1
|
Kelley KM, Oh Y, Gargosky SE, Gucev Z, Matsumoto T, Hwa V, Ng L, Simpson DM, Rosenfeld RG. Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol 1996; 28:619-37. [PMID: 8673727 DOI: 10.1016/1357-2725(96)00005-2] [Citation(s) in RCA: 327] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The IGFBPs are a family of homologous proteins that have co-evolved with the IGFs and that confer upon the IGF regulatory system both functional and tissue specificity. IGFBPs are not merely carrier proteins for IGFs, but hold a central position in IGF ligand-receptor interactions through influences on both the bioavailability and distribution of IGFs in the extracellular environment. In addition, IGFBPs appear to have intrinsic biological activity independent of IGFs. The current status of research on IGFBPs is reviewed herein. Following a brief introduction to the entire IGF/IGFBP system, separate sections for each of the six cloned mammalian IGFBPs, the most extensive for IGFBP3, cover selected topics that emphasize the dynamics of IGFBPs--that is, their regulation in cells, their functionally important post-translational modifications, and their interactions in the cellular microenvironment--and how these dynamics influence physiological function.
Collapse
|
Review |
29 |
327 |
2
|
Abstract
Over the last decade, the concept of an IGFBP family has been well accepted, based on structural similarities and on functional abilities to bind IGFs with high affinities. The existence of other potential IGFBPs was left open. The discovery of proteins with N-terminal domains bearing striking structural similarities to the N terminus of the IGFBPs, and with reduced, but demonstrable, affinity for IGFs, raised the question of whether these proteins were "new" IGFBPs (22, 23, 217). The N-terminal domain had been uniquely associated with the IGFBPs and has long been considered to be critical for IGF binding. No other function has been confirmed for this domain to date. Thus, the presence of this important IGFBP domain in the N terminus of other proteins must be considered significant. Although these other proteins appear capable of binding IGF, their relatively low affinity and the fact that their major biological actions are likely to not directly involve the IGF peptides suggest that they probably should not be classified within the IGFBP family as provisionally proposed (22, 23). The conservation of this single domain, so critical to high-affinity binding of IGF by the six IGFBPs, in all of the IGFBP-rPs, as well, speaks to its biological importance. Historically, and perhaps, functionally, this has led to the designation of an "IGFBP superfamily". The classification and nomenclature for the IGFBP superfamily, are, of course, arbitrary; what is ultimately relevant is the underlying biology, much of which still remains to be deciphered. The nomenclature for the IGFBP related proteins was derived from a consensus of researchers working in the IGFBP field (52). Obviously, a more general consensus on nomenclature, involving all groups working on each IGFBP-rP, has yet to be reached. Further understanding of the biological functions of each protein should help resolve the nomenclature dilemma. For the present, redesignating these proteins IGFBP-rPs simplifies the multiple names already associated with each IGFBP related protein, and reinforces the concept of a relationship with the IGFBPs. Beyond the N-terminal domain, there is a lack of structural similarity between the IGFBP-rPs and IGFBPs. The C-terminal domains do share similarities to other internal domains found in numerous other proteins. For example, the similarity of the IGFBP C terminus to the thyroglobulin type-I domain shows that the IGFBPs are also structurally related to numerous other proteins carrying the same domain (87). Interestingly, the functions of the different C-terminal domains in members of the IGFBP superfamily include interactions with the cell surface or ECM, suggesting that, even if they share little sequence similarities, the C-terminal domains may be functionally related. The evolutionary conservation of the N-terminal domain and functional studies support the notion that IGFBPs and IGFBP-rPs together form an IGFBP superfamily. A superfamily delineates between closely related (classified as a family) and distantly related proteins. The IGFBP superfamily is therefore composed of distantly related families. The modular nature of the constituents of the IGFBP superfamily, particularly their preservation of an highly conserved N-terminal domain, seems best explained by the process of exon shuffling of an ancestral gene encoding this domain. Over the course of evolution, some members evolved into high-affinity IGF binders and others into low-affinity IGF binders, thereby conferring on the IGFBP superfamily the ability to influence cell growth by both IGF-dependent and IGF-independent means (Fig. 10). A final word, from Stephen Jay Gould (218): "But classifications are not passive ordering devices in a world objectively divided into obvious categories. Taxonomies are human decisions imposed upon nature--theories about the causes of nature's order. The chronicle of historical changes in classification provides our finest insight into conceptual revolutions
Collapse
|
Review |
26 |
283 |
3
|
Abstract
