4
|
Guerinot ML, Yi Y. Iron: Nutritious, Noxious, and Not Readily Available. PLANT PHYSIOLOGY 1994; 104:815-820. [PMID: 12232127 PMCID: PMC160677 DOI: 10.1104/pp.104.3.815] [Citation(s) in RCA: 411] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
research-article |
31 |
411 |
5
|
Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N, DiFiglia M. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A 2001; 98:12784-9. [PMID: 11675509 PMCID: PMC60131 DOI: 10.1073/pnas.221451398] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2001] [Accepted: 08/27/2001] [Indexed: 11/18/2022] Open
Abstract
The Huntington's disease (HD) mutation is a polyglutamine expansion in the N-terminal region of huntingtin (N-htt). How neurons die in HD is unclear. Mutant N-htt aggregates in neurons in the HD brain; expression of mutant N-htt in vitro causes cell death. Other in vitro studies show that proteolysis by caspase 3 could be important in regulating mutant N-htt function, but there has been no direct evidence for caspase 3-cleaved N-htt fragments in brain. Here, we show that N-htt fragments consistent with the size produced by caspase 3 cleavage in vitro are resident in the cortex, striatum, and cerebellum of normal and adult onset HD brain and are similar in size to the fragments seen after exogenous expression of human huntingtin in mouse clonal striatal neurons. HD brain extracts treated with active caspase 3 had increased levels of N-htt fragments. Compared with the full-length huntingtin, the caspase 3-cleaved N-htt fragments, especially the mutant fragment, preferentially segregated with the membrane fraction. Partial proteolysis of the human caspase 3-cleaved N-htt fragment by calpain occurred in vitro and resulted in smaller N-terminal products; products of similar size appeared when mouse brain protein extracts were treated with calpain. Results support the idea that sequential proteolysis by caspase 3 and calpain may regulate huntingtin function at membranes and produce N-terminal mutant fragments that aggregate and cause cellular dysfunction in HD.
Collapse
|
research-article |
24 |
289 |
6
|
Rucker J, Samson M, Doranz BJ, Libert F, Berson JF, Yi Y, Smyth RJ, Collman RG, Broder CC, Vassart G, Doms RW, Parmentier M. Regions in beta-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell 1996; 87:437-46. [PMID: 8898197 DOI: 10.1016/s0092-8674(00)81364-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Macrophage-tropic (M-tropic) HIV-1 strains use the beta-chemokine receptor CCR5, but not CCR2b, as a cofactor for membrane fusion and infection, while the dual-tropic strain 89.6 uses both. CCR5/2b chimeras and mutants were used to map regions of CCR5 important for cofactor function and specificity. M-tropic strains required either the amino-terminal domain or the first extracellular loop of CCR5. A CCR2b chimera containing the first 20 N-terminal residues of CCR5 supported M-tropic envelope protein fusion. Amino-terminal truncations of CCR5/CCR2b chimeras indicated that residues 2-5 are important for M-tropic viruses, while 89.6 is dependent on residues 6-9. The identification of multiple functionally important regions in CCR5, coupled with differences in how CCR5 is used by M- and dual-tropic viruses, suggests that interactions between HIV-1 and entry cofactors are conformationally complex.
Collapse
|
|
29 |
252 |
7
|
Rucker J, Edinger AL, Sharron M, Samson M, Lee B, Berson JF, Yi Y, Margulies B, Collman RG, Doranz BJ, Parmentier M, Doms RW. Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J Virol 1997; 71:8999-9007. [PMID: 9371556 PMCID: PMC230200 DOI: 10.1128/jvi.71.12.8999-9007.1997] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.
