1
|
Qi J, Zhang DM, Suo YP, Song XA, Yu XJ, Elks C, Lin YX, Xu YY, Zang WJ, Zhu Z, Kang YM. Renin-angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovasc Toxicol 2013; 13:48-54. [PMID: 22971929 DOI: 10.1007/s12012-012-9184-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Angiotensin II (ANG II)-induced inflammatory and oxidative stress responses contribute to the pathogenesis of hypertension. In this study, we determined whether renin-angiotensin system (RAS) activation in the hypothalamic paraventricular nucleus (PVN) contributes to the ANG II-induced hypertensive response via interaction with neurotransmitters in the PVN. Rats underwent subcutaneous infusion of ANG II or saline for 4 weeks. These rats were treated for 4 weeks through bilateral PVN infusion with either vehicle or losartan (LOS), an angiotensin II type 1 receptor (AT1-R) antagonist, via osmotic minipump. ANG II infusion resulted in higher levels of glutamate, norepinephrine (NE), AT1-R and pro-inflammatory cytokines (PIC), and lower level of gamma-aminobutyric acid (GABA) in the PVN. Rats receiving ANG II also had higher levels of mean arterial pressure, plasma PIC, NE and aldosterone than control animals. PVN treatment with LOS attenuated these ANG II-induced hypertensive responses. In conclusion, these findings suggest that the RAS activation in the PVN contributes to the ANG II-induced hypertensive response via interaction with PIC and neurotransmitters (glutamate, NE and GABA) in the PVN.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
51 |
2
|
Kang YM, Zhang DM, Yu XJ, Yang Q, Qi J, Su Q, Suo YP, Yue LY, Zhu GQ, Qin DN. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines. Toxicol Appl Pharmacol 2014; 274:436-44. [PMID: 24342267 DOI: 10.1016/j.taap.2013.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/05/2023]
Abstract
The renin-angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5μg/h) or vehicle for 4weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy.
Collapse
|
|
11 |
38 |
3
|
Jia LL, Kang YM, Wang FX, Li HB, Zhang Y, Yu XJ, Qi J, Suo YP, Tian ZJ, Zhu Z, Zhu GQ, Qin DN. Exercise training attenuates hypertension and cardiac hypertrophy by modulating neurotransmitters and cytokines in hypothalamic paraventricular nucleus. PLoS One 2014; 9:e85481. [PMID: 24482680 PMCID: PMC3901693 DOI: 10.1371/journal.pone.0085481] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/28/2013] [Indexed: 02/05/2023] Open
Abstract
AIMS Regular exercise as an effective non-pharmacological antihypertensive therapy is beneficial for prevention and control of hypertension, but the central mechanisms are unclear. In this study, we hypothesized that chronic exercise training (ExT) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs) and restoring the neurotransmitters balance in the hypothalamic paraventricular nucleus (PVN) in young spontaneously hypertensive rats (SHR). In addition, we also investigated the involvement of nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in exercise-induced effects. METHODS AND RESULTS Moderate-intensity ExT was administrated to young normotensive Wistar-Kyoto (WKY) and SHR rats for 16 weeks. SHR rats had a significant increase in mean arterial pressure and cardiac hypertrophy. SHR rats also had higher levels of glutamate, norepinephrine (NE), phosphorylated IKKβ, NF-κB p65 activity, NAD(P)H oxidase subunit gp91(phox), PICs and the monocyte chemokine protein-1 (MCP-1), and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN. These SHR rats also exhibited higher renal sympathetic nerve activity (RSNA), and higher plasma levels of PICs, and lower plasma IL-10. However, ExT ameliorates all these changes in SHR rats. CONCLUSION These findings suggest that there are the imbalances between excitatory and inhibitory neurotransmitters and between pro- and anti-inflammatory cytokines in the PVN of SHR rats, which at least partly contributing to sympathoexcitation, hypertension and cardiac hypertrophy; chronic exercise training attenuates hypertension and cardiac hypertrophy by restoring the balances between excitatory and inhibitory neurotransmitters and between pro- and anti-inflammatory cytokines in the PVN; NF-κB and oxidative stress in the PVN may be involved in these exercise-induced effects.
Collapse
|
research-article |
11 |
35 |
4
|
Leyh T, Vogt T, Suo Y. The DNA sequence of the sulfate activation locus from Escherichia coli K-12. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50034-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
|
33 |
31 |
5
|
Zhang M, Qin DN, Suo YP, Su Q, Li HB, Miao YW, Guo J, Feng ZP, Qi J, Gao HL, Mu JJ, Zhu GQ, Kang YM. Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension. Toxicol Lett 2015; 235:206-15. [PMID: 25891026 DOI: 10.1016/j.toxlet.2015.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) in the brain plays an important role in the progression of hypertension and hydrogen peroxide (H2O2) is a major component of ROS. The aim of this study is to explore whether endogenous H2O2 changed by polyethylene glycol-catalase (PEG-CAT) and aminotriazole (ATZ) in the hypothalamic paraventricular nucleus (PVN) regulates neurotransmitters, renin-angiotensin system (RAS), and cytokines, and whether subsequently affects the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in high salt-induced hypertension. Male Sprague-Dawley rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 10 weeks. Then rats were treated with bilateral PVN microinjection of PEG-CAT (0.2 i.u./50nl), an analog of endogenous catalase, the catalase inhibitor ATZ (10nmol/50nl) or vehicle. High salt-fed rats had significantly increased MAP, RSNA, plasma norepinephrine (NE) and pro-inflammatory cytokines (PICs). In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), interleukin-1beta (IL-1β), glutamate and NE, and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN than normal diet rats. Bilateral PVN microinjection of PEG-CAT attenuated the levels of RAS and restored the balance of neurotransmitters and cytokines, while microinjection of ATZ into the PVN augmented those changes occurring in hypertensive rats. Our findings demonstrate that ROS component H2O2 in the PVN regulating MAP and RSNA are partly due to modulate neurotransmitters, renin-angiotensin system, and cytokines within the PVN in salt-induced hypertension.