Over the last decade, the concept of an IGFBP family has been well accepted, based on structural similarities and on functional abilities to bind IGFs with high affinities. The existence of other potential IGFBPs was left open. The discovery of proteins with N-terminal domains bearing striking structural similarities to the N terminus of the IGFBPs, and with reduced, but demonstrable, affinity for IGFs, raised the question of whether these proteins were "new" IGFBPs (22, 23, 217). The N-terminal domain had been uniquely associated with the IGFBPs and has long been considered to be critical for IGF binding. No other function has been confirmed for this domain to date. Thus, the presence of this important IGFBP domain in the N terminus of other proteins must be considered significant. Although these other proteins appear capable of binding IGF, their relatively low affinity and the fact that their major biological actions are likely to not directly involve the IGF peptides suggest that they probably should not be classified within the IGFBP family as provisionally proposed (22, 23). The conservation of this single domain, so critical to high-affinity binding of IGF by the six IGFBPs, in all of the IGFBP-rPs, as well, speaks to its biological importance. Historically, and perhaps, functionally, this has led to the designation of an "IGFBP superfamily". The classification and nomenclature for the IGFBP superfamily, are, of course, arbitrary; what is ultimately relevant is the underlying biology, much of which still remains to be deciphered. The nomenclature for the IGFBP related proteins was derived from a consensus of researchers working in the IGFBP field (52). Obviously, a more general consensus on nomenclature, involving all groups working on each IGFBP-rP, has yet to be reached. Further understanding of the biological functions of each protein should help resolve the nomenclature dilemma. For the present, redesignating these proteins IGFBP-rPs simplifies the multiple names already associated with each IGFBP related protein, and reinforces the concept of a relationship with the IGFBPs. Beyond the N-terminal domain, there is a lack of structural similarity between the IGFBP-rPs and IGFBPs. The C-terminal domains do share similarities to other internal domains found in numerous other proteins. For example, the similarity of the IGFBP C terminus to the thyroglobulin type-I domain shows that the IGFBPs are also structurally related to numerous other proteins carrying the same domain (87). Interestingly, the functions of the different C-terminal domains in members of the IGFBP superfamily include interactions with the cell surface or ECM, suggesting that, even if they share little sequence similarities, the C-terminal domains may be functionally related. The evolutionary conservation of the N-terminal domain and functional studies support the notion that IGFBPs and IGFBP-rPs together form an IGFBP superfamily. A superfamily delineates between closely related (classified as a family) and distantly related proteins. The IGFBP superfamily is therefore composed of distantly related families. The modular nature of the constituents of the IGFBP superfamily, particularly their preservation of an highly conserved N-terminal domain, seems best explained by the process of exon shuffling of an ancestral gene encoding this domain. Over the course of evolution, some members evolved into high-affinity IGF binders and others into low-affinity IGF binders, thereby conferring on the IGFBP superfamily the ability to influence cell growth by both IGF-dependent and IGF-independent means (Fig. 10). A final word, from Stephen Jay Gould (218): "But classifications are not passive ordering devices in a world objectively divided into obvious categories. Taxonomies are human decisions imposed upon nature--theories about the causes of nature's order. The chronicle of historical changes in classification provides our finest insight into conceptual revolutions
Collapse
|
Review |
25 |
279 |
4
|
Oh Y, Nagalla SR, Yamanaka Y, Kim HS, Wilson E, Rosenfeld RG. Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and -II. J Biol Chem 1996; 271:30322-5. [PMID: 8939990 DOI: 10.1074/jbc.271.48.30322] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mac25 cDNA was originally cloned from leptomeningial cells and subsequently reisolated through differential display as a sequence preferentially expressed in senescent human mammary epithelial cells. The deduced amino acid sequence of the human mac25 propeptide shares a 20-25% identity to human insulin-like growth factor-binding proteins (IGFBPs), suggesting that mac25 could be another member of the IGFBP family. In the present study, we have generated recombinant human mac25 (rh-mac25) in a baculovirus expression system and assessed its affinity for IGFs and have evaluated the pattern of expression of the mac25 gene in human tissues. Binding of 125I-IGF-I and 125I-IGF-II to rh-mac25 was demonstrated by Western ligand blotting after nondenaturing polyacrylamide gel electrophoresis and by affinity cross-linking with as little as 2 nM rh-mac25. Specificity of rh-mac25 binding to 125I-IGFs was demonstrated by competition for rh-mac25 binding with unlabeled IGFs, but not with [QAYLL]IGF-II analog, which has 100-fold less affinity for IGFBPs. In comparison with IGFBP-3, rh-mac25 has at least a 5-6-fold lower affinity for IGF-I and 20-25-fold lower affinity for IGF-II. mac25 mRNA was detectable in a wide range of normal human tissues, with decreased expression in breast, prostate, colon, and lung cancer cell lines. In conclusion, mac25 specifically binds IGFs and constitutes a new member of the IGFBP family, IGFBP-7. Its wider distribution in normal tissue and lower expression in several cancer cells indicate that IGFBP-7 may function as a growth-suppressing factor, as well as an IGF-binding protein.
