1
|
Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C, Mizokami A, Fu Z, Westman J, Keller ET. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 2001; 107:1235-44. [PMID: 11375413 PMCID: PMC209296 DOI: 10.1172/jci11685] [Citation(s) in RCA: 344] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2000] [Accepted: 03/27/2001] [Indexed: 01/29/2023] Open
Abstract
Prostate cancer (CaP) forms osteoblastic skeletal metastases with an underlying osteoclastic component. However, the importance of osteoclastogenesis in the development of CaP skeletal lesions is unknown. In the present study, we demonstrate that CaP cells directly induce osteoclastogenesis from osteoclast precursors in the absence of underlying stroma in vitro. CaP cells produced a soluble form of receptor activator of NF-kappaB ligand (RANKL), which accounted for the CaP-mediated osteoclastogenesis. To evaluate for the importance of osteoclastogenesis on CaP tumor development in vivo, CaP cells were injected both intratibially and subcutaneously in the same mice, followed by administration of the decoy receptor for RANKL, osteoprotegerin (OPG). OPG completely prevented the establishment of mixed osteolytic/osteoblastic tibial tumors, as were observed in vehicle-treated animals, but it had no effect on subcutaneous tumor growth. Consistent with the role of osteoclasts in tumor development, osteoclast numbers were elevated at the bone/tumor interface in the vehicle-treated mice compared with the normal values in the OPG-treated mice. Furthermore, OPG had no effect on CaP cell viability, proliferation, or basal apoptotic rate in vitro. These results emphasize the important role that osteoclast activity plays in the establishment of CaP skeletal metastases, including those with an osteoblastic component.
Collapse
|
research-article |
24 |
344 |
2
|
Shou Y, Martelli ML, Gabrea A, Qi Y, Brents LA, Roschke A, Dewald G, Kirsch IR, Bergsagel PL, Kuehl WM. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci U S A 2000; 97:228-33. [PMID: 10618400 PMCID: PMC26645 DOI: 10.1073/pnas.97.1.228] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translocations involving c-myc and an Ig locus have been reported rarely in human multiple myeloma (MM). Using specific fluorescence in situ hybridization probes, we show complex karyotypic abnormalities of the c-myc or L-myc locus in 19 of 20 MM cell lines and approximately 50% of advanced primary MM tumors. These abnormalities include unusual and complex translocations and insertions that often juxtapose myc with an IgH or IgL locus. For two advanced primary MM tumors, some tumor cells contain a karyotypic abnormality of the c-myc locus, whereas other tumor cells do not, indicating that this karyotypic abnormality of c-myc occurs as a late event. All informative MM cell lines show monoallelic expression of c-myc. For Burkitt's lymphoma and mouse plasmacytoma tumors, balanced translocation that juxtaposes c-myc with one of the Ig loci is an early, invariant event that is mediated by B cell-specific DNA modification mechanisms. By contrast, for MM, dysregulation of c-myc apparently is caused principally by complex genomic rearrangements that occur during late stages of MM progression and do not involve B cell-specific DNA modification mechanisms.
Collapse
|
research-article |
25 |
256 |
3
|
Retnakaran R, Qi Y, Goran MI, Hamilton JK. Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabet Med 2009; 26:1198-203. [PMID: 20002470 DOI: 10.1111/j.1464-5491.2009.02841.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aims While the disposition index provides a useful measure of B-cell function, its calculation requires the performance of a frequently sampled intravenous glucose tolerance test (FSIVGTT). Recently, the demonstration of a hyperbolic relationship between indices of insulin secretion and insulin sensitivity derived from the oral glucose tolerance test (OGTT) has led to the introduction of two novel OGTT-based measures of B-cell function analogous to the disposition index: (i) the insulin secretion-sensitivity index-2 (ISSI-2) (defined as the ratio of the area-under-the-insulin-curve to the area-under-the-glucose curve, multiplied by the Matsuda index) and (ii) insulinogenic index (IGI)/fasting insulin. However, neither of these two measures has been directly compared with the disposition index. Methods Two hundred and thirteen non-diabetic children (122 boys, 91 girls) underwent both OGTT and FSIVGTT, allowing for the calculation of ISSI-2, IGI/fasting insulin and the disposition index. Results ISS1-2 and IGI/fasting insulin were strongly correlated with each other (r = 0.82, P < 0.0001). Both measures correlated with the disposition index, with ISSI-2 showing a modestly stronger association (ISSI-2: r = 0.24, P = 0.0003; IGI/fasting insulin: r = 0.21, P = 0.0022). Standardized linear regression analyses confirmed that the relationship between log ISSI-2 and the disposition index (standardized regression coefficient = 0.224, P = 0.001) was stronger than that between log IGI/fasting insulin and the disposition index (standardized regression coefficient = 0.166, P = 0.015). Conclusions The OGTT-derived measures ISSI-2 and IGI/fasting insulin exhibit modest correlations with the disposition index. These relationships require further assessment in other patient populations.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
244 |
4
|
Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, Rao M, Sussel L, Rubenstein J, Qiu M. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 2001; 128:2723-33. [PMID: 11526078 DOI: 10.1242/dev.128.14.2723] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oligodendrocytes are derived from glial precursors that arise from the ventral neural tube early in development. In the developing chicken CNS, oligodendrocyte progenitors selectively express Nkx2.2 homeodomain transcription factor, raising the possibility that Nkx2.2 may directly regulate oligogliogenesis. In this study, we have examined Nkx2.2 expression in rodent glial precursors and studied the effect of a loss of Nkx2.2 on oligodendrocyte and astrocyte differentiation. We show that Nkx2.2 is also expressed in mammalian oligodendrocyte progenitors and that the differentiation of MBP-positive and PLP-DM20-positive oligodendrocytes is dramatically retarded in Nkx2.2-null mutants along the entire rostrocaudal axis. In contrast, no effect is seen on astrocytic differentiation. Interestingly, absence of Nkx2.2 expression leads to a ventral expansion of the Olig1/Olig2 expression in neuroepithelial cells into the Nkx2.2 domain and a consequent increase in the production of Olig1/Olig2-positive and platelet-derived growth factor receptor α-positive oligodendrocyte progenitors. These results strongly suggest that Nkx2.2 regulates the differentiation and/or maturation, but not the initial specification, of oligodendrocyte progenitors. Consistent with this suggestion, overproduction of Nkx2.2 protein in fibroblast cells can induce gene expression from the proteolipid protein promoter.
Collapse
|
|
24 |
234 |
5
|
Meric-Bernstam F, Brusco L, Daniels M, Wathoo C, Bailey AM, Strong L, Shaw K, Lu K, Qi Y, Zhao H, Lara-Guerra H, Litton J, Arun B, Eterovic AK, Aytac U, Routbort M, Subbiah V, Janku F, Davies MA, Kopetz S, Mendelsohn J, Mills GB, Chen K. Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Ann Oncol 2016; 27:795-800. [PMID: 26787237 DOI: 10.1093/annonc/mdw018] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/08/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Next-generation sequencing in cancer research may reveal germline variants of clinical significance. We report patient preferences for return of results and the prevalence of incidental pathogenic germline variants (PGVs). PATIENTS AND METHODS Targeted exome sequencing of 202 genes was carried out in 1000 advanced cancers using tumor and normal DNA in a research laboratory. Pathogenic variants in 18 genes, recommended for return by The American College of Medical Genetics and Genomics, as well as PALB2, were considered actionable. Patient preferences of return of incidental germline results were collected. Return of results was initiated with genetic counseling and repeat CLIA testing. RESULTS Of the 1000 patients who underwent sequencing, 43 had likely PGVs: APC (1), BRCA1 (11), BRCA2 (10), TP53 (10), MSH2 (1), MSH6 (4), PALB2 (2), PTEN (2), TSC2 (1), and RB1 (1). Twenty (47%) of 43 variants were previously known based on clinical genetic testing. Of the 1167 patients who consented for a germline testing protocol, 1157 (99%) desired to be informed of incidental results. Twenty-three previously unrecognized mutations identified in the research environment were confirmed with an orthogonal CLIA platform. All patients approached decided to proceed with formal genetic counseling; in all cases where formal genetic testing was carried out, the germline variant of concern validated with clinical genetic testing. CONCLUSIONS In this series, 2.3% patients had previously unrecognized pathogenic germline mutations in 19 cancer-related genes. Thus, genomic sequencing must be accompanied by a plan for return of germline results, in partnership with genetic counseling.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
148 |
6
|
Shaughnessy J, Gabrea A, Qi Y, Brents L, Zhan F, Tian E, Sawyer J, Barlogie B, Bergsagel PL, Kuehl M. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98:217-23. [PMID: 11418483 DOI: 10.1182/blood.v98.1.217] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reciprocal chromosomal translocations, which are mediated by errors in immunoglobulin heavy chain (IgH) switch recombination or somatic hypermutation as plasma cells are generated in germinal centers, are present in most multiple myeloma (MM) tumors. These translocations dysregulate an oncogene that is repositioned in proximity to a strong IgH enhancer. There is a promiscuous array of nonrandom chromosomal partners (and oncogenes), with the 3 most frequent partners (11q13 [cyclin D1]; 4p16 [FGFR3 and MMSET]; 16q23 [c-maf]) involved in nearly half of MM tumors. It is now shown that a novel t(6;14)(p21;q32) translocation is present in 1 of 30 MM cell lines and that this cell line uniquely overexpresses cyclin D3. The cloned breakpoint juxtaposes gamma 4 switch sequences with 6p21 sequences that are located about 65 kb centromeric to the cyclin D3 gene. By metaphase chromosome analysis, the t(6;14) (p21;q32) translocation was identified in 6 of 150 (4%) primary MM tumors. Overexpression of cyclin D3 messenger RNA (mRNA) was identified by microarray RNA expression analysis in 3 of 53 additional primary MM tumors, each of which was found to have a t(6;14) translocation breakpoint by interphase fluorescence in situ hybridization analysis. One tumor has a t(6;22)(p21;q11) translocation, so that cyclin D3 is bracketed by the IgL and IgH breakpoints. These results provide the first clear evidence for primary dysregulation of cyclin D3 during tumorigenesis. It is suggested that the initial oncogenic event for most MM tumors is a primary immunoglobulin translocation that dysregulates cyclin D1, cyclin D3, and other oncogenes to provide a proliferative stimulus to postgerminal center plasma cells.