Collapse
|
|
10 |
31 |
6
|
Xu MQ, Suo YP, Gong JP, Zhang MM, Yan LN. Prolongation of liver allograft survival by dendritic cells modified with NF-κB decoy oligodeoxynucleotides. World J Gastroenterol 2004; 10:2361-8. [PMID: 15285020 PMCID: PMC4576289 DOI: 10.3748/wjg.v10.i16.2361] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To induce the tolerance of rat liver allograft by dendritic cells (DCs) modified with NF-κB decoy oligodeoxynucleotides (ODNs).
METHODS: Bone marrow (BM)-derived DCs from SD rats were propagated in the presence of GM-CSF or GM-CSF + IL-4 to obtain immature DCs or mature DCs. GM-CSF+IL-4-propagated DCs were treated with double-strand NF-κB decoy ODNs containing two NF-κB binding sites or scrambled ODNs to ascertain whether NF-κB decoy ODNs might prevent DC maturation. GM-CSF-propagated DCs, GM-CSF + NF-κB decoy ODNs or scrambled ODNs-propagated DCs were treated with LPS for 18 h to determine whether NF-κB decoy ODNs could prevent LPS-induced IL-12 production in DCs. NF-κB binding activities, costimulatory molecule (CD40, CD80, CD86) surface expression, IL-12 protein expression and allostimulatory capacity of DCs were measured with electrophoretic mobility shift assay (EMSA), flow cytometry, Western blotting, and mixed lymphocyte reaction (MLR), respectively. GM-CSF-propagated DCs, GM-CSF + IL-4 -propagated DCs, and GM-CSF + NF-κB decoy ODNs or scrambled ODNs-propagated DCs were injected intravenously into recipient LEW rats 7 d prior to liver transplantation and immediately after liver transplantation. Histological grading of liver graft rejection was determined 7 d after liver transplantation. Expression of IL-2, IL-4 and IFN-γ mRNA in liver graft and in recipient spleen was analyzed by semiquantitative RT-PCR. Apoptosis of liver allograft-infiltrating cells was measured with TUNEL staining.
RESULTS: GM-CSF-propagated DCs, GM-CSF+NF-κB decoy ODNs-propagated DCs and GM-CSF+ scrambled ODNs-propagated DCs exhibited features of immature DCs, with similar low level of costimulatory molecule(CD40, CD80, CD86) surface expression, absence of NF-κB activation, and few allocostimulatory activities. GM-CSF + IL-4-propagated DCs displayed features of mature DCs, with high levels of costimulatory molecule (CD40, CD80, CD86) surface expression, marked NF-κB activation, and significant allocostimulatory activity. NF-κB decoy ODNs completely abrogated IL-4-induced DC maturation and allocostimulatory activity as well as LPS-induced NF-κB activation and IL-12 protein expression in DCs. GM-CSF + NF-κB decoy ODNs-propagated DCs promoted apoptosis of liver allograft-infiltrating cells within portal areas, and significantly decreased the expression of IL-2 and IFN-γ mRNA but markedly elevated IL-4 mRNA expression both in liver allograft and in recipient spleen, and consequently suppressed liver allograft rejection, and promoted liver allograft survival.
CONCLUSION: NF-κB decoy ODNs-modified DCs can prolong liver allograft survival by promoting apoptosis of graft-infiltrating cells within portal areas as well as down-regulating IL-2 and IFN-γ mRNA and up-regulating IL-4 mRNA expression both in liver graft and in recipient spleen.
Collapse
|
Basic Research |
21 |
25 |
7
|
Liu C, Suo Y, Leyh TS. The energetic linkage of GTP hydrolysis and the synthesis of activated sulfate. Biochemistry 1994; 33:7309-14. [PMID: 8003495 DOI: 10.1021/bi00189a036] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ATP sulfurylase, from Escherichia coli K-12, catalyzes both the hydrolysis of GTP and the synthesis of activated sulfate (APS). This paper describes the energetic linkage of these reactions and the events that couple them. Steady-state and single-turnover experiments suggest that the binding of GTP inhibits APS production and that the hydrolysis of GTP is required to generate the enzyme form(s) that produces APS. It is this progression from the inhibitory, E-GTP, to the productive, E-GDP, complexes in the cycle of APS synthesis that energetically links these two reactions. This model stands in contrast to other GTPase/target systems in which the binding of GTP alone is sufficient to catalyze multiple turnovers of the target reaction. The stoichiometry of GTP hydrolysis to APS synthesis is 1:1, and equilibrium measurements show that -9.1 kcal/mol, produced by the hydrolysis of GTP, is used to thermodynamically drive production of APS and PPi. These findings establish the mechanism of energy transfer in this novel GTPase/target system, and substantially alter our understanding of the energetics of sulfate activation, an essential step in the metabolic assimilation of sulfur.