Collapse
|
research-article |
28 |
240 |
8
|
Yi Y, Guerinot ML. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1996; 10:835-44. [PMID: 8953245 DOI: 10.1046/j.1365-313x.1996.10050835.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Reduction of Fe(III) to Fe(II) by Fe(III) chelate reductase is thought to be an obligatory step in iron uptake as well as the primary factor in making iron available for absorption by all plants except grasses. Fe(III) chelate reductase has also been suggested to play a more general role in the regulation of cation absorption. In order to experimentally address the importance of Fe(III) chelate reductase activity in the mineral nutrition of plants, three Arabidopsis thaliana mutans (frd1-1, frd1-2 and frd1-3), that do not show induction of Fe(III) chelate reductase activity under iron-deficient growth conditions, have been isolated and characterized. These mutants are still capable of acidifying the rhizosphere under iron-deficiency and accumulate more Zn and Mn in their shoots relative to wild-type plants regardless of iron status. frd1 mutants do not translocate radiolabeled iron to the shoots when roots are presented with a tightly chelated form of Fe(III). These results: (1) confirm that iron must be reduced before it can be transported, (2) show that Fe(III) reduction can be uncoupled from proton release, the other major iron-deficiency response, and (3) demonstrate that Fe(III) chelate reductase activity per se is not necessarily responsible for accumulation of cations previously observed in pea and tomato mutants with constitutively high levels of Fe(III) chelate reductase activity.
Collapse
|
|
29 |
188 |
9
|
Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W, Gottfried Y, Birkey Reffey S, de Caestecker MP, Danielpour D, Book-Melamed N, Timberg R, Duckett CS, Lechleider RJ, Steller H, Orly J, Kim SJ, Roberts AB. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2000; 2:915-21. [PMID: 11146656 DOI: 10.1038/35046566] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe a protein product of the human septin H5/PNUTL2/CDCrel2b gene, which we call ARTS (for apoptosis-related protein in the TGF-beta signalling pathway). ARTS is expressed in many cells and acts to enhance cell death induced by TGF-beta or, to a lesser extent, by other apoptotic agents. Unlike related septin gene products, ARTS is localized to mitochondria and translocates to the nucleus when apoptosis occurs. Mutation of the P-loop of ARTS abrogates its competence to activate caspase 3 and to induce apoptosis. Taken together, these observations expand the functional attributes of septins previously described as having roles in cytokinesis and cellular morphogenesis.
Collapse
|
|
25 |
184 |
10
|
Edinger AL, Hoffman TL, Sharron M, Lee B, Yi Y, Choe W, Kolson DL, Mitrovic B, Zhou Y, Faulds D, Collman RG, Hesselgesser J, Horuk R, Doms RW. An orphan seven-transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 1998; 72:7934-40. [PMID: 9733831 PMCID: PMC110125 DOI: 10.1128/jvi.72.10.7934-7940.1998] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both CD4 and an appropriate coreceptor are necessary for infection of cells by human immunodeficiency virus type 1 (HIV-1) and most strains of HIV-2. The chemokine receptors CCR5 and CXCR4 are the major HIV-1 coreceptors, although some virus strains can also utilize alternative coreceptors such as CCR3 to infect cells. In contrast, most if not all simian immunodeficiency virus (SIV) strains use CCR5 as a coreceptor, and many SIV strains can use CCR5 independently of CD4. In addition, several orphan seven-transmembrane receptors which can serve as HIV-1 and SIV coreceptors have been identified. Here we report that APJ, an orphan seven-transmembrane domain receptor with homology to the angiotensin receptor family, functions as a coreceptor for a number of HIV-1 and SIV strains. APJ was expressed widely in the human brain and in NT2N neurons. APJ transcripts were also detected by reverse transcription-PCR in the CD4-positive T-cell line C8166, but not in peripheral blood leukocytes, microglia, phytohemagglutinin (PHA)- or PHA/interleukin-2-stimulated peripheral blood mononuclear cells, monocytes, or monocyte-derived macrophages. The widespread distribution of APJ in the central nervous system coupled with its use as a coreceptor by some HIV-1 strains indicates that it may play a role in neuropathogenesis.