Collapse
|
|
29 |
255 |
5
|
Kim HS, Nagalla SR, Oh Y, Wilson E, Roberts CT, Rosenfeld RG. Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Natl Acad Sci U S A 1997; 94:12981-6. [PMID: 9371786 PMCID: PMC24249 DOI: 10.1073/pnas.94.24.12981] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The insulin-like growth factor (IGF) binding proteins (IGFBPs) modulate the actions of the insulin-like growth factors in endocrine, paracrine, and autocrine settings. Additionally, some IGFBPs appear to exhibit biological effects that are IGF independent. The six high-affinity IGFBPs that have been characterized to date exhibit 40-60% amino acid sequence identity overall, with the most conserved sequences in their NH2 and COOH termini. We have recently demonstrated that the product of the mac25/IGFBP-7 gene, which shows significant conservation in the NH2 terminus, including an "IGFBP motif' (GCGCCXXC), exhibits low-affinity IGF binding. The closely related mammalian genes connective tissue growth factor (CTGF) gene, nov, and cyr61 encode secreted proteins that also contain the conserved sequences and IGFBP motifs in their NH2 termini. To ascertain if these genes, along with mac25/IGFBP-7, encode a family of low-affinity IGFBPs, we assessed the IGF binding characteristics of recombinant human CTGF (rhCTGF). The ability of baculovirus-synthesized rhCTGF to bind IGFs was demonstrated by Western ligand blotting, affinity cross-linking, and competitive affinity binding assays using 125I-labeled IGF-I or IGF-II and unlabeled IGFs. CTGF, like mac25/IGFBP-7, specifically binds IGFs, although with relatively low affinity. On the basis of these data, we propose that CTGF represents another member of the IGFBP family (IGFBP-8) and that the CTGF gene, mac25/IGFBP-7, nov, and cyr61 are members of a family of low-affinity IGFBP genes. These genes, along with those encoding the high-affinity IGFBPs 1-6, together constitute an IGFBP superfamily whose products function in IGF-dependent or IGF-independent modes to regulate normal and neoplastic cell growth.
Collapse
|
research-article |
28 |
240 |
6
|
Oh Y, Müller H, Lamson G, Rosenfeld R. Insulin-like growth factor (IGF)-independent action of IGF-binding protein-3 in Hs578T human breast cancer cells. Cell surface binding and growth inhibition. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82426-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
32 |
187 |
7
|
Okuda S, Oh Y, Tsuruda H, Onoyama K, Fujimi S, Fujishima M. Adriamycin-induced nephropathy as a model of chronic progressive glomerular disease. Kidney Int 1986; 29:502-10. [PMID: 3486312 DOI: 10.1038/ki.1986.28] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serial changes in urine protein, blood chemistry, and histology of the kidney were investigated in rats for 28 weeks after injections of adriamycin (ADR). Massive proteinuria, hypoalbuminemia, and hyperlipidemia were observed at week 4 and throughout the experiment. Both BUN and serum creatinine began to increase at week 16 and reached the uremic level at week 28. Light microscopic study of the kidney demonstrated a normal appearance at week 4, vacuole formation in glomerular tuft at weeks 8 and 12, focal and segmental glomerular sclerosis at weeks 16 and 20, and extensive glomerular sclerosis with tubulointerstitial degenerations at weeks 24 and 28. Immunohistologically, IgM with a small amount of IgG and C3 appeared in the sclerosing glomeruli from week 16. Aggregated human IgG, injected intravenously at week 24, had accumulated mainly in the glomeruli. Electron microscopy revealed degenerative changes of glomerular epithelial cells with small vacuoles in the cytoplasm at week 4. Size of vacuoles increased at the later stage. In conclusion, ADR produced chronic, progressive glomerular changes in rats, which led to terminal renal failure. The segmental glomerular sclerosis and IgM-dominant glomerular deposition in these animals are similar to pathological characteristics of focal and segmental glomerular sclerosis seen clinically.
Collapse
|
|
39 |
165 |
8
|
Oh Y, Müller HL, Ng L, Rosenfeld RG. Transforming growth factor-beta-induced cell growth inhibition in human breast cancer cells is mediated through insulin-like growth factor-binding protein-3 action. J Biol Chem 1995; 270:13589-92. [PMID: 7539790 DOI: 10.1074/jbc.270.23.13589] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Most estrogen receptor-negative breast cancer cells, including Hs578T cells, express mRNAs encoding insulin-like growth factor-binding protein (IGFBP)-3, as well as transforming growth factor (TGF)-beta receptors. Our previous studies (Oh, Y., Muller, H. L., Lamson, G., and Rosenfeld, R. G. (1993) J. Biol. Chem. 268, 14964-14971; Oh, Y., Muller, H. L., Pham, H. M., and Rosenfeld, R. G. (1993) J. Biol. Chem. 268, 26045-26048) have demonstrated a significant inhibitory effect of exogenous IGFBP-3 on Hs578T cell growth and existence of IGFBP-3-specific receptors that may mediate those direct inhibitory effect of IGFBP-3. TGF-beta is also a potent growth inhibitor in human breast cancer cells in vitro and regulates IGFBP-3 production in different cell systems, suggesting that IGFBP-3 is a major anti-proliferative factor and a key element for TGF-beta-induced growth inhibition in human breast cancer cells. In support of this hypothesis, we have demonstrated using Hs578T cells that: 1) TGF-beta stimulates IGFBP-3 gene expression and production prior to its inhibition of cell growth, 2) treatment with an IGFBP-3 antisense oligodeoxynucleotide selectively inhibits TGF-beta-induced IGFBP-3 synthesis and cell growth inhibition, and 3) treatment with IGF-II and IGF-II analogs diminish TGF-beta effects by blocking TGF-beta-induced binding of IGFBP-3 to the cell surface. These findings suggest that IGFBP-3 is a major anti-proliferative factor and a key element in TGF-beta-induced growth inhibition in human breast cancer cells.