Collapse
|
|
31 |
24 |
8
|
Li HB, Qin DN, Suo YP, Guo J, Su Q, Miao YW, Sun WY, Yi QY, Cui W, Cheng K, Zhu GQ, Kang YM. Blockade of Salusin-β in Hypothalamic Paraventricular Nucleus Attenuates Hypertension and Cardiac Hypertrophy in Salt-induced Hypertensive Rats. J Cardiovasc Pharmacol 2015; 66:323-31. [PMID: 26038832 DOI: 10.1097/fjc.0000000000000284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salusin-β, a multifunctional bioactive peptide, is considered as a promising candidate biomarker for predicting cardiovascular diseases. This study was designed to determine whether inhibition of salusin-β in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by restoring neurotransmitters and cytokines. Male Sprague Dawley rats were fed with a normal salt diet (NS, 0.3%) or a high salt diet (HS, 8%) for 8 weeks to induce hypertension. Then, these rats received bilateral PVN infusion of a specific salusin-β blocker, antisalusin-β IgG (SIgG), or control IgG (CIgG) for 2 weeks. HS rats exhibited higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/bodyweight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and messenger RNA levels of cardiac atrial natriuretic peptide (ANP), and β-myosin heavy chain. Compared with NS rats, HS rats had higher levels of glutamate, norepinephrine, tyrosine hydroxylase, proinflammatory cytokines, and lower levels of gamma-aminobutyric acid, interleukin 10, and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN, and higher plasma levels of proinflammatory cytokines. Chronic PVN infusion of SIgG attenuated all these changes in HS rats. Our findings suggest that HS rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between proinflammatory and anti-inflammatory cytokines in the PVN; and chronic inhibition of salusin-β in the PVN restores neurotransmitters and cytokines in the PVN, thereby attenuating hypertensive responses and cardiac hypertrophy.
Collapse
|
|
10 |
17 |
9
|
Liu R, Gao Y, Liu N, Suo Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther 2020; 33:102156. [PMID: 33352314 DOI: 10.1016/j.pdpdt.2020.102156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer, the malignant tumor with the highest mortality rate in gynecological tumors, leads to a poor prognosis due to tumor metastasis. At present, the main treatment for ovarian cancer is the combination of cytoreduction surgery and chemotherapy. But the surgery is insufficient to solve the extensive transfer of tumor in the abdominal cavity and a large proportion of ovarian cancer cases have shown resistance to chemotherapy. Photodynamic therapy (PDT) is a viable treatment option for a wide range of applications, especially in malignant tumors. Porphyrin sensitizers, as the most widely used photosensitive agents, have the following advantages: short photosensitive period and high singlet oxygen production. However, most studies have found that it is difficult to achieve high loading rates of photosensitive agents, thus effective concentration in target tissue is suboptimal and the lethal ability is greatly reduced. In this article, we review several studies that nanoparticles loading porphyrin sensitizers for photodynamic therapy of ovarian cancer. METHODS We collected relevant literature from PUBMED and reviewed their research content. RESULTS The application of nanotechnology to PDT in ovarian cancer can reduce the non-specific toxicity of photosensitive agents and increase stability and delivery efficiency. CONCLUSIONS The combination with nanotechnology can cover the shortcomings of photodynamic therapy, but the specific efficacy still needs a large number of experiments to prove.
Collapse
|
Review |
5 |
17 |
10
|
|
|
33 |
12 |
11
|
Xu MQ, Suo YP, Gong JP, Zhang MM, Yan LN. Augmented regeneration of partial liver allograft induced by nuclear factor-kappaB decoy oligodeoxynucleotides-modified dendritic cells. World J Gastroenterol 2004; 10:573-8. [PMID: 14966919 PMCID: PMC4716982 DOI: 10.3748/wjg.v10.i4.573] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 09/06/2003] [Accepted: 09/25/2003] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate the effect of NF-kappaB decoy oligodeoxynuleotides (ODNs) - modified dendritic cells (DCs) on regeneration of partial liver allograft. METHODS Bone marrow (BM)- derived DCs from SD rats were propagated in the presence of GM-CSF or GM-CSF+IL-4 to obtain immature DCs or mature DCs, respectively. GM-CSF-propagated DCs were treated with double-strand NF-kappaB decoy ODNs containing two NF-kappaB binding sites or scrambled ODNs. Allogeneic (SD rat to LEW rat) 50% partial liver transplantation was performed. Normal saline (group A), GM-CSF -propagated DCs (group B), GM-CSF+IL-4 - propagated DCs (group C), and GM-CSF+NF-kappaB decoy ODNs (group D) or scrambled ODNs -propagated DCs (group E) were injected intravenously into recipient LEW rats 7 days prior to liver transplantation and immediately after transplantation. DNA synthesis (BrdU labeling) and apoptosis of hepatocytes were detected with immunostaining and TUNEL staining postoperative 24 h, 48 h, 72 h and 84 h, respectively. Liver graft-resident NK cell activity, hepatic IFN-gamma mRNA expression and recipient serum IFN-gamma level at the time of the maximal liver allograft regeneration were measured with (51)Cr release assay, semiquantitative RT-PCR and ELISA, respectively. RESULTS Regeneration of liver allograft was markedly promoted by NF-kappaB decoy ODNs-modified immature DCs but was significantly suppressed by mature DCs, the DNA synthesis of hepatocytes peaked at postoperative 72 h in group A, group B and group E rats, whereas the DNA synthesis of hepatocytes peaked at postoperative 84 h in group C rats and 48 h in group D rats, respectively. The maximal BrdU labeling index of hepatocytes in group D rats was significantly higher than that in the other groups rats. NF-kappaB decoy ODNs-modified immature DCs markedly suppressed but mature DCs markedly promoted apoptosis of hepatocytes, liver-resident NK cell activity, hepatic IFN-gamma mRNA expression and recipient serum IFN-gamma production. At the time of the maximal regeneration of liver allograft, the minimal apoptosis of hepatocytes, the minimal activity of liver-resident NK cells, the minimal hepatic IFN-gamma mRNA expression and serum IFN-gamma production were detected in group D rats. The apoptotic index of hepatocytes, the activity of liver- resident NK cells, the hepatic IFN-gamma mRNA expression level and the serum IFN-gamma level in group D rats were significantly lower than that in the other groups rats at the time of the maximal regeneration of liver allograft. CONCLUSION The data suggest that the augmented regeneration of partial liver allograft induced by NF-kappaB decoy ODNs-modified DCs may be attributable to the reduced apoptotic hepatocytes, the suppressed activity of liver-resident NK cells and the reduced IFN-gamma production.