Collapse
|
|
24 |
143 |
7
|
Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG, Jin DY, Costello JF, Liang R. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 2010; 31:745-50. [PMID: 20118199 DOI: 10.1093/carcin/bgq033] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
miR-34a is a transcriptional target of p53 and implicated in carcinogenesis. We studied the role of miR-34a methylation in a panel of hematological malignancies including acute leukemia [acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)], chronic leukemia [chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML)], multiple myeloma (MM) and non-Hodgkin's lymphoma (NHL). The methylation status of miR-34a promoter was studied in 12 cell lines and 188 diagnostic samples by methylation-specific polymerase chain reaction. miR-34a promoter was unmethylated in normal controls but methylated in 75% lymphoma and 37% myeloma cell lines. Hypomethylating treatment led to re-expression of pri-miR-34a transcript in lymphoma cells with homozygous miR-34a methylation. In primary samples at diagnosis, miR-34a methylation was detected in 4% CLL, 5.5% MM samples and 18.8% of NHL at diagnosis but none of ALL, AML and CML (P = 0.011). In MM patients with paired samples, miR-34a methylation status remained unchanged at progression. Amongst lymphoid malignancies, miR-34a was preferentially methylated in NHL (P = 0.018), in particular natural killer (NK)/T-cell lymphoma. In conclusion, amongst hematological malignancies, miR-34a methylation is preferentially hypermethylated in NHL, in particular NK/T-cell lymphoma, in a tumor-specific manner, therefore the role of miR-34a in lymphomagenesis warrants further study.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
137 |
8
|
Qi Y, Hulett FM. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 1998; 28:1187-97. [PMID: 9680208 DOI: 10.1046/j.1365-2958.1998.00882.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis pstS operon and phoA gene are members of the Pho regulon that is controlled by PhoR, a histidine kinase, and PhoP, a response regulator. Footprinting analysis showed that phosphorylated PhoP extended the PhoP protected region in pstS and phoA promoters, and also bound to a separate site within the coding region of each gene. Our previous in vivo studies have shown that, in contrast to other Pho regulon promoters that are not expressed in either phoP or phoR mutants, a low-level induction from the pstS promoter (25% of parent strain) can be detected in a phoR mutant. In this study, by using an in vitro transcription system, we demonstrate that (i) only phosphorylated PhoP is a transcriptional activator of the pstS operon and of the phoA gene; (ii) phosphorylated PhoP and RNA polymerase sigmaA holoenzyme are sufficient for in vitro transcription of the pstS promoter and the phoA promoter; (iii) the activation of the pstS promoter requires lower concentrations of phosphorylated PhoP than does the phoA promoter for transcription; and (iv) PhoP binding sites in both the pstS promoter core binding region and in the 5' coding region of the gene, which have been identified by footprinting analysis, are important for the transcription of the pstS promoter in vitro.
Collapse
|
|
27 |
127 |
9
|
Qi Y, Patra G, Liang X, Williams LE, Rose S, Redkar RJ, DelVecchio VG. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl Environ Microbiol 2001; 67:3720-7. [PMID: 11472954 PMCID: PMC93078 DOI: 10.1128/aem.67.8.3720-3727.2001] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential use of Bacillus anthracis as a weapon of mass destruction poses a threat to humans, domesticated animals, and wildlife and necessitates the need for a rapid and highly specific detection assay. We have developed a real-time PCR-based assay for the specific detection of B. anthracis by taking advantage of the unique nucleotide sequence of the B. anthracis rpoB gene. Variable region 1 of the rpoB gene was sequenced from 36 Bacillus strains, including 16 B. anthracis strains and 20 other related bacilli, and four nucleotides specific for B. anthracis were identified. PCR primers were selected so that two B. anthracis-specific nucleotides were at their 3' ends, whereas the remaining bases were specific to the probe region. This format permitted the PCR reactions to be performed on a LightCycler via fluorescence resonance energy transfer (FRET). The assay was found to be specific for 144 B. anthracis strains from different geographical locations and did not cross-react with other related bacilli (175 strains), with the exception of one strain. The PCR assay can be performed on isolated DNA as well as crude vegetative cell lysates in less than 1 h. Therefore, the rpoB-FRET assay could be used as a new chromosomal marker for rapid detection of B. anthracis.