Collapse
|
|
30 |
163 |
9
|
Yamanaka Y, Wilson EM, Rosenfeld RG, Oh Y. Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J Biol Chem 1997; 272:30729-34. [PMID: 9388210 DOI: 10.1074/jbc.272.49.30729] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The insulin-like growth factors (IGFs) are transported by a family of high-affinity binding proteins (IGFBPs) that protect IGFs from degradation, limit their binding to IGF receptors, and modulate IGF actions. The six classical IGFBPs have been believed to have no affinity for insulin. We now demonstrate that IGFBP-7/mac25, a newly identified member of the IGFBP superfamily that binds IGFs specifically with low affinity is a high-affinity insulin binding protein. IGFBP-7 blocks insulin binding to the insulin receptor and thereby inhibiting the earliest steps in insulin action, such as autophosphorylation of the insulin receptor beta subunit and phosphorylation of IRS-1, indicating that IGFBP-7 is a functional insulin-binding protein. The affinity of other IGFBPs for insulin can be enhanced by modifications that disrupt disulfide bonds or remove the conserved COOH terminus. Like IGFBP-7, an NH2-terminal fragment of IGFBP-3 (IGFBP-3((1-87))), also binds insulin with high affinity and blocks insulin action. IGFBPs with enhanced affinity for insulin might contribute to the insulin resistance of pregnancy, type II diabetes mellitus, and other pathological conditions.
Collapse
|
|
28 |
156 |
10
|
Oh Y, Müller HL, Pham H, Rosenfeld RG. Demonstration of receptors for insulin-like growth factor binding protein-3 on Hs578T human breast cancer cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74273-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
32 |
131 |
11
|
Kim CH, Oh Y, Chung JM, Chung K. The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 95:153-61. [PMID: 11687287 DOI: 10.1016/s0169-328x(01)00226-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our previous studies showed that the ectopic discharges in injured sensory neurons and mechanical allodynia that developed after spinal nerve ligation were significantly reduced by application of a low concentration of tetrodotoxin (TTX) to the corresponding dorsal root ganglion (DRG) of the ligated spinal nerve. Based on these data, we hypothesized that expression of TTX-sensitive sodium channels is up-regulated in the injured sensory neurons and that such up-regulation plays an important role in the generation of ectopic discharges and thus pain behaviors in spinal nerve ligated neuropathic rats. To test this hypothesis, the present study examined the changes in three subtypes of TTX-sensitive sodium channels in the DRG after spinal nerve ligation. The changes in the total amount of mRNA for alpha-subunits of sodium channel brain type I (type I), brain type II (type II) and brain type III (type III) were determined by RNase protection assays (RPA). The population of DRG neurons expressing type III sodium channel protein was examined by an immunohistochemical method with antibodies to type III sodium channels. In the normal DRG, the level of mRNA for the type I sodium channel is high while that for type II and type III is very low. After spinal nerve ligation, the expression of type III mRNA was significantly increased at 16-h postoperatively (PO), doubled by 3 days PO and then was maintained at this high level until the end of the experiment (7 days PO). By contrast, the amount of mRNA for type I and type II sodium channels started to decrease at 1 day PO and were reduced to 25-50% of the normal control levels by 7 days after nerve ligation. Neurons showing positive immunostaining for type III sodium channels were rare ( approximately 3.2% of total population) in the normal DRG but increased after nerve ligation to 21% and 15% of the total neuronal population by 1 day and 7 days PO, respectively. Type III immunoreactivity was found preferentially in medium to large sized neurons. Thus the majority of neurons with cell bodies having diameters > or =40 microm became type III-positive after nerve ligation. The data indicate that the increased expression of type III sodium channels in axotomized sensory neurons may be the critical factor for the TTX sensitivity of ectopic discharges in injured sensory neurons and thus the generation of ectopic discharges and neuropathic pain behaviors in spinal nerve ligated rats.
Collapse
|
|
24 |
126 |
12
|
Kim CH, Oh Y, Lee TH. Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene 1997; 199:293-301. [PMID: 9358069 DOI: 10.1016/s0378-1119(97)00384-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Codon bias has been observed in many species. The usage of selective codons in a given gene is positively correlated with its expression efficiency. As an experimental approach to study codon-usage effects on heterologous gene expression in mammalian cells, we designed two human erythropoietin (EPO) genes, one in which native codons were systematically substituted with codons frequently found in highly expressed human genes and the other with codons prevalent in yeast genes. Relative performances of the re-engineered EPO genes were evaluated with various combinations of promoters and signal leader sequences. Under the comparable set of combinations, mature EPO gene with human high-frequency codons gave a considerably higher level of expression than that with yeast high-frequency codons. However, the levels of EPO expression varied, depending on the alternate combinations. Since the promoters and the signal leader sequences that we used are known to be equally efficient in gene expression, we hypothesized that the varied expression levels were due to the linear sequence between the promoter and the coding gene sequence. To test this possibility, we designed the EPO gene with hybrid codon usage in which the 5'-proximal region of the EPO gene was synthesized with yeast-biased codons and the rest with human-biased codons. This codon-usage hybrid EPO gene substantially enhanced the level of EPO transcripts and proteins up to 2.9-fold and 13.8-fold, respectively, when compared to the level reached by the original counterpart. Our results suggest that the linear sequence between the promoter and the 5'-proximal region of a gene plays an important role in achieving high-level expression in mammalian cells.
