1
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:cells8091015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
|
Review |
6 |
566 |
2
|
Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, Liu Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 2015; 5:8096. [PMID: 25644696 PMCID: PMC4314632 DOI: 10.1038/srep08096] [Citation(s) in RCA: 431] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently been considered to be under the influence of the gut microbiota, which might exert toxic effects on the human host after intestinal absorption and delivery to the liver via the portal vein. In this study, the composition of the gut microbiota in NAFLD patients and healthy subjects was determined via 16S ribosomal RNA Illumina next-generation sequencing. Among those taxa displaying greater than 0.1% average abundance in all samples, five genera, including Alistipes and Prevotella, were significantly more abundant in the gut microbiota of healthy subjects compared to NAFLD patients. Alternatively, Escherichia, Anaerobacter, Lactobacillus and Streptococcus were increased in the gut microbiota of NAFLD patients compared to healthy subjects. In addition, decreased numbers of CD4+ and CD8+ T lymphocytes and increased levels of TNF-α, IL-6 and IFN-γ were detected in the NAFLD group compared to the healthy group. Furthermore, irregularly arranged microvilli and widened tight junctions were observed in the gut mucosa of the NAFLD patients via transmission electron microscopy. We postulate that aside from dysbiosis of the gut microbiota, gut microbiota-mediated inflammation of the intestinal mucosa and the related impairment in mucosal immune function play an important role in the pathogenesis of NAFLD.
Collapse
|
research-article |
10 |
431 |
3
|
Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC, Lyapina S, Chi Y, Galova M, Claypool J, Sandmeyer S, Nasmyth K, Deshaies RJ, Shevchenko A, Deshaies RJ. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 1999; 13:1614-26. [PMID: 10385629 PMCID: PMC316801 DOI: 10.1101/gad.13.12.1614] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SCFCdc4 (Skp1, Cdc53/cullin, F-box protein) defines a family of modular ubiquitin ligases (E3s) that regulate diverse processes including cell cycle, immune response, and development. Mass spectrometric analysis of proteins copurifying with Cdc53 identified the RING-H2 finger protein Hrt1 as a subunit of SCF. Hrt1 shows striking similarity to the Apc11 subunit of anaphase-promoting complex. Conditional inactivation of hrt1(ts) results in stabilization of the SCFCdc4 substrates Sic1 and Cln2 and cell cycle arrest at G1/S. Hrt1 assembles into recombinant SCF complexes and individually binds Cdc4, Cdc53 and Cdc34, but not Skp1. Hrt1 stimulates the E3 activity of recombinant SCF potently and enables the reconstitution of Cln2 ubiquitination by recombinant SCFGrr1. Surprisingly, SCF and the Cdc53/Hrt1 subcomplex activate autoubiquitination of Cdc34 E2 enzyme by a mechanism that does not appear to require a reactive thiol. The highly conserved human HRT1 complements the lethality of hrt1Delta, and human HRT2 binds CUL-1. We conclude that Cdc53/Hrt1 comprise a highly conserved module that serves as the functional core of a broad variety of heteromeric ubiquitin ligases.