Collapse
|
research-article |
24 |
120 |
10
|
Qi Y, Kobayashi Y, Hulett FM. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon. J Bacteriol 1997; 179:2534-9. [PMID: 9098050 PMCID: PMC179001 DOI: 10.1128/jb.179.8.2534-2539.1997] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genes from Bacillus subtilis predicted to encode a phosphate-specific transport (Pst) system were shown by mutation to affect high-affinity Pi uptake but not arsenate resistance or phosphate (Pho) regulation. The transcription start of the promoter upstream of the pstS gene was defined by primer extension. The promoter contains structural features analogous to the Escherichia coli pst promoter but not sequence similarity. Expression from this promoter was induced >5,000-fold upon phosphate starvation and regulated by the PhoP-PhoR two-component regulatory system. These data indicate that the pst operon is involved in phosphate transport and is a member of the Pho regulon but is not involved in Pi regulation.
Collapse
|
research-article |
28 |
110 |
11
|
Dai J, Lin D, Zhang J, Habib P, Smith P, Murtha J, Fu Z, Yao Z, Qi Y, Keller ET. Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice. J Clin Invest 2000; 106:887-95. [PMID: 11018077 PMCID: PMC381425 DOI: 10.1172/jci10483] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To investigate the role of IL-6 in alcohol-mediated osteoporosis, we measured a variety of bone remodeling parameters in wild-type (il6(+/+)) or IL-6 gene knockout (il6(-/-)) mice that were fed either control or ethanol liquid diets for 4 months. In the il6(+/+) mice, ethanol ingestion decreased bone mineral density, as determined by dual-energy densitometry; decreased cancellous bone volume and trabecular width and increased trabecular spacing and osteoclast surface, as determined by histomorphometry of the femur; increased urinary deoxypyridinolines, as determined by ELISA; and increased CFU-GM formation and osteoclastogenesis as determined ex vivo in bone marrow cell cultures. In contrast, ethanol ingestion did not alter any of these parameters in the il6(-/-) mice. Ethanol increased receptor activator of NF-kappaB ligand (RANKL) mRNA expression in the bone marrow of il6(+/+) but not il6(-/-) mice. Additionally, ethanol decreased several osteoblastic parameters including osteoblast perimeter and osteoblast culture calcium retention in both il6(+/+) and il6(-/-) mice. These findings demonstrate that ethanol induces bone loss through IL-6. Furthermore, they suggest that IL-6 achieves this effect by inducing RANKL and promoting CFU-GM formation and osteoclastogenesis.
Collapse
|
research-article |
25 |
102 |
12
|
Gan L, Meng J, Xu M, Liu M, Qi Y, Tan C, Wang Y, Zhang P, Weng W, Sheng W, Huang M, Wang Z. Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin β4/FAK/SOX2/HIF-1α signaling pathway in gastric cancer. Oncogene 2017; 37:744-755. [PMID: 29059156 DOI: 10.1038/onc.2017.363] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/03/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022]
Abstract
Extracellular matrix protein 1 (ECM1) is related to strong invasiveness and poor prognosis in major malignancies, but the underlying mechanism remains unknown. Here we aimed to elucidate the function of ECM1 on cell metastasis and glucose metabolism in gastric cancer (GC). The level of ECM1 in sera and tissues of patient with GC were positively correlated with tumor invasion and recurrence. Genetic manipulation of ECM1 expression affected cell metastasis and glucose metabolism in GC cell lines. Enhanced ECM1 expression facilitated gene expression levels associated with epithelial-mesenchymal transition (EMT) and glucose metabolism. Interestingly, our results indicated that ECM1 directly interacted with integrin β4 (ITGB4) and activated ITGB4/focal adhesion kinase (FAK)/glycogen synthase kinase 3β signaling pathway, which further induced the expression of transcription factor SOX2. Aberrant expression of SOX2 altered gene expression of EMT factors and glucose metabolism enzymes. Furthermore, SOX2 enhanced hypoxia-inducible factor α (HIF-1α) promoter activity to regulate glucose metabolism. The micro-positron emission tomography/computed tomography imaging of xenograft model showed that ECM1 substantially increased 18F-fluorodeoxyglucose uptake in xenograft tumors. Using in vivo mouse tail vein injection experiments, ECM1 was also found to increase in lung surface metastasis. These findings provide evidence that ECM1 regulates GC cell metastasis and glucose metabolism by inducing ITGB4/FAK/SOX2/HIF-1α signal pathway and have important implications for the development of therapeutic target to prevent tumor metastasis and recurrence.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
97 |
13
|
Qi Y, Oldfield BJ, Clarke IJ. Projections of RFamide-related peptide-3 neurones in the ovine hypothalamus, with special reference to regions regulating energy balance and reproduction. J Neuroendocrinol 2009; 21:690-7. [PMID: 19500220 DOI: 10.1111/j.1365-2826.2009.01886.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RFamide-related peptide-3 (RFRP-3) is a neuropeptide produced in cells of the paraventricular nucleus and dorsomedial nucleus of the ovine hypothalamus. In the present study, we show that these cells project to cells in regions of the hypothalamus involved in energy balance and reproduction. A retrograde tracer (FluoroGold) was injected into either the arcuate nucleus, the lateral hypothalamic area or the ventromedial nucleus. The distribution and number of retrogradely-labelled RFRP-3 neurones was determined. RFRP-3 neurones projected to the lateral hypothalamic area and, to a lesser degree, to the ventromedial nucleus and the arcuate nucleus. Double-label immunohistochemistry was employed to identify cells receiving putative RFRP-3 input to cells in these target regions. RFRP-3 cells were seen to project to neuropeptide Y and pro-opiomelanocortin neurones in the arcuate nucleus, orexin and melanin-concentrating hormone neurones in the lateral hypothalamic area, as well as orexin cells in the dorsomedial nucleus and corticotrophin-releasing hormone and oxytocin cells in the paraventricular nucleus. Neurones expressing gonadotrophin-releasing hormone in the preoptic area were also seen to receive input from RFRP-3 projections. We conclude that RFRP-3 neurones project to hypothalamic regions and cells involved in regulation of energy balance and reproduction in the ovine brain.