Collapse
|
|
28 |
109 |
13
|
Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, Kim JI, Oh Y, Fragoso V, Shin K, Hyeon T, Choi HG, Oh KH, Baldwin IT, Park CM. Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 2016; 9:ra106. [DOI: 10.1126/scisignal.aaf6530] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
|
9 |
104 |
14
|
Twigg SM, Chen MM, Joly AH, Chakrapani SD, Tsubaki J, Kim HS, Oh Y, Rosenfeld RG. Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein 2) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology 2001; 142:1760-9. [PMID: 11316739 DOI: 10.1210/endo.142.5.8141] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expansion of extracellular matrix with fibrosis occurs in many tissues as part of the end-organ complications in diabetes, and advanced glycosylation end products (AGE) are implicated as one causative factor in diabetic tissue fibrosis. Connective tissue growth factor (CTGF), also known as insulin-like growth factor-binding protein-related protein-2 (IGFBP-rP2), is a potent inducer of extracellular matrix synthesis and angiogenesis and is increased in tissues from rodent models of diabetes. The aim of this study was to determine whether CTGF is up-regulated by AGE in vitro and to explore the cellular mechanisms involved. AGE treatment of primary cultures of nonfetal human dermal fibroblasts in confluent monolayer increased CTGF steady state messenger RNA (mRNA) levels in a time- and dose-dependent manner. In contrast, mRNAs for other IGFBP superfamily members, IGFBP-rP1 (mac 25) and IGFBP-3, were not up-regulated by AGE. The effect of the AGE BSA reagent on CTGF mRNA was due to nonenzymatic glycosylation of BSA and, using neutralizing antisera to AGE and to the receptor for AGE, termed RAGE, was seen to be due to late products of nonenzymatic glycosylation and was partly mediated by RAGE. Reactive oxygen species as well as endogenous transforming growth factor-beta1 could not explain the AGE effect on CTGF mRNA. AGE also increased CTGF protein in the conditioned medium and cell-associated CTGF. Thus, AGE up-regulates the profibrotic and proangiogenic protein CTGF (IGFBP-rP2), a finding that may have significance in the development of diabetic complications.
Collapse
|
|
24 |
102 |
15
|
Minniti C, Kohn E, Grubb J, Sly W, Oh Y, Müller H, Rosenfeld R, Helman L. The insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor mediates IGF-II-induced motility in human rhabdomyosarcoma cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50379-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
33 |
95 |
16
|
Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 2006; 43:605-17. [PMID: 16731015 DOI: 10.1016/j.fgb.2006.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/15/2006] [Accepted: 03/24/2006] [Indexed: 01/28/2023]
Abstract
Efficient regulation of nitrogen metabolism likely plays a role in the ability of fungi to exploit ecological niches. To learn about regulation of nitrogen metabolism in the rice blast pathogen Magnaporthe grisea, we undertook a genome-wide analysis of gene expression under nitrogen-limiting conditions. Five hundred and twenty genes showed increased transcript levels at 12 and 48 h after shifting the fungus to media lacking nitrate as a nitrogen source. Thirty-nine of these genes have putative functions in amino acid metabolism and uptake, and include the global nitrogen regulator in M. grisea, NUT1. Evaluation of seven nitrogen starvation-induced genes revealed that all were expressed during rice infection. Targeted gene replacement on one such gene, the vacuolar serine protease, SPM1, resulted in decreased sporulation and appressorial development as well as a greatly attenuated ability to cause disease. Data are discussed in the context of nitrogen metabolism under starvation conditions, as well as conditions potentially encountered during invasive growth in planta.
Collapse
|
|
19 |
77 |
17
|
Yamanaka Y, Fowlkes JL, Wilson EM, Rosenfeld RG, Oh Y. Characterization of insulin-like growth factor binding protein-3 (IGFBP-3) binding to human breast cancer cells: kinetics of IGFBP-3 binding and identification of receptor binding domain on the IGFBP-3 molecule. Endocrinology 1999; 140:1319-28. [PMID: 10067859 DOI: 10.1210/endo.140.3.6566] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) binds to specific membrane proteins located on human breast cancer cells, which may be responsible for mediating the IGF-independent growth inhibitory effects of IGFBP-3. In this study, we evaluated IGFBP-3 binding sites on breast cancer cell membranes by competitive binding studies with IGFBP-1 through -6 and various forms of IGFBP-3, including synthetic IGFBP-3 fragments. Scatchard analysis revealed the existence of high-affinity sites for IGFBP-3 in estrogen receptor-negative Hs578T human breast cancer cells (dissociation constant (Kd) = 8.19 +/- 0.97 x 10(-9) M and 4.92 +/- 1.51 x 10(5) binding sites/cell) and 30-fold fewer receptors in estrogen receptor-positive MCF-7 cells (Kd = 8.49 +/- 0.78 x 10(-9) M and 1.72 +/- 0.31 x 10(4) binding sites/cell), using a one-site model. These data demonstrate binding characteristics of typical receptor-ligand interactions, strongly suggesting an IGFBP-3:IGFBP-3 receptor interaction. Among IGFBPs, only IGFBP-5 showed weak competition, indicating that IGFBP-3 binding to breast cancer cell surfaces is specific and cannot be attributed to nonspecific interaction with glycosaminoglycans. This was confirmed by showing that synthetic IGFBP-3 peptides containing IGFBP-3 glycosaminoglycan-binding domains competed only weakly for IGFBP-3 binding to the cell surface. Rat IGFBP-3 was 20-fold less potent in its ability to compete with human IGFBP-3(Echerichia coli), as well as 10- to 20-fold less potent for cell growth inhibition than human IGFBP-3, suggesting the existence of species specificity in the interaction between IGFBP-3 and the IGFBP-3 receptor. When various IGFBP-3 fragments were evaluated for affinity for the IGFBP-3 receptor, only those fragments that contain the midregion of the IGFBP-3 molecule were able to inhibit 125I-IGFBP-3(Escherichia coli) binding, indicating that the midregion of the IGFBP-3 molecule is responsible for binding to its receptor. These observations demonstrate that specific, high-affinity IGFBP-3 receptors are located on breast cancer cell membranes. These receptors have properties that support the notion that they may mediate the IGF-independent inhibitory actions of IGFBP-3 in breast cancer cells.