Collapse
|
Basic Research |
21 |
12 |
12
|
Zhang R, Li L, Chen L, Suo Y, Fan J, Zhang S, Wang Y, Gao S, Wang Y. MAP7 interacts with RC3H1 and cooperatively regulate cell-cycle progression of cervical cancer cells via activating the NF-κB signaling. Biochem Biophys Res Commun 2020; 527:56-63. [PMID: 32446391 DOI: 10.1016/j.bbrc.2020.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022]
Abstract
Ensconsin is encoded by the MAP7 gene and belongs to the microtubule-associated proteins. This study aimed to explore its functional roles and partners in cell-cycle progression in cervical cancer. Data from the Cancer Genome Atlas-Cervical & Endocervical Cancer (TCGA-CESC) and the Genotype-Tissue Expression project were used for bioinformatic analysis. SiHa cells were used for in-vitro and in-vivo analysis. Co-immunoprecipitation (Co-IP) assay was conducted to explore the proteins interacted with MAP7. Results showed that MAP7 mRNA expression might serve as an independent biomarker of shorter survival. MAP7 overexpression elevated cyclin D1/cyclin B1 expression, facilitated cell-cycle progression and promoted SiHa cell growth in a xenograft tumor model. Co-IP experiments confirmed a novel interaction between MAP7 and RC3H1. Knockdown of either RC3H1 or MAP7 significantly attenuated cyclin D1/cyclin B1 upregulation, and cell-cycle progression induced by the other partner. MAP7 overexpression led to increased expression of P-IKK (Ser176/177) and P-p65 (Ser536). RC3H1 inhibition abrogated MAP7 induced upregulation of P-IKK and P-p65. Data in TCGA-CESC showed that MAP7 expression was positively correlated with its copy number segments, but was negatively correlated with the methylation level of three CpG sites within the gene locus. Demethylation treatment by 5-Aza-dC elevated both MAP7 mRNA and protein expression in a dose-dependent manner. In conclusion, this study revealed a novel interaction between MAP7 and RC3H1 in cervical cancer cells, which cooperatively enhanced cyclin D1/cyclin B1 expression and facilitated cell-cycle progression. These effects were at least partly mediated by activated canonical IKK/NF-kB signaling.
Collapse
|
|
5 |
7 |
13
|
Suo Y, Miernyk JA. Regulation of nucleocytoplasmic localizatioin of the atDjC6 chaperone protein. PROTOPLASMA 2004; 224:79-89. [PMID: 15726812 DOI: 10.1007/s00709-004-0050-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The sequence of the atDjC6 chaperone protein includes three potential nuclear localization signal (NLS) sequences (A-C) and three potential nuclear export signal (NES) sequences (X-Z). The subcellular localization of atDjC6 was studied by scanning laser confocal microscopy of chimera with the green-fluorescent protein (GFP) transiently expressed in tobacco BY-2 cells. The localization of the atDjC6::GFP chimera was coincident with that of the nuclear stain propidium iodide. Site-directed mutagenesis was used to verify the predicted NLS sequences. Each was individually fused to GFP and tested for protein localization. The individual NLS sequences were sufficient to direct partial nuclear localization of GFP, although the targeting information within NLS-B is apparently conformation sensitive. Site-directed mutagenesis of the NES sequences increased the amount of each chimera that was nuclearly localized, indicating a decrease in nuclear export. When any pair of NLS sequences were appended to GFP, the chimera were entirely nuclearly localized. Quantitative two-hybrid analysis was used to verify that the decoding of NLS sequence information involves interaction with the NLS-receptor protein importin-alpha. Each of the NLS sequences is flanked by a site of potential Ser phosphorylation, and recombinant atDjC6 could be phosphorylated in vitro. Mutagenesis of Ser residues to the P-Ser mimic Asp interfered with nuclear targeting, apparently by preventing recognition or binding by importin-alpha. Our results are consistent with a regulated nucleocytoplasmic localization of the atDjC6 chaperone protein.