Collapse
|
research-article |
27 |
157 |
11
|
Yi Y, Rana S, Turner JD, Gaddis N, Collman RG. CXCR-4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1. J Virol 1998; 72:772-7. [PMID: 9420285 PMCID: PMC109434 DOI: 10.1128/jvi.72.1.772-777.1998] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Primary macrophages are infected by macrophage (M)-tropic but not T-cell line (T)-tropic human immunodeficiency virus type 1 (HIV-1) strains, and CCR5 and CXCR-4 are the principal cofactors utilized for CD4-mediated entry by M-tropic and T-tropic isolates, respectively. Macrophages from individuals homozygous for an inactivating mutation of CCR5 are resistant to prototype M-tropic strains that depend on CCR5 but are permissive for a dual-tropic isolate, 89.6, that can use both CCR5 and CXCR-4, as well as CCR2b, CCR3, and CCR8. Here we show that 89.6 entry into CCR5-deficient macrophages is blocked by an anti-CXCR-4 antibody and by the CXCR-4-specific chemokine SDF but not by the ligands to CCR2b or CCR3. Reverse transcription-PCR demonstrated expression of CXCR-4 but not CCR3 or CCR8 in macrophages, while CCR2b was variable. Macrophage surface expression of CXCR-4 was confirmed by immunofluorescence staining and flow cytometry. Thus, CXCR-4 is expressed by primary macrophages and functions as a cofactor for entry by dual-tropic but not T-tropic HIV-1 isolates, and macrophage resistance to T-tropic strains does not result from a lack of the T-tropic entry cofactor CXCR-4. Since CXCR-4 on macrophages can be used by some but not other isolates, these results indicate that HIV-1 strains differ in how they utilize chemokine receptors as cofactors for entry and that the ability of a chemokine receptor to mediate HIV-1 entry differs, depending on the cell type in which it is expressed.
Collapse
|
research-article |
27 |
153 |
12
|
Rana S, Besson G, Cook DG, Rucker J, Smyth RJ, Yi Y, Turner JD, Guo HH, Du JG, Peiper SC, Lavi E, Samson M, Libert F, Liesnard C, Vassart G, Doms RW, Parmentier M, Collman RG. Role of CCR5 in infection of primary macrophages and lymphocytes by macrophage-tropic strains of human immunodeficiency virus: resistance to patient-derived and prototype isolates resulting from the delta ccr5 mutation. J Virol 1997; 71:3219-27. [PMID: 9060685 PMCID: PMC191454 DOI: 10.1128/jvi.71.4.3219-3227.1997] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The alpha-chemokine receptor fusin (CXCR-4) and beta-chemokine receptor CCR5 serve as entry cofactors for T-cell (T)-tropic and macrophage (M)-tropic human immunodeficiency virus type 1 (HIV-1) strains, respectively, when expressed with CD4 in otherwise nonpermissive cells. Some M-tropic and dual-tropic strains can also utilize other beta-chemokine receptors, such as CCR2b and CCR3. A mutation of CCR5 (delta ccr5) was recently found to be common in certain populations and appears to confer protection against HIV-1 in vivo. Here, we show that this mutation results in a protein that is expressed intracellularly but not on the cell surface. Primary CD4 T cells from delta ccr5 homozygous individuals were highly resistant to infection with prototype M-tropic HIV-1 strains, including an isolate (YU-2) that uses CCR5 and CCR3, but were permissive for both a T-tropic strain (3B) and a dual-tropic variant (89.6) that uses CXCR-4, CCR5, CCR3, or CCR2b. These cells were also resistant to M-tropic patient isolates but were readily infected by T-tropic patient isolates. Primary macrophages from delta ccr5 homozygous individuals were also resistant to infection with M-tropic strains, including YU-2, but the dual-tropic strain 89.6 was able to replicate in them even though macrophages are highly resistant to CXCR-4-dependent T-tropic isolates. These data show that CCR5 is the essential cofactor for infection of both primary macrophages and T lymphocytes by most M-tropic strains of HIV-1. They also suggest that CCR3 does not function for HIV-1 entry in primary lymphocytes or macrophages, but that a molecule(s) other than CCR5 can support entry into macrophages by certain virus isolates. These studies further define the cellular basis for the resistance to HIV-1 infection of individuals lacking functional CCR5.