Collapse
|
|
26 |
77 |
18
|
Oh Y, Müller HL, Lee DY, Fielder PJ, Rosenfeld RG. Characterization of the affinities of insulin-like growth factor (IGF)-binding proteins 1-4 for IGF-I, IGF-II, IGF-I/insulin hybrid, and IGF-I analogs. Endocrinology 1993; 132:1337-44. [PMID: 7679979 DOI: 10.1210/endo.132.3.7679979] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Insulin-like growth factor (IGF)-binding proteins (BPs) bind IGF-I and IGF-II with high affinity and modify the activity of IGF peptides in a complex manner. We have characterized the affinities of IGFBP-1-4 for IGF-I and -II by employing 1) purified IGFBP preparations, 2) both [125I]IGF-I and [125I]IGF-II as radioligands, and 3) multiple IGF analogs designed to have altered affinities for IGFBPs. To this end, human (h) IGFBP-1, hIGFBP-2, and rat (r) IGFBP-4 have been purified to homogeneity from human amniotic fluid, human prostate epithelial cell culture, and B104 rat neuroblastoma cells; for human IGFBP-3, the glycosylated recombinant form (rec-hIGFBP-3), produced in Chinese hamster ovary cells, was employed. The IC50 values of IGF-I for hIGFBP-1, hIGFBP-2, rec-hIGFBP-3, rIGFBP-4, and human serum IGFBPs were 0.05 +/- 0.01, 5.0 +/- 0.01, 0.25 +/- 0.20, 0.6 +/- 0.4, and 0.1 +/- 0.01 ng/ml, respectively. While hIGFBP-1 and rIGFBP-4 had virtually equivalent affinities for IGF-I and IGF-II, hIGFBP-2 and rec-hIGFBP-3 demonstrated 2- to 5-fold higher affinities for IGF-II than for IGF-I. Studies with [Gln3,Ala4,Tyr15,Leu16]IGF-I and Des-(1-3)-IGF-I indicate that specific residues in the first 16 amino acids of the B domain of IGF-I appear to be critical for binding to all of the IGFBPs tested, but not to IGF receptors. However, severe modifications in the B domain disrupt binding affinity, not only for IGFBPs, but also for receptors (IGF-I/insulin hybrid and B-chain mutant). Interestingly, modifications in the A domain of IGF-I, which is believed to contain residues critical for binding to IGF-I and insulin receptors, show differential effects on binding affinity to BPs. [Thr49,Ser50,Ile51]IGF-I, which has normal affinity for the type I IGF receptor, shows at least a 500-fold decreased affinity for hIGFBP-1 and recombinant hIGFBP-3, in contrast to 50- to 100-fold reduced affinity for hIGFBP-2 and rIGFBP-4, and 5- to 10-fold reduced affinity for purified human serum IGFBP-3. More significantly, [1-27,Gly4,38-70]IGF-I shows a 30-fold decreased affinity for the type I IGF receptor and 10- and 2.5-fold reduced affinities for hIGFBP-1 and rec-hIGFBP-3, respectively, but no reduction in affinity for hIGFBP-2 or rIGFBP-4.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
32 |
73 |
19
|
Guo H, Chen K, Oh Y, Wang K, Dejoie C, Syed Asif SA, Warren OL, Shan ZW, Wu J, Minor AM. Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO₂ nanowires. NANO LETTERS 2011; 11:3207-3213. [PMID: 21736336 DOI: 10.1021/nl201460v] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The elastic properties and structural phase transitions of individual VO(2) nanowires were studied using an in situ push-to-pull microelectromechanical device to realize quantitative tensile analysis in a transmission electron microscope and a synchrotron X-ray microdiffraction beamline. A plateau was detected in the stress-strain curve, signifying superelasticity of the nanowire arising from the M1-M2 structural phase transition. The transition was induced and controlled by uniaxial tension. The transition dynamics were characterized by a one-dimensionally aligned domain structure with pinning and depinning of the domain walls along the nanowire. From the stress-strain dependence the Young's moduli of the VO(2) M1 and M2 phases were estimated to be 128 ± 10 and 156 ± 10 GPa, respectively. Single pinning and depinning events of M1-M2 domain wall were observed in the superelastic regime, allowing for evaluation of the domain wall pinning potential energy. This study demonstrates a new way to investigate nanoscale mechanics and dynamics of structural phase transitions in general.