Collapse
|
|
21 |
6 |
14
|
Lv H, Suo Y, Sun Q, Fan J, Wang Q. Study on the effect of 5-aminolevulinic acid-mediated photodynamic therapy combined with cisplatin on human ovarian cancer OVCAR-3 cells. Adv Med Sci 2023; 68:147-156. [PMID: 36965469 DOI: 10.1016/j.advms.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE This article explores the effect of 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) combined with cisplatin (CDDP) on the apoptosis of human ovarian cancer cells and the mechanism of action of the combination therapy. MATERIALS AND METHODS Human ovarian cancer OVCAR-3 cells were cultured in vitro and divided into 5-ALA/PDT group, CDDP group and combined treatment group (5-ALA/PDT combined with different concentrations of CDDP). After administration of the corresponding drugs, a CCK-8 assay was used to detect the inhibition rate of cell proliferation. After Rhodamine 123 staining, mitochondrial membrane potential changes were observed under fluorescence microscopy. The apoptosis rate and reactive oxygen species (ROS) content were detected by flow cytometry. Western blotting was used to detect protein expression. RESULTS The CCK-8 assay showed that CDDP in combination with 5-ALA/PDT significantly enhanced cytotoxicity compared to treatment with CDDP alone and that low doses of CDDP were sufficient to induce these combination effects. The mitochondrial membrane potential in each combination treatment group gradually decreased with increasing CDDP concentration, while the apoptosis rate and reactive oxygen species (ROS) content detected by flow cytometry gradually increased. Western blotting assay showed that the expression of bax, cleaved caspase-9, cleaved caspase-3, and cleaved PARP was increased, while the expression of bcl-2, caspase-9, caspase-3, and PARP was decreased, and the differences were statistically significant (P < 0.05). CONCLUSIONS In summary, 5-ALA/PDT combined with CDDP can effectively inhibit cell proliferation and promote apoptosis, and this combination may induce apoptosis by activating the mitochondrial pathway.
Collapse
|
|
2 |
4 |
15
|
Feng T, Wei D, Bi W, Sun W, Wu S, Jiang M, Yan F, Suo Y, Yao XS. Wavelength-switchable ultra-narrow linewidth fiber laser enabled by a figure-8 compound-ring-cavity filter and a polarization-managed four-channel filter. OPTICS EXPRESS 2021; 29:31179-31200. [PMID: 34615217 DOI: 10.1364/oe.439732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
We propose and demonstrate a high-performance wavelength-switchable erbium-doped fiber laser (EDFL), enabled by a figure-8 compound-ring-cavity (F8-CRC) filter for single-longitudinal-mode (SLM) selection and a polarization-managed four-channel filter (PM-FCF) for defining four lasing wavelengths. We introduce a novel methodology utilizing signal-flow graph combined with Mason's rule to analyze a CRC filter in general and apply it to obtain the important design parameters for the F8-CRC used in this paper. By combining the functions of the F8-CRC filter and the PM-FCF assisted by the enhanced polarization hole-burning and polarization dependent loss, we achieve the EDFL with fifteen lasing states, including four single-, six dual-, four tri- and one quad-wavelength lasing operations. In particular, all the four single-wavelength operations are in stable SLM oscillation, typically with a linewidth of <600 Hz, a RIN of ≤-154.58 dB/Hz@≥3 MHz and an output power fluctuation of ≤±3.45%. In addition, all the six dual-wavelength operations have very similar performances, with the performance parameters close to those of the four single-wavelength operations, superior to our previous work and others' similar work significantly. Finally, we achieve the wavelength-spacing tuning of dual-wavelength operations for photonic generation of tunable microwave signals, and successfully obtain a signal at 23.10 GHz as a demonstration.
Collapse
|
|
4 |
4 |
16
|
Eady CC, Lister CE, Suo Y, Schaper D. Transient expression of uidA constructs in in vitro onion (Allium cepa L.) cultures following particle bombardment and Agrobacterium-mediated DNA delivery. PLANT CELL REPORTS 1996; 15:958-962. [PMID: 24178283 DOI: 10.1007/bf00231596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/1995] [Revised: 03/05/1996] [Indexed: 06/02/2023]
Abstract
Particle bombardment and Agrobacterium-mediated DNA delivery into immature embryos and microbulbs were used to investigate the expression of the uidA gene in in vitro onion cultures. Both methods were successful in delivering DNA and subsequent uidA expression was observed. Optimal transient β-glucuronidase activity was observed in immature embryos that had been pre-cultured for three days and bombarded at a distance of 3 cm from the stopping plate, under 25 in Hg vacuum, using 900-1300 psi rupture discs. The CaMV35S-uidA gene construct gave five fold higher transient β-glucuronidase activity than the uidA gene construct regulated by any of four other promoters initially chosen for high experession in monocotyledonous tissues.