Collapse
|
|
16 |
94 |
14
|
Liu Z, Qi Y, Cheng Z, Zhu X, Fan C, Yu SY. The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats. Neuroscience 2016; 322:358-69. [PMID: 26926964 DOI: 10.1016/j.neuroscience.2016.02.050] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/10/2023]
Abstract
Depression is a common neuropsychiatric disorder which has been associated with a wide range of structural and functional changes within specific brain regions. Ginsenoside Rg1 has been shown to exert a number of neuroprotective effects as demonstrated in various in vivo and in vitro studies. However, little information is available regarding the site and mechanisms of ginsenoside Rg1 in promoting antidepressant effects. The present study aimed to investigate the neuroprotective and ameliorating effects of ginsenoside Rg1 on depression-like behavior as induced by chronic unpredictable mild stress (CUMS). The results showed that CUMS was effective in producing depression-like behaviors in rats as indicated by decreased responses in sucrose preference and forced swim tests which were associated with ultrastructural changes in neurons within the amygdala. Moreover, levels of PKA and CREB phosphorylation and the expression of brain-derived neurotrophic factor (BDNF) were decreased in the amygdala of CUMS rats. Remarkably, chronic ginsenoside Rg1 (40 mg/kg, i.p., 5 weeks) treatment significantly ameliorated these behavioral and biochemical alterations associated with CUMS-induced depression. Taken together, the results of the present study demonstrate that ginsenoside Rg1 exhibits antidepressant-like effects against CUMS-induced depression. This amelioration of depression-like behaviors by ginsenoside Rg1 appears to be mediated, at least in part, by a CREB-regulated increase of BDNF expression in the amygdala of rats. Therefore, these findings reveal the therapeutic potential of ginsenoside Rg1 for use in clinical trials in the treatment of depression.
Collapse
|
|
9 |
91 |
15
|
Tai Z, Yang J, Qi Y, Yan X, Xue Q. Synthesis of a graphene oxide–polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties. RSC Adv 2013. [DOI: 10.1039/c3ra22335c] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
|
12 |
81 |
16
|
Streeten BW, Qi Y, Klintworth GK, Eagle RC, Strauss JA, Bennett K. Immunolocalization of beta ig-h3 protein in 5q31-linked corneal dystrophies and normal corneas. ARCHIVES OF OPHTHALMOLOGY (CHICAGO, ILL. : 1960) 1999; 117:67-75. [PMID: 9930162 DOI: 10.1001/archopht.117.1.67] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To characterize the relation of the beta ig-h3 protein to the diagnostic corneal deposits in the hereditary corneal dystrophies recently shown to have mutations in the beta ig-h3 gene on chromosome 5q31. METHODS Corneas with lattice, granular, mixed granular-lattice ("Avellino"), and 2 types of Reis-Bücklers dystrophy were diagnosed by the histochemical and ultrastructural characteristics of their abnormal aggregates. Dystrophic and normal corneas were compared for immunolocalization of beta ig-h3 protein. RESULTS In normal corneas, immunoreactivity for beta ig-h3 protein was strongest in the Bowman layer, and next strong along stromal interlamellar junctions and attachment sites of collagen to the Descemet membrane. Antibody binding was intense on all dystrophic aggregates, mimicking somewhat the normal protein distribution. Mixed granular-lattice dystrophy had the most variation in beta ig-h3-immunopositive forms. The aggregates in both the "rod-shaped" Reis-Bücklers type and the "curly fiber" Thiel-Behnke type were strongly stained for beta ig-h3 protein, consistent with mutations on the beta ig-h3 gene. CONCLUSIONS The marked immunopositivity for beta ig-h3 protein in the abnormal deposits in these dystrophies indicates that beta ig-h3 protein is a major component. The variety and quantity of immunopositive forms suggests that they consist primarily of the mutant protein, self-polymerizing and/or incorrectly binding to other corneal components. Variability of forms may relate to both the specific mutation and regional interactions of this protein.