Collapse
MESH Headings
- CD4 Antigens/immunology
- CD8 Antigens/immunology
- Cells, Cultured
- HIV-1/immunology
- HIV-1/physiology
- Humans
- Lymphocytes/cytology
- Lymphocytes/virology
- Macrophages/cytology
- Macrophages/virology
- Mutagenesis
- Receptors, CCR3
- Receptors, CCR5
- Receptors, Chemokine
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, Cytokine/physiology
- Receptors, HIV/genetics
- Receptors, HIV/immunology
- Receptors, HIV/physiology
- Species Specificity
- Virus Replication
Collapse
|
research-article |
28 |
152 |
13
|
Shea JL, King MTC, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovasc Dis 2012; 22:741-747. [PMID: 21215604 DOI: 10.1016/j.numecd.2010.11.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/21/2010] [Accepted: 11/23/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Nearly 25% of normal weight individuals display abnormal metabolic profiles associated with obesity. As a wide range in body fat percentage (%BF) exists for BMI-defined normal weight individuals, we investigated whether elevated %BF (determined using DXA) was associated with cardiometabolic dysregulation among 977 normal weight subjects (192 men, 785 women) from the Canadian province of Newfoundland and Labrador. METHODS AND RESULTS BMI and %BF were measured after a 12-h fasting period. Cardiometabolic abnormalities considered included elevated triglyceride, glucose and hsCRP levels, decreased HDL cholesterol, insulin resistance, and hypertension. Subjects were classified as metabolically healthy (0 or 1 cardiometabolic abnormality) or abnormal (≥2 cardiometabolic abnormalities) and divided into sex-specific %BF tertiles as follows: low (≤15.2% men, ≤29.7% women), medium (15.3-20.7%% men, 29.8-34.9%% women) and high (≥20.8% men, ≥35.0% women). The prevalence of the metabolically abnormal phenotype was higher among medium and high %BF subjects (12.0% and 19.5%, respectively) compared to the low group (7.4%; p < 0.05). Furthermore, the odds of being metabolically abnormal were 1.61 (95% CI 0.94-2.77) for medium %BF subjects compared to the low group and nearly tripled for high %BF subjects (OR 2.73, 95% CI 1.63-4.86). ORs remained significant after further adjustment for waist circumference. CONCLUSION Our findings indicate that those with elevated %BF are at increased risk of developing cardiometabolic disease despite having a normal BMI. Future development of adequate screening tools to identify these individuals is crucial to the prevention of obesity-associated disease.
Collapse
|
|
13 |
125 |
14
|
Lee DK, Park SH, Yi Y, Choi SG, Lee C, Parks WT, Cho H, de Caestecker MP, Shaul Y, Roberts AB, Kim SJ. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev 2001; 15:455-66. [PMID: 11230153 PMCID: PMC312630 DOI: 10.1101/gad.856201] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatitis B, one of the most common infectious diseases in the world, is closely associated with acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Many clinical investigations have revealed that hepatic fibrosis is an important component of these liver diseases caused by chronic hepatitis B. TGF-beta signaling plays an important role in the pathogenesis of fibrosis in chronic hepatitis and cirrhosis. As these diseases are associated with hepatitis B virus (HBV) infection, we examined the possibility that the HBV-encoded pX oncoprotein regulates TGF-beta signaling. We show that pX enhances transcriptional activity in response to TGF-beta, BMP-2, and activin by stabilizing the complex of Smad4 with components of the basic transcriptional machinery. Additionally, confocal microscopic studies suggest that pX facilitates and potentiates the nuclear translocation of Smads, further enhancing TGF-beta signaling. Our studies suggest a new paradigm for amplification of Smad-mediated signaling by an oncoprotein and suggest that enhanced Smad-mediated signaling may contribute to HBV-associated liver fibrosis.