Collapse
|
|
14 |
71 |
20
|
Walker GE, Wilson EM, Powell D, Oh Y. Butyrate, a histone deacetylase inhibitor, activates the human IGF binding protein-3 promoter in breast cancer cells: molecular mechanism involves an Sp1/Sp3 multiprotein complex. Endocrinology 2001; 142:3817-27. [PMID: 11517158 DOI: 10.1210/endo.142.9.8380] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specific cell growth stimulators and inhibitors regulate IGF binding protein-3 (IGFBP-3), where in turn IGFBP-3 mediates their biological effects. The molecular mechanism(s) by which these factors regulate IGFBP-3 are unknown. Sodium butyrate, a histone deacetylase inhibitor causing growth arrest and differentiation, increases IGFBP-3 expression. We investigated the molecular mechanism of this induction using an IGFBP-3 promoter reporter system in MCF-7 and Hs578T breast cancer cells. IGFBP-3 promoter activity was induced up to 40-fold following a 24-h treatment with sodium butyrate and 46-fold in cells treated with trichostatin A, a pure histone deacetylase inhibitor. Deletion analysis of the IGFBP-3 promoter identified key sodium butyrate-responsive element(s) to a 45-bp region containing consensus binding sites for Sp1 and activating protein-2. Sp1 binding to the Sp1 site and Sp3 to the activating protein-2/GA-box played a functional role in sodium butyrate's activation of the IGFBP-3 promoter, however, with no change in binding direct sodium butyrate regulation was attributed to cofactors. The histone acetyltransferase p300 and histone deacetylase-1 were identified in multiprotein complexes containing DNA bound Sp1 and Sp3, with p300 accumulating following sodium butyrate treatment. Taken together, these data suggest that sodium butyrate increases IGFBP-3 expression by activating the IGFBP-3 promoter via an Sp1/Sp3 multiprotein complex, a mechanism that may be important for other key regulators of IGFBP-3.
Collapse
|
|
24 |
66 |
21
|
Abstract
The human IGFBP family consists of at least seven proteins, designated as IGFBP-1, -2, -3, -4, -5, -6, and-7. IGFBPs 1-6 bind IGF-I and IGF-II with high affinity whereas IGFBP-7, a newly identified IGFBP, binds IGFs with lower affinity and constitutes a low-affinity member of the IGFBP family. IGFBPs serve to transport the IGFs, prolong their half-lives, and modulate their biological action. At the cellular level, IGFBPs can either potentiate or inhibit the mitogenic effects of IGFs, depending upon cell types and IGFBP species (IGF-dependent action of IGFBPs). However, recent studies have indicated that IGFBPs, especially IGFBP-3, potently inhibit breast cancer cell growth in an IGF-independent manner. The IGF-independent action of IGFBP-3 requires interaction with cell-surface association proteins, presumably putative IGFBP-3 specific receptors, and is responsible for growth inhibitory action of the known growth suppressing factors such as TGF-beta, retinoic acid, and antiestrogens in breast cancer cells. Thus, IGFBP-3 appears to be a major factor in a negative control system involved in regulating human breast cancer cell growth in vitro. IGFBP-7, representing a low affinity IGFBP, appears to function as an IGF-independent cell growth regulator in breast cancer cells. Overall structural similarity between IGFBP-7 and classical high affinity IGFBPs 1-6 suggests that the mechanisms of action and signaling pathways used by IGFBP-7 may provide insight into the IGF-independent actions of the high affinity IGFBPs. A fuller understanding of the IGF-independent action of IGFBPs will allow us to understand how the growth of neoplastic cells can be modulated by the IGF/IGFBP system, and how other growth factors or pharmacological agents can interface with this system.
Collapse
|
Review |
27 |
65 |
22
|
Beukers MW, Oh Y, Zhang H, Ling N, Rosenfeld RG. [Leu27] insulin-like growth factor II is highly selective for the type-II IGF receptor in binding, cross-linking and thymidine incorporation experiments. Endocrinology 1991; 128:1201-3. [PMID: 1846582 DOI: 10.1210/endo-128-2-1201] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin-like growth factor-II (IGF-II) is able to interact with three different receptors: the type-I and type-II IGF receptors, and the insulin receptor, although with a lower affinity. This cross reactivity obscures the mechanisms via which the biological activities of IGF-II are mediated. We have synthesized an IGF-II analog, [Leu27]IGF-II, that is highly selective for the type-II IGF receptor. Receptor binding experiments demonstrate a high affinity for the type-II IGF receptor, analogous to synthetic (syn) and recombinant (rec) IGF-II, but no affinity for the type-I IGF and the insulin receptor at concentrations up to 50 and 200 ng/ml, respectively. The lack of affinity for these two receptors is confirmed by biological studies which demonstrated that this analog, in contrast with synIGF-II, did not stimulate [3H]thymidine incorporation in Balb/c 3T3 cells. [Leu27]IGF-II opens new ways to identify which actions of IGF-II are mediated via the type-II receptor and which are due to cross reactivity with the type-I IGF or the insulin receptor.