Collapse
|
|
26 |
78 |
17
|
Jiang HQ, Ren M, Jiang HZ, Wang J, Zhang J, Yin X, Wang SY, Qi Y, Wang XD, Feng HL. Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 2014; 277:132-8. [PMID: 24699224 DOI: 10.1016/j.neuroscience.2014.03.047] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/04/2014] [Accepted: 03/23/2014] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease characterized by the loss of motor neurons in the motor cortex, brain stem and spinal cord. Currently, there is no cure for this lethal disease. Although the mechanism underlying neuronal cell death in ALS remains elusive, growing evidence supports a crucial role of endoplasmic reticulum (ER) stress in the pathogenesis of ALS. Recent reports show that guanabenz, a novel inhibitor of eukaryotic initiation factor 2α (eIF2α) dephosphorylation, possesses anti-prion properties, attenuates ER stress and reduces paralysis and neurodegeneration in mTDP-43 Caenorhabditis elegans and Danio rerio models of ALS. However, the therapeutic potential of guanabenz for the treatment of ALS has not yet been assessed in a mouse model of ALS. In the present study, guanabenz was administered to a widely used mouse model of ALS expressing copper zinc superoxide dismutase-1 (SOD1) with a glycine to alanine mutation at position 93 (G93A). The results showed that the administration of guanabenz significantly extended the lifespan, delayed the onset of disease symptoms, improved motor performance and attenuated motor neuron loss in female SOD1 G93A mice. Moreover, western blotting results revealed that guanabenz dramatically increased the levels of phosphorylated-eIF2α (P-eIF2α) protein, without affecting total eIF2α protein levels. The results also revealed a significant decrease in the levels of the ER chaperone glucose-regulated protein 78 (BiP/Grp78) and markers of another two ER stress pathways, activating transcription factor 6α (ATF6α) and inositol-requiring enzyme 1 (IRE1). In addition, guanabenz increased the protein levels of anti-apoptotic B cell lymphoma/lewkmia-2 (Bcl-2), and down-regulated the pro-apoptotic protein levels of C/EBP homologous protein (CHOP), Bcl-2-associated X protein (BAX) and cytochrome C in SOD1 G93A mice. Our findings indicate that guanabenz may represent a novel therapeutic candidate for the treatment of ALS, a lethal human disease with an underlying mechanism involving the attenuation of ER stress and mitochondrial stress via prolonging eIF2α phosphorylation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
76 |
18
|
Abstract
The MAPRE genes encode the EB1 family proteins. The yeast EB1 protein had been shown to play important roles in microtubule dynamic regulation, cytokinesis, mitotic spindle positioning, and episome segregation. To facilitate functional studies of mammalian EB1 family proteins, we characterized the human MAPRE genes (MAPRE1, MAPRE2, and MAPRE3) and their proteins (EB1, RP1, and EBF3). We found that the three MAPRE genes had similar genomic structures but were on different chromosomes. We showed that EB1 family proteins appeared to be expressed ubiquitously. We identified two EBF3 proteins, which were encoded by alternatively spliced MAPRE3 mRNAs. We demonstrated that there were also two RP1 proteins, which were products of translation from different initiation codons. We showed that the three EB1 family proteins had different abilities to interact with APC in vitro, and we provided the first direct evidence for the association between endogenous EB1 and APC.
Collapse
|
|
24 |
75 |
19
|
Du Q, Lehavi D, Faktor O, Qi Y, Chejanovsky N. Isolation of an apoptosis suppressor gene of the Spodoptera littoralis nucleopolyhedrovirus. J Virol 1999; 73:1278-85. [PMID: 9882332 PMCID: PMC103951 DOI: 10.1128/jvi.73.2.1278-1285.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spodoptera frugiperda SF9 cells infected with mutants of the Autographa californica nucleopolyhedrovirus (AcMNPV) which lack a functional p35 gene undergo apoptosis, aborting the viral infection. The Spodoptera littoralis nucleopolyhedrovirus (SlNPV) was able to suppress apoptosis triggered by vDeltaP35K/pol+, an AcMNPV p35 null mutant. To identify the putative apoptotic suppressor gene of SlNPV, overlapping cosmid clones representing the entire SlNPV genome were individually cotransfected along with genomic DNA of vDeltaP35K/pol+. Using this complementation assay, we isolated a SlNPV DNA fragment that was able to rescue the vDeltaP35K/pol+ infection in SF9 cells. By further subcloning and rescue, we identified a novel SlNPV gene, Slp49. The Slp49 sequence predicted a 49-kDa polypeptide with about 48.8% identity to the AcMNPV apoptotic suppressor P35. SLP49 displays a potential recognition site, TVTDG, for cleavage by death caspases. Recombinant AcMNPVs deficient in p35 bearing the Slp49 gene did not induce apoptosis and showed successful productive infections in SF9 cells, indicating that Slp49 is a functional homologue of p35. A 1.5-kbp Slp49-specific transcript was identified in SF9 cells infected with SlNPV or with vAc496, a vDeltaP35K/pol+-recombinant bearing Slp49. The discovery of Slp49 contributes to the identification of important functional motifs conserved in p35-like apoptotic suppressors and to the future isolation of p35-like genes from other baculoviruses.