Collapse
|
research-article |
24 |
118 |
15
|
Lee B, Doranz BJ, Rana S, Yi Y, Mellado M, Frade JM, Martinez-A C, O'Brien SJ, Dean M, Collman RG, Doms RW. Influence of the CCR2-V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. J Virol 1998; 72:7450-8. [PMID: 9696841 PMCID: PMC109977 DOI: 10.1128/jvi.72.9.7450-7458.1998] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemokine receptors CCR5 and CXCR4 are used by human immunodeficiency virus type 1 (HIV-1) in conjunction with CD4 to infect cells. In addition, some virus strains can use alternative chemokine receptors, including CCR2b and CCR3, for infection. A polymorphism in CCR2 (CCR2-V64I) is associated with a 2- to 4-year delay in the progression to AIDS. To investigate the mechanism of this protective effect, we studied the expression of CCR2b and CCR2b-V64I, their chemokine and HIV-1 coreceptor activities, and their effects on the expression and receptor activities of the major HIV-1 coreceptors. CCR2b and CCR2b-V64I were expressed at similar levels, and neither molecule affected the expression or coreceptor activity of CCR3, CCR5, or CXCR4 in cotransfected cell lines. Peripheral blood mononuclear cells (PBMCs) from CCR2-V64I heterozygotes had normal levels of CCR2b and CCR5 but slightly reduced levels of CXCR4. CCR2b and CCR2b-V64I functioned equally well as HIV-1 coreceptors, and CCR2-V64I PBMCs were permissive for HIV-1 infection regardless of viral tropism. The MCP-1-induced calcium mobilization mediated by CCR2b signaling was unaffected by the polymorphism, but MCP-1 signaling mediated by either CCR2b- or CCR2-V64I-encoded receptors resulted in heterologous desensitization (i.e., limiting the signal response of other receptors) of both CCR5 and CXCR4. The heterologous desensitization of CCR5 and CXCR4 signaling by both CCR2 allele receptor types provides a mechanistic link that might help explain the in vivo effects of CCR2 gene variants on progression to AIDS as well as the reported antiviral activity of natural CCR2 ligands.
Collapse
MESH Headings
- Cell Line, Transformed
- HIV-1/metabolism
- Humans
- Isoleucine/metabolism
- Polymorphism, Genetic
- Receptors, CCR2
- Receptors, CCR3
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/metabolism
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/metabolism
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/metabolism
- Receptors, HIV/biosynthesis
- Receptors, HIV/metabolism
- Valine/metabolism
Collapse
|
research-article |
27 |
114 |
16
|
Paso K, Senra M, Yi Y, Sastry AM, Fogler HS. Paraffin Polydispersity Facilitates Mechanical Gelation. Ind Eng Chem Res 2005. [DOI: 10.1021/ie050325u] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
20 |
96 |
17
|
Choi SG, Yi Y, Kim YS, Kato M, Chang J, Chung HW, Hahm KB, Yang HK, Rhee HH, Bang YJ, Kim SJ. A novel ets-related transcription factor, ERT/ESX/ESE-1, regulates expression of the transforming growth factor-beta type II receptor. J Biol Chem 1998; 273:110-117. [PMID: 9417054 DOI: 10.1074/jbc.273.1.110] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A 2.5-kilobase cDNA clone that encodes a 371-amino acid novel transcription factor was isolated from a human placenta cDNA library using a yeast one-hybrid system. The novel ets-related transcription factor (ERT) showed a homology with the ETS DNA-binding domain. Using constructs of the transforming growth factor-beta (TGF-beta) type II receptor (RII) promoter linked to the luciferase gene, we have demonstrated that ERT activates transcription of the TGF-beta RII gene through the 5'-TTTCCTGTTTCC-3' response element spanning nucleotides +13 to +24 and multiple additional ETS binding sites between -1816 and -82 of the TGF-beta RII promoter. A specific interaction between ERT and the ETS binding sites was also demonstrated using an electrophoretic mobility shift assay. Deletion mapping of ERT protein suggests that the transactivation domain resides in the amino terminus while the DNA-binding domain is localized to the carboxyl-terminal region. Our results suggest that ERT might be a major transcription factor involved in the transcriptional regulation of the TGF-beta RII gene.