Collapse
|
research-article |
26 |
332 |
4
|
Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, Carr SA, Deshaies RJ. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 2001; 15:1078-92. [PMID: 11331604 PMCID: PMC312682 DOI: 10.1101/gad.867501] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The budding yeast transcriptional activator Gcn4 is rapidly degraded in an SCF(Cdc4)-dependent manner in vivo. Upon fractionation of yeast extracts to identify factors that mediate Gcn4 ubiquitination, we found that Srb10 phosphorylates Gcn4 and thereby marks it for recognition by SCF(Cdc4) ubiquitin ligase. Srb10 is a physiological regulator of Gcn4 stability because both phosphorylation and turnover of Gcn4 are diminished in srb10 mutants. Gcn4 is almost completely stabilized in srb10Delta pho85Delta cells, or upon mutation of all Srb10 phosphorylation sites within Gcn4, suggesting that the Pho85 and Srb10 cyclin-dependent kinases (CDKs) conspire to limit the accumulation of Gcn4. The multistress response transcriptional regulator Msn2 is also a substrate for Srb10 and is hyperphosphorylated in an Srb10-dependent manner upon heat-stress-induced translocation into the nucleus. Whereas Msn2 is cytoplasmic in resting wild-type cells, its nuclear exclusion is partially compromised in srb10 mutant cells. Srb10 has been shown to repress a subset of genes in vivo, and has been proposed to inhibit transcription via phosphorylation of the C-terminal domain of RNA polymerase II. We propose that Srb10 also inhibits gene expression by promoting the rapid degradation or nuclear export of specific transcription factors. Simultaneous down-regulation of both transcriptional regulatory proteins and RNA polymerase may enhance the potency and specificity of transcriptional inhibition by Srb10.
Collapse
|
research-article |
24 |
260 |
5
|
Zeigler ME, Chi Y, Schmidt T, Varani J. Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes. J Cell Physiol 1999; 180:271-84. [PMID: 10395297 DOI: 10.1002/(sici)1097-4652(199908)180:2<271::aid-jcp15>3.0.co;2-d] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Invasion is an essential cellular response that plays an important role in a number of physiological and pathological processes. Matrix metalloproteinase (MMP) production and cell movement are diverse cellular responses integral to the process of invasion. The complexity of the invasive process suggests the necessity of coordinate activation of more than one signaling pathway in order to activate specific factors responsible for regulating these cellular responses. In this report, we demonstrate that cell movement and MMP-9 production are both directly dependent on the activation of endogenous ERK signaling in hepatocyte growth factor (HGF)-or epidermal growth factor (EGF)-stimulated human epidermal keratinocytes. The kinetic profiles of endogenous MEK and ERK activity suggest that prolonged activation of these signal transducers is an underlying mechanism involved in stimulating cell motility and MMP-9 production. In support of this finding, a transient MEK/ERK signal elicited by keratinocyte growth factor (KGF) or insulin-like growth factor-1 (IGF-1) fails to stimulate these invasion-related responses. Specific inhibition of MEK leads to suppression of ERK activation, marked reduction in steady-state levels of c-Fos, and inhibition of cell movement and MMP-9 production. This occurs despite continued activation of JNK and c-Jun signaling in the presence of MEK-specific inhibition. In contrast, when JNK activity is specifically inhibited in HGF-stimulated cells, AP-1 activity is suppressed but cell motility is not affected. This evidence suggests that while ERK and JNK activity are necessary for AP-1 activation, ERK but not JNK is sufficient in stimulating cell motility.
Collapse
|
|
26 |
177 |
6
|
Henchoz S, Chi Y, Catarin B, Herskowitz I, Deshaies RJ, Peter M. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev 1997; 11:3046-60. [PMID: 9367986 PMCID: PMC316705 DOI: 10.1101/gad.11.22.3046] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/1997] [Accepted: 09/11/1997] [Indexed: 02/05/2023]
Abstract
Cyclin-dependent kinase inhibitors (CKIs) play key roles in controlling the eukaryotic cell cycle by coordinating cell proliferation and differentiation. Understanding the roles of CKIs requires knowledge of how they are regulated both through the cell cycle and in response to extracellular signals. Here we show that the yeast CKI, Far1p, is controlled by ubiquitin-dependent proteolysis. Wild-type Far1p was stable only in the G1 phase of the cell cycle. Biochemical and genetic evidence indicate that its degradation required the components of the G1-S ubiquitination system, Cdc34p, Cdc4p, Cdc53p, and Skp1p. We isolated a mutant form of Far1p (Far1p-22) that was able to induce cell cycle arrest in the absence of alpha-factor. Cells that overexpress Far1-22p arrested in G