Collapse
|
research-article |
26 |
75 |
20
|
Kakucska I, Qi Y, Clark BD, Lechan RM. Endotoxin-induced corticotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is mediated centrally by interleukin-1. Endocrinology 1993; 133:815-21. [PMID: 8344218 DOI: 10.1210/endo.133.2.8344218] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the acute phase of bacterial infection, a variety of cytokines, including interleukin-1 (IL-1), are elicited by bacterial endotoxin in both the periphery and the central nervous system. Bacterial endotoxin has been previously reported to profoundly activate the hypothalamic-pituitary-adrenal axis, resulting in elevated glucocorticoid secretion that may serve an important role as part of the inhibitory feedback mechanisms on the activated immune system. To determine whether IL-1 acts within the brain to mediate endotoxin-induced CRH gene expression in the hypothalamic paraventricular nucleus (PVN), we studied the effect of administering the human IL-1 receptor antagonist (IL-1ra) into the brain, a competitive inhibitor of IL-1, on CRH gene expression in the PVN after systemic lipopolysaccharide (LPS) treatment. Eight hours after the ip administration of LPS, the paraventricular CRH mRNA content was elevated 3-to 4-fold (P < 0.01) compared to the control value, and this elevation could be completely abolished by central IL-1ra pretreatment (P < 0.05 compared to LPS-treated group; P > 0.05 compared to controls). In contrast, systemic IL-1ra administration did not inhibit endotoxin-induced CRH gene expression in the PVN. These studies demonstrate that LPS stimulates hypothalamic CRH by a mechanism that involves the action of IL-1 within the central nervous system and may proceed independently of peripheral actions of IL-1 circulating in the bloodstream.
Collapse
|
|
32 |
75 |
21
|
Retnakaran R, Qi Y, Connelly PW, Sermer M, Hanley AJ, Zinman B. Low adiponectin concentration during pregnancy predicts postpartum insulin resistance, beta cell dysfunction and fasting glycaemia. Diabetologia 2010; 53:268-76. [PMID: 19937225 PMCID: PMC2878328 DOI: 10.1007/s00125-009-1600-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/07/2009] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The postpartum phase following gestational diabetes (GDM) is characterised by subtle metabolic defects, including the beta cell dysfunction that is believed to mediate the increased future risk of type 2 diabetes in this patient population. Low circulating levels of adiponectin and increased leptin and C-reactive protein (CRP) have recently emerged as novel diabetic risk factors, although their relevance to GDM and subsequent diabetes has not been characterised. Thus, we sought to determine whether adiponectin, leptin and CRP levels during pregnancy relate to the postpartum metabolic defects linking GDM with type 2 diabetes. METHODS Metabolic characterisation, including oral glucose tolerance testing, was undertaken in 487 women during pregnancy and at 3 months postpartum. Based on the antepartum OGTT, there were 137 women with GDM, 91 with gestational impaired glucose tolerance and 259 with normal glucose tolerance. RESULTS Adiponectin levels were lowest (p < 0.0001) and CRP levels highest (p = 0.0008) in women with GDM. Leptin did not differ between the glucose tolerance groups (p = 0.4483). Adiponectin (r = 0.41, p < 0.0001), leptin (r = -0.36, p < 0.0001) and CRP (r = -0.30, p < 0.0001) during pregnancy were all associated with postpartum insulin sensitivity (determined using the insulin sensitivity index of Matsuda and DeFronzo [IS(OGTT)]). Intriguingly, adiponectin levels were also related to postpartum beta cell function (insulinogenic index/HOMA of insulin resistance; r = 0.16, p = 0.0009). Indeed, on multiple linear regression analyses, adiponectin levels during pregnancy independently predicted both postpartum insulin sensitivity (t = 3.97, p < 0.0001) and beta cell function (t = 2.37, p = 0.0181), even after adjustment for GDM. Furthermore, adiponectin emerged as a significant negative independent determinant of postpartum fasting glucose (t = -3.01, p = 0.0027). CONCLUSIONS/INTERPRETATION Hypoadiponectinaemia during pregnancy predicts postpartum insulin resistance, beta cell dysfunction and fasting glycaemia, and hence may be relevant to the pathophysiology relating GDM with type 2 diabetes.