Collapse
|
|
27 |
92 |
18
|
Yi Y, Isaacs SN, Williams DA, Frank I, Schols D, De Clercq E, Kolson DL, Collman RG. Role of CXCR4 in cell-cell fusion and infection of monocyte-derived macrophages by primary human immunodeficiency virus type 1 (HIV-1) strains: two distinct mechanisms of HIV-1 dual tropism. J Virol 1999; 73:7117-25. [PMID: 10438797 PMCID: PMC104231 DOI: 10.1128/jvi.73.9.7117-7125.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4).
Collapse
|
research-article |
26 |
88 |
19
|
Yoo YD, Chiou CJ, Choi KS, Yi Y, Michelson S, Kim S, Hayward GS, Kim SJ. The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor beta1 gene through an Egr-1 binding site. J Virol 1996; 70:7062-70. [PMID: 8794351 PMCID: PMC190757 DOI: 10.1128/jvi.70.10.7062-7070.1996] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increases in transforming growth factor beta1 (TGF-beta1) mRNA and biological activity in the early phase of human cytomegalovirus (CMV) infection in fibroblasts are paralleled by increased TGF-beta1-chloramphenicol acetyltransferase (CAT) reporter gene activity. To determine how CMV infection transactivates the TGF-beta1 promoter, we examined the effects of the cotransfected IE2 regulatory protein of human CMV on 5'-deleted TGF-beta1 promoter-CAT reporter genes in transient DNA transfection assays. Two upstream TGF-beta1 promoter regions each containing an Egr-1 consensus site were shown to be important for IE2-induced transactivation in a cell type that displayed greatly reduced nonspecific activity. Furthermore, transfer of an Egr-l site from between positions -125 and -98, but not point mutant versions of this site, to a heterologous promoter also conveyed IE2 responsiveness. Addition of an IE2 expression vector or use of the U373 A45 astrocytoma cell line expressing IE2 also produced synergistic stimulation of GAL4-Egr-l-mediated activation of a target promoter containing GAL4 binding sites. The 80-kDa IE2 protein present in A45 cells proved to selectively bind to glutathione S-transferase (GST)-Egr-1 beads. The results of in vitro protein binding assays also revealed that an intact in vitro-translated IE2 protein bound directly to the GST-Egr-1 fusion protein through the zinc finger domain of the Egr-1 protein and that this binding activity was abolished by deletion of parts of the zinc finger DNA-binding domain. Similarly, the Egr-1 protein was found to associate preferentially with a small region within the C-terminal half of the IE2 protein adjacent to the DNA-binding and dimerization domains that are important for both transactivation and downregulation. We conclude from these observations that IE2 may regulate transcription of the TGF-beta1 gene as well as other potential cellular targets by virtue of its ability to interact with the Egr-1 DNA-binding protein.
Collapse
|
research-article |
29 |
86 |
20
|
Smyth RJ, Yi Y, Singh A, Collman RG. Determinants of entry cofactor utilization and tropism in a dualtropic human immunodeficiency virus type 1 primary isolate. J Virol 1998; 72:4478-84. [PMID: 9557745 PMCID: PMC109685 DOI: 10.1128/jvi.72.5.4478-4484.1998] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 strain 89.6 is a dualtropic isolate that replicates in macrophages and transformed T cells, and its envelope mediates CD4-dependent fusion and entry with CCR5, CXCR-4, and CCR3. To map determinants of cofactor utilization by 89.6 and determine the relationship between cofactor use and tropism, we analyzed recombinants generated between 89.6 and T-cell-tropic (HXB) or macrophage-tropic (JRFL) strains. These chimeras showed that regions of 89.6 env outside V3 through V5 determine CXCR-4 utilization and T-cell line tropism as well as CCR5 utilization and macrophage tropism. However, the 89.6 env V3 domain also conferred on HXB the ability to use CCR5 for fusion and entry but not the ability to establish productive macrophage infection. CCR3 use was conferred on HXB by 89.6 env V3 or V3 through V5 sequences. While replacement of the 89.6 V3 through V5 region with HXB sequences abrogated CCR3 utilization, replacement of V3 or V4 through V5 separately did not. Thus, CCR3 use is determined by sequences within V3 through V5 and most likely can be conferred by either the V3 or the V4 through V5 domains. These results indicate that cofactor utilization and tropism in this dualtropic isolate are determined by complex interactions among multiple env segments, that distinct regions of the Env glycoprotein may be important for utilization of different chemokine receptors, and that determinants in addition to cofactor usage participate in postentry stages in the virus replication cycle that contribute to target cell tropism.