Collapse
|
|
29 |
2 |
17
|
Wang Q, Suo Y, Wang X, Wang Y, Tian X, Gao Y, Liu N, Liu R. Study on the mechanism of photodynamic therapy mediated by 5-aminoketovalerate in human ovarian cancer cell line. Lasers Med Sci 2021; 36:1873-1881. [PMID: 33392781 DOI: 10.1007/s10103-020-03226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022]
Abstract
We aimed to investigate the mechanism and effect of photodynamic treatment mediated by 5-aminoketovalerate (5-ALA-PDT) on human ovarian cancer cells (OVCAR3 cells) and to provide a theoretical basis for the subsequent experimental step in vivo. Human ovarian cancer OVCAR3 cells were randomly divided into four groups: control group, laser irradiation alone group, photosensitizer alone group, and photodynamic treatment group. Alterations in cell morphology were observed with an inverted light microscope; cell viability was examined by CCK-8 assays. The ROS content and apoptosis rate were examined by flow cytometry analysis. Western blot was used to detect the expression of apoptosis-related proteins, such as caspase-3, Bax, and Bcl-2, and the expression of cleaved caspase-3 in live cells was detected by a cleaved caspase-3 assay kit. Inverted light microscopy showed alterations in cell morphology in different stages. Comparison with the three other groups indicated that tumor cell proliferation was significantly decreased in the photodynamic treatment group (P < 0.05). Flow cytometry analysis revealed that the content of ROS was higher in the photodynamic group than in the other three groups, and the apoptosis rate was higher in the photodynamic treatment group. The difference compared with the other three groups was statistically significant (P < 0.001). The western blot results indicated that the protein expression of Bcl-2 and caspase-3 was decreased in the photodynamic treatment group, and the protein expression level of Bax was increased (P < 0.05). The expression of cleaved caspase-3 was increased in the photodynamic treatment group compared with the other groups according to the data obtained with a microplate reader. Thus, our results demonstrated that the apoptosis and viability of OVCAR3 cells are altered in response to 5-ALA-PDT; however, no remarkable effects were observed in ovarian cancer cells treated with laser irradiation or photosensitizer alone. 5-ALA-PDT can significantly inhibit the growth of human ovarian cancer cells, and the mechanism of this effect is related to the tumor cell apoptosis mediated by the downregulation of Bcl-2 and caspase-3 and upregulation of Bax protein expression.
Collapse
|
Journal Article |
4 |
1 |
18
|
Gawron L, Suo Y, Carter M, Redd A, Turok D, Gundlapalli A. Uptake of long-acting reversible contraception among homeless versus housed women veterans. Contraception 2016. [DOI: 10.1016/j.contraception.2016.07.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
9 |
1 |
19
|
Liu T, Zhang Z, Zhang X, Meng L, Gong M, Li J, Qiu J, Suo Y, Liang X, Wang X, Jiang N, Tse G, Li G, Zhao Y. P1890Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics and function through the PGC-1 signaling pathway. Eur Heart J 2019. [DOI: 10.1093/eurheartj/ehz748.0638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Oxidative stress contributes to adverse atrial remodeling in diabetes mellitus. This can be prevented by the PPAR-γ agonist pioglitazone through its anti-oxidant and anti-inflammatory effects.
Purpose
In this study, the molecular mechanisms underlying these effects were investigated.
Methods
Rabbits were randomly divided into control (C), diabetic (DM), and pioglitazone-treated DM (Pio) groups. Echocardiographic, hemodynamic, electrophysiological, intracellular Ca2+ properties were measured. Serum PPAR-γ levels, serum and tissue oxidative stress and inflammatory markers, mitochondrial morphology, reactive oxygen species (ROS) production rate, respiratory function, and mitochondrial membrane potential (MMP) levels were measured. Protein expression of pro-fibrotic marker transforming growth factor β1 (TGF-β1), and the mitochondrial proteins (PGC-1α, fission and fusion-related proteins) were measured.
Results
Compared with controls, the DM group demonstrated larger left atrial diameter and fibrosis area associated with a higher incidence of inducible AF. Lower serum PPAR-γ level was associated with lower PGC-1α, higher NF-κB and higher TGF-β1 expression. Mn-SOD protein was not different but lower mitochondrial fission- and fusion-related proteins were detected. Mitochondrial swelling, higher mitochondrial ROS, lower respiratory control rate, lower MMP and higher intracellular Ca2+ transients were observed. In the Pio group, reversal of structural remodeling and lower inducible AF incidence were associated with higher PPAR-γ and PGC-1α. NF-κB and TGF-β1 were lower and biogenesis, fission and fusion-related protein were higher. Mitochondrial structure and function, and intracellular Ca2+ transients were improved. In HL-1 cell line, transfected with PGC-1α siRNA blunted the effect of pioglitazone on Mn-SOD protein expression and MMP collapse in H2O2-treated cells.
Conclusion
Diabetes mellitus induces adverse atrial structural and electrophysiological remodeling, abnormal Ca2+ handling and mitochondrial damage and dysfunction. Pioglitazone prevented these abnormalities through the PPAR-γ/PGC-1α pathway.
Acknowledgement/Funding
National Natural Science Foundation of China (No 81570298, 81270245, 30900618 to T.L.)
Collapse
|
|
6 |
1 |
20
|
Leyh TS, Suo Y. GTPase-mediated activation of ATP sulfurylase. J Biol Chem 1992; 267:542-5. [PMID: 1730615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
GTP stimulates the synthesis of APS (adenosine 5'-phosphosulfate) by the enzyme ATP sulfurylase (ATP:sulfate adenylyltransferase, EC 2.7.7.4) via a GTPase mechanism. The activation of the enzyme, purified from Escherichia coli, is titratable with GTP. The initial rate of APS formation is increased 116-fold at a saturating concentration of GTP. The enzyme exhibits a GTPase activity that is stimulated by ATP and further enhanced by SO4; however, SO4 alone does not significantly stimulate GTP hydrolysis. The larger subunit of ATP sulfurylase, encoded by cysN, contains a GTP-binding consensus sequence common to other known GTP-binding proteins. This is the first evidence that the sulfate activation pathway is a metabolic target for regulation by a GTPase.