Collapse
|
research-article |
15 |
73 |
22
|
Clarke IJ, Qi Y, Puspita Sari I, Smith JT. Evidence that RF-amide related peptides are inhibitors of reproduction in mammals. Front Neuroendocrinol 2009; 30:371-8. [PMID: 19362107 DOI: 10.1016/j.yfrne.2009.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/26/2009] [Accepted: 04/01/2009] [Indexed: 11/20/2022]
Abstract
Gonadotropin releasing hormone (GnRH) secretion represents the final common pathway in the control of the reproductive axis. Dogma has been that GnRH is solely responsible for the control of gonadotropin secretion, but emerging data presents a strong case for the existence of a gonadotropin inhibitory hormone in mammals. This evidence arose from initial work in avian species to isolate and identify a factor that inhibited gonadotropin release, which is known as gonadotropin inhibitory hormone (GnIH). The mammalian ortholog of avian GnIH is named RF-amide related peptide (RFRP). There are two forms of RFRP in mammals, RFRP-1 and RFRP-3 encoded by a single gene, but there has been skepticism and controversy as to whether these peptides play a significant role in the regulation of gonadotropin secretion. There is now a significant body of evidence that one or more RFRP exists in mammals and acts as an inhibitor of GnRH and/or gonadotropin secretion. Moreover, RFRP-producing neurons have been shown to transmit information to GnRH cells and/or gonadotropes in relation to seasonal status and to coordinate events around the preovulatory luteinizing hormone surge. This review will focus on the significant advances in RFRP research in mammalian species.
Collapse
|
Review |
16 |
70 |
23
|
Qi Y, Hunt B. Voiced-unvoiced-silence classifications of speech using hybrid features and a network classifier. ACTA ACUST UNITED AC 1993. [DOI: 10.1109/89.222883] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
32 |
67 |
24
|
Wang XN, Han X, Xu LN, Yin LH, Xu YW, Qi Y, Peng JY. Enhancement of apoptosis of human hepatocellular carcinoma SMMC-7721 cells through synergy of berberine and evodiamine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:1062-1068. [PMID: 18579357 DOI: 10.1016/j.phymed.2008.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 01/25/2008] [Accepted: 05/05/2008] [Indexed: 05/26/2023]
Abstract
Berberine and evodiamine, two kinds of alkaloids, have been reported to show many activities. In the present paper, inhibitory activities of the two compounds and their mixtures on human hepatocellular carcinoma SMMC-7721 cells were investigated, and the inhibitory rates, apoptosis, cell cycle distribution and tumor necrosis factor-alpha (TNF-alpha) were all tested and described. The results indicate that the mixtures of the two compounds showed the highest inhibition effect (50.00%) as compared with berberine and evodiamine used individually (20.24% and 16.33%, respectively) over 48 h. Through fluorescence microscope and flow cytometry (FCM) analysis, the cell apoptosis and cell cycle distribution of SMMC-7721 induced by the synergy of the two compounds was made evident. Furthermore, the TNF-alpha value in the mixture treated group was much higher (p<0.05) than in the other two groups. Thus, the combined use of berberine and evodiamine could significantly enhance the apoptosis of SMMC-7721 cells, which will be useful to further anti-cancer therapy and research.
Collapse
|
|
17 |
67 |
25
|
Xie X, Kaoud TS, Edupuganti R, Zhang T, Kogawa T, Zhao Y, Chauhan GB, Giannoukos DN, Qi Y, Tripathy D, Wang J, Gray NS, Dalby KN, Bartholomeusz C, Ueno NT. c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun. Oncogene 2016; 36:2599-2608. [PMID: 27941886 DOI: 10.1038/onc.2016.417] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
c-Jun N-terminal kinase (JNK) plays a vital role in malignant transformation of different cancers, and JNK is highly activated in basal-like triple-negative breast cancer (TNBC). However, the roles of JNK in regulating cancer stem-like cell (CSC) phenotype and tumorigenesis in TNBC are not well defined. JNK is known to mediate many cellular events via activating c-Jun. Here, we found that JNK regulated c-Jun activation in TNBC cells and that JNK activation correlated with c-Jun activation in TNBC tumors. Furthermore, the expression level of c-Jun was significantly higher in TNBC tumors than in non-TNBC tumors, and high c-Jun mRNA level was associated with shorter disease-free survival of patients with TNBC. Thus, we hypothesized that the JNK/c-Jun signaling pathway contributes to TNBC tumorigenesis. We found that knockdown of JNK1 or JNK2 or treatment with JNK-IN-8, an adenosine triphosphate-competitive irreversible pan-JNK inhibitor, significantly reduced cell proliferation, the ALDH1+ and CD44+/CD24- CSC subpopulations, and mammosphere formation, indicating that JNK promotes CSC self-renewal and maintenance in TNBC. We further demonstrated that both JNK1 and JNK2 regulated Notch1 transcription via activation of c-Jun and that the JNK/c-Jun signaling pathway promoted CSC phenotype through Notch1 signaling in TNBC. In a TNBC xenograft mouse model, JNK-IN-8 significantly suppressed tumor growth in a dose-dependent manner by inhibiting acquisition of the CSC phenotype. Taken together, our data demonstrate that JNK regulates TNBC tumorigenesis by promoting CSC phenotype through Notch1 signaling via activation of c-Jun and indicate that JNK/c-Jun/Notch1 signaling is a potential therapeutic target for TNBC.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
67 |