Collapse
|
|
34 |
64 |
23
|
Takeda K, Harada A, Okuda S, Fujimi S, Oh Y, Hattori F, Motomura K, Hirakata H, Fujishima M. Sudden death in chronic dialysis patients. Nephrol Dial Transplant 1997; 12:952-5. [PMID: 9175048 DOI: 10.1093/ndt/12.5.952] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
METHODS Causes of sudden death were investigated in 113 chronic dialysis patients who died during the 10-year period from July 1979 to January 1989; postmortem examination was performed on 93 of the cases (autopsy rate; 82.3%). Sudden death was regarded as death 24 h after the onset of acute illness in patients without any restriction in their daily activities. There were 35 sudden death cases out of the 93 autopsied chronic dialysis patients. We analysed the causes of sudden death for all chronic dialysis patients and for those who died suddenly. RESULTS The mean age of the 93 cases was 61.4 +/- 10.5 years (+/-SD). Stroke was the most frequent cause of death (24 cases, 25.8%) in the 93 autopsied cases. This was followed by cardiac disease in 18 (19.4%), infectious disease in 16 (17.2%), malignancy in 14 (15.1%), and dissecting aortic aneurysm in 5 (5.4%). The mean age of the 35 sudden death cases was 60.9 +/- 10.9 years. Of the 35 sudden death cases in chronic dialysis patients, dissecting aortic aneurysm was the most common cause of sudden death (5 cases, 14.3%), followed by cerebral haemorrhage in three (8.6%), acute subdural haematoma in three (8.6%), acute myocardial infarction in two (5.7%), cerebral infarction in two (5.7%), and subarachnoidal haemorrhage in one (2.9%). CONCLUSIONS Dissecting aortic aneurysm, leading frequently to stroke as a cause of sudden death in chronic dialysis patients, at least in Japan, should be carefully differentiated from other cardiac diseases in chronic dialysis patients, such as severe atherosclerosis.
Collapse
|
Case Reports |
28 |
61 |
24
|
Donovan SM, Oh Y, Pham H, Rosenfeld RG. Ontogeny of serum insulin-like growth factor binding proteins in the rat. Endocrinology 1989; 125:2621-7. [PMID: 2477234 DOI: 10.1210/endo-125-5-2621] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insulin-like growth factors (IGF-I and -II) are peptide growth factors that may be important for neonatal development. Specific high affinity IGF binding proteins (BPs) have been characterized in serum and extracellular fluids. The major serum binding complex in the adult has an apparent Mr of 150 K, while the predominant BP in the neonate is approximately 30 K. In the rat, the transition from the neonatal BP to the adult form occurs during the third postnatal week, concomitant with an increase in serum IGF-I and a decrease in serum IGF-II concentrations. Using specific RIAs and Western ligand blot analyses we have characterized the changes in serum IGF and IGF BPs, respectively, during the early postnatal period. Seven BPs were identified in serum with apparent Mr values of 42, 41, 40, 38, 28, 26, and 22 K. After deglycosylation, the 42, 41, 40, and 38 K BPs were reduced to two bands with apparent Mr values of 35 and 32 K, while the 28, 26, and 22 K BP were unchanged. In the neonate, the 28, 26, and 22 K BPs were present, with the 28 K BP in highest concentration. With increasing age, the 28 K BP decreased and the 42, 41, 40, and 38 K BPs appeared at approximately 19 days of age. Comparison of Western ligand blots of neonatal serum, BRL-3A conditioned media, rat amniotic fluid, and rat cerebrospinal fluid (CSF) demonstrated that all contained a prominent 28 K BP. A polyclonal antibody (alpha Hec 1) developed against the 31 K human IGF-BP (hBP-31) immunoprecipitated the 28 K BP from neonatal rat serum, BRL-3A media, rat amniotic fluid, and rat CSF, but did not react with adult rat serum. These findings suggest that, in the rat, the predominant neonatal serum BP is structurally and immunologically similar to the major BRL-3A, amniotic fluid, and CSF BPs, but distinct from the predominant adult serum BP.
Collapse
|
|
36 |
59 |
25
|
Saxena S, Quick MW, Tousson A, Oh Y, Warnock DG. Interaction of syntaxins with the amiloride-sensitive epithelial sodium channel. J Biol Chem 1999; 274:20812-7. [PMID: 10409621 DOI: 10.1074/jbc.274.30.20812] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amiloride-sensitive sodium channels mediate sodium entry across the apical membrane of epithelial cells in variety of tissues. The rate of Na(+) entry is controlled by the regulation of the epithelial sodium channel (ENaC) complex. Insertion/retrieval of the ENaC complex into the apical membrane as well as direct kinetic effects at the single channel level are recognized mechanisms of regulation. Recent data suggest that the syntaxin family of targeting proteins interact with and functionally regulate a number of ion channels and pumps. To evaluate the role of these proteins in regulating ENaC activity, we co-expressed rat ENaC cRNA (alpha, beta, gamma subunits) with syntaxin 1A or 3 cRNAs in Xenopus oocytes. Basal ENaC currents were inhibited by syntaxin 1A and stimulated by syntaxin 3. Both syntaxin 1A and syntaxin 3 could be co-immunoprecipitated with ENaC subunit proteins, suggesting physical interaction. Interestingly, immunofluorescence data suggest that with either syntaxin isoform the ENaC-associated epifluorescence on the oocyte surface is enhanced. These data indicate that (i) both syntaxin isoforms increase the net externalization of the ENaC channel complex, (ii) that the functional regulation is isoform specific, and (iii) suggest that ENaC may be regulated through mechanisms involving protein-protein interactions.
Collapse
|
|
26 |
58 |