Collapse
|
|
33 |
|
21
|
Yang D, Yan F, Feng T, Qin Q, Cheng D, Li T, Yu C, Wang X, Jiang Y, Bai Y, Suo Y, Kumamoto K. Three-wavelength-switchable narrow linewidth thulium-doped fiber laser enabled by a compound-cavity filter and a sampled fiber Bragg grating. APPLIED OPTICS 2022; 61:10374-10379. [PMID: 36607095 DOI: 10.1364/ao.475357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
A single-longitudinal-mode (SLM), narrow linewidth thulium-doped fiber laser with a sampled fiber Bragg grating (SFBG), switchable among three wavelengths, with a cascade dual-coupler-ring-based compound cavity (DCR-CC) filter, is proposed and demonstrated. The coupling design, simulation analysis, and characterization of the DCR-CC filter provide the foundation for the experiment. A nonlinear polarization rotation system was injected into the cavity to suppress gain competition and achieve a laser switchable among three wavelengths. The fluctuations of the wavelength and power of the output laser are less than 0.60 nm and 0.91 dBm, respectively. For demonstration, the laser maintained in SLM operation measured by the delayed self-heterodyne method has a linewidth of <3.7k H z and relative intensity noise of <-114d B/H z.
Collapse
|
|
3 |
|
22
|
Sun Q, Suo Y, Lv H, Wang Q, Yin H. Porphin e6 complex loaded with gold nanorod mesoporous silica enhances photodynamic therapy in ovarian cancer cells in vitro. Lasers Med Sci 2023; 38:115. [PMID: 37133615 DOI: 10.1007/s10103-023-03784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
A growing amount of experimental evidence has proven that the application of gold nanorods (AuNRs) in photodynamic therapy (PDT) can significantly enhance its therapeutic efficacy. The aim of this study was to establish a protocol for investigating the effect of gold nanorods loaded with the photosensitizer chlorin e6 (Ce6) on photodynamic therapy in the OVCAR3 human ovarian cancer cell line in vitro and to determine whether the PDT effect was different from that of Ce6 alone. OVCAR3 cells were randomly divided into three groups: the control group, Ce6-PDT group, and AuNRs@SiO2@Ce6-PDT group. Cell viability was measured by MTT assay. The generation of reactive oxygen species (ROS) was measured by a fluorescence microplate reader. Cell apoptosis was detected by flow cytometry. The expression of apoptotic proteins was detected by immunofluorescence and western blotting. The results showed that compared with that of the Ce6-PDT group, the cell viability of the AuNRs@SiO2@Ce6-PDT group was significantly decreased (P < 0.05) in a dose-dependent manner, and ROS production increased significantly (P < 0.05). The flow cytometry results showed that the proportion of apoptotic cells in the AuNRs@SiO2@Ce6-PDT group was significantly higher than that in the Ce6-PDT group (P < 0.05). Immunofluorescence and western blot results showed that the protein expression levels of cleaved caspase-9, cleaved caspase-3, cleaved PARP, and Bax in the AuNRs@SiO2@Ce6-PDT-treated-OVCAR3 cells were higher than those in the Ce6-PDT-treated cells (P < 0.05), and the protein expression levels of caspase-3, caspase-9, PARP, and Bcl-2 were slightly lower than those in the Ce6-PDT group (P < 0.05). In summary, our results show that AuNRs@SiO2@Ce6-PDT has a significantly stronger effect on OVCAR3 cells than the effect of Ce6-PDT alone. The mechanism may be related to the expression of Bcl-2 family and caspase family in the mitochondrial pathway.
Collapse
|
|
2 |
|
23
|
Wang Q, Suo Y, Tian X. 5-Aminolaevulinic Acid-Mediated Photodynamic Therapy Combined with Tirapazamine Enhances Efficacy in Ovarian Cancer. Biomedicines 2025; 13:724. [PMID: 40149700 PMCID: PMC11939993 DOI: 10.3390/biomedicines13030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives: Ovarian cancer is a common gynaecological malignancy. Photodynamic therapy (PDT) mediated by 5-aminolaevulinic acid (5-ALA-PDT) is widely used in clinical practice. However, hypoxia may impact the efficacy of this treatment. In the present study, we combined the bioreductively active drug tirapazamine (TPZ) with PDT to explore its potential in enhancing ovarian cancer cell death. Methods: A cell counting kit-8 assay was used to determine cytotoxicity under different intervention conditions. The distribution of protoporphyrin IX, a metabolite of 5-ALA, was observed using in vivo fluorescence imaging. The effect of the combined treatment was assessed by measuring changes in tumour size following the corresponding interventions and by haematoxylin and eosin staining of tumour tissues. Immunohistochemical staining was used to detect the expression levels of relevant proteins. Results: TPZ exhibited no cytotoxicity under normoxic conditions but was activated under hypoxic conditions, inducing cytotoxic effects that were enhanced when combined with PDT. Over time, protoporphyrin IX achieved systemic distribution, and high drug concentrations were maintained within the tumour. The combination therapy suppressed tumour growth, and pathological staining showed that necrotic tumour areas were significantly enlarged after treatment. The enhanced therapeutic effect may be attributable to the inhibition of the hypoxia-inducible factor-1α/vascular endothelial growth factor axis and PI3K/Akt/mTOR pathway. Conclusions: 5-ALA-PDT combined with TPZ can overcome both the hypoxic state of ovarian cancer tissues and the increased hypoxia induced by PDT, thereby inhibiting tumour growth.