Collapse
|
research-article |
27 |
79 |
21
|
Glushakova S, Yi Y, Grivel JC, Singh A, Schols D, De Clercq E, Collman RG, Margolis L. Preferential coreceptor utilization and cytopathicity by dual-tropic HIV-1 in human lymphoid tissue ex vivo. J Clin Invest 1999; 104:R7-R11. [PMID: 10487781 PMCID: PMC408546 DOI: 10.1172/jci7403] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many HIV-1 isolates at the late stage of disease are capable of using both CXCR4 and CCR5 in transfected cell lines, and are thus termed dual-tropic. Here we asked whether these dual-tropic variants also use both coreceptors for productive infection in a natural human lymphoid tissue microenvironment, and whether use of a particular coreceptor is associated with viral cytopathicity. We used 3 cloned dual-tropic HIV-1 variants, 89.6 and its chimeras 89-v345.SF and 89-v345.FL, which use both CCR5 and CXCR4 in transfected cell lines. In human lymphoid tissue ex vivo, one variant preferentially used CCR5, another preferentially used CXCR4, and a third appeared to be a true dual-tropic variant. The 2 latter variants severely depleted CD4(+) T cells, whereas cytopathicity of the virus that used CCR5 only in lymphoid tissue was mild and confined to CCR5(+)/CD4(+) T cells. Thus, (a) HIV-1 coreceptor usage in vitro cannot be unconditionally extrapolated to natural microenvironment of human lymphoid tissue; (b) dual-tropic viruses are not homogeneous in their coreceptor usage in lymphoid tissue, but probably comprise a continuum between the 2 polar variants that use CXCR4 or CCR5 exclusively; and (c) cytopathicity toward the general CD4(+) T cell population in lymphoid tissue is associated with the use of CXCR4.
Collapse
|
research-article |
26 |
78 |
22
|
Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:699-707. [PMID: 10230066 DOI: 10.1046/j.1365-313x.1999.00409.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Eleven thousand, three hundred and seventy enhancer/promoter trap lines in Arabidopsis were generated via T-DNA transformation utilizing the binary vector pD991 that contains a minimal promoter fused to the uidA reporter gene. Overall 31% of the lines generated exhibit a staining pattern in the inflorescence. Flanking DNA has been cloned from 15 lines exhibiting inflorescence staining patterns by either thermal asymmetric interlaced PCR (TAIL-PCR), inverse PCR (IPCR), or partial library construction. Seeds from these lines are available from the ABRC and NASC Arabidopsis stock centers and DNA pools are available from the ABRC.