Collapse
|
research-article |
1 |
|
24
|
Liu X, Guo L, Suo Y, Tang X, Zhu T, Zhao T, Zhang W, Zhang P. Cell Cycle-Related Centromere Protein F Deficiency Suppresses Ovarian Cancer Cell Growth by Inducing Ferroptosis. Gynecol Obstet Invest 2024; 89:424-436. [PMID: 38723616 DOI: 10.1159/000539235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/27/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES This study aimed to investigate the involvement of the cell cycle-related protein centromere protein F (CENPF) in the development of ovarian cancer (OC) and explored its relationship with ferroptosis. DESIGN The databases were analysed to identify differential expression of cell cycle-related proteins between individuals with OC and normal individuals. Immunohistochemistry and statistical analysis were conducted on ovarian tissues obtained from 40 patients with epithelial OC and 20 normal individuals. In vitro experiments were performed using SKOV3 and HEY epithelial OC cell lines. PARTICIPANTS/MATERIALS, SETTING, METHODS The mRNA microarray dataset, consisting of GSE14001, GSE54388, GSE40595, and GSE14407, was downloaded from the Gene Expression Omnibus (GEO) database to investigate the genes associated with cell cycle regulation in OC cells. CENPF was selected as the subject of study through differential analysis.Assessed the expression of CENPF in both OC patients and normal ovarian tissues using immunohistochemistry. Lentivirus infection was employed to downregulate CENPF expression, and subsequent experiments including Cell Counting Kit-8 assay, cell cycle analysis, transwell assay, and wound-healing assay were conducted to investigate the effects of CENPF on proliferation, invasion, migration, and cell cycle regulation in OC cells. The reactive oxygen species (ROS) and the malondialdehyde (MDA) assays were performed to assess the involvement of CENPF in cellular redox reactions. Western blot analysis was conducted to examine the expression levels of ferroptosis-related proteins (GPX4, SLC7A11, DMT1, and protein 53 [p53]). RESULTS By querying and integrating cell cycle-related genes from the GEO database, in silico analyses using The Cancer Genome Atlas database combined with immunohistochemical studies, we discovered that CENPF is upregulated in OC tissues and is related to survival. Downregulation of CENPF inhibited biological function of OC cells, increased intracellular ROS and MDA levels, and downregulated the GPX4 protein and the SLC7A11/xCT protein, but upregulated the DMT1 protein and the tumour p53 expression to induce ferroptosis. LIMITATIONS This study did not investigate ferroptosis-related studies following CENPF overexpression, and the findings have not been validated in animal studies. CONCLUSIONS Our findings demonstrated that the deficiency of CENPF played a crucial anti-oncogenic role in the progression of OC through the mechanism of ferroptosis.
Collapse
|
|
1 |
|
25
|
Zhang R, Li L, Li H, Bai H, Suo Y, Cui J, Wang Y. Ginsenoside 20(S)-Rg3 reduces KIF20A expression and promotes CDC25A proteasomal degradation in epithelial ovarian cancer. J Ginseng Res 2024; 48:40-51. [PMID: 38223825 PMCID: PMC10785255 DOI: 10.1016/j.jgr.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ginsenoside 20(S)-Rg3 shows promising tumor-suppressive effects in ovarian cancer via inhibiting NF-κB signaling. This study aimed to explore the downstream tumor suppressive mechanisms of ginsenoside Rg3 via this signaling pathway. Materials and methods A systematical screening was applied to examine the expression profile of 41 kinesin family member genes in ovarian cancer. The regulatory effect of ginsenoside Rg3 on KIF20A expression was studied. In addition, we explored interacting proteins of KIF20A and their molecular regulations in ovarian cancer. RNA-seq data from The Cancer Genome Atlas (TCGA) was used for bioinformatic analysis. Epithelial ovarian cancer cell lines SKOV3 and A2780 were used as in vitro and in vivo cell models. Commercial human ovarian cancer tissue arrays were used for immunohistochemistry staining. Results KIF20A is a biomarker of poor prognosis among the kinesin genes. It promotes ovarian cancer cell growth in vitro and in vivo. Ginsenoside Rg3 can suppress the transcription of KIF20A. GST pull-down and co-immunoprecipitation (IP) assays confirmed that KIF20A physically interacts with BTRC (β-TrCP1), a substrate recognition subunit for SCFβ-TrCP E3 ubiquitin ligase. In vitro ubiquitination and cycloheximide (CHX) chase assays showed that via interacting with BTRC, KIF20A reduces BTRC-mediated CDC25A poly-ubiquitination and enhances its stability. Ginsenoside Rg3 treatment partly abrogates KIF20A overexpression-induced CDC25A upregulation. Conclusion This study revealed a novel anti-tumor mechanism of ginsenoside Rg3. It can inhibit KIF20A transcription and promote CDC25A proteasomal degradation in epithelial ovarian cancer.
Collapse
|
research-article |
1 |
|