Collapse
|
|
26 |
78 |
23
|
Yi Y, McNerney M, Datta SK. Regulatory defects in Cbl and mitogen-activated protein kinase (extracellular signal-related kinase) pathways cause persistent hyperexpression of CD40 ligand in human lupus T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6627-34. [PMID: 11086108 DOI: 10.4049/jimmunol.165.11.6627] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify intrinsic defects in lupus, we studied short-term, CD4(+) T cell lines that were established from 16 lupus patients (active or inactive) and 15 normal subjects by stimulating once with anti-CD3, anti-CD28, and IL-2. After resting, the pure CD4(+) T cells were exposed to anergy-inducing stimulation with plate-bound anti-CD3 mAb in the absence of APC. Lupus T cells showed prolonged high level expression of CD40 ligand (CD40L, CD154) even in the face of anergy protocol, which shut down CD40L expression in normal T cells. The sustained CD40L expression in lupus T cells did not correlate with memory status or Th deviation, and was relatively independent of IL-2 or other autocrine or paracrine signals via CD28 or CTLA-4. Cyclosporin A could block CD40L expression by lupus T cells when added early during the anti-CD3 stimulation period, but only partially when added later, indicating that another mechanism regulates the prolonged hyperexpression of CD40L besides the Ca(2+) --> calcineurin-dependent NF-AT pathway. When exposed to the anergy protocol, lupus T cells, in marked contrast to normal T cells, did not phosphorylate Cbl/Cbl-b but continued to express strongly phosphorylated extracellular signal-regulated kinase (ERK); U0126, a specific inhibitor of mitogen-activated protein kinase kinase --> ERK, could block both the early and the prolonged hyperexpression of CD40L. Thus, pathways regulating the activities of Cbl and one particular mitogen-activated protein kinase, ERK, are involved in the prolonged hyperexpression of CD40L in lupus T cells.
Collapse
|
|
25 |
72 |
24
|
Lu T, Solis-Ramos E, Yi Y, Kumosa M. UV degradation model for polymers and polymer matrix composites. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.06.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
7 |
69 |
25
|
Ahn TK, Yi Y, Cho JH, Lee WC. A cohort study of patients undergoing distal tibial osteotomy without fibular osteotomy for medial ankle arthritis with mortise widening. J Bone Joint Surg Am 2015; 97:381-8. [PMID: 25740028 DOI: 10.2106/jbjs.m.01360] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Although the supramalleolar osteotomy can shift the weight-bearing axis laterally, it cannot reconstruct a widened ankle mortise caused by progression of medial ankle osteoarthritis. The aim of this study was to evaluate radiographic and clinical outcomes of distal tibial osteotomy without fibular osteotomy in patients with medial ankle osteoarthritis and mortise widening. METHODS Distal tibial osteotomy without fibular osteotomy was performed in eighteen patients to treat medial ankle osteoarthritis with mortise widening. Fifteen women and three men with a mean age of fifty-seven years (range, forty-nine to sixty-four years) were followed for a mean of thirty-four months (range, twenty-four to sixty-six months). Mortise widening was diagnosed using valgus stress radiographs and intraoperative examination. The clinical outcome was assessed with the American Orthopaedic Foot & Ankle Society (AOFAS) score, visual analog scale (VAS) score for pain, and the ankle osteoarthritis scale (AOS) score. The translation of the talus within the ankle mortise, talar tilt, medial distal tibial angle, and anterior distal tibial angle were evaluated on weight-bearing radiographs made preoperatively and postoperatively. RESULTS The AOFAS score improved significantly from 78.4 points (95% confidence interval [CI], 74.6 to 80.5 points) to 89 points (95% CI, 86.5 to 90.5 points) (p < 0.001). The VAS score for pain also decreased significantly from 6.7 points (95% CI, 6 to 7.5 points) to 2.7 points (95% CI, 2.3 to 3.3 points) (p < 0.001). The mean AOS score was 29.8 points (95% CI, 22 to 38.2 points) at the latest follow-up. The center of the talus moved laterally within the ankle mortise after the distal tibial osteotomy. The mean medial distal tibial angle changed from 86.6° (95% CI, 85.7° to 87.6°) to 92.9° (95% CI, 91.6° to 94.3°) (p < 0.001), and the mean anterior distal tibial angle changed from 81.1° (95% CI, 78.6° to 83.6°) to 84.3° (95% CI, 81.9° to 86.4°) (p < 0.001). However, talar tilt was not corrected significantly (p = 0.916). CONCLUSIONS Distal tibial osteotomy without fibular osteotomy reduces pain in the short term in patients with ankle arthritis, a widened mortise, and minimal talar tilt.
Collapse
|
Clinical Trial |
10 |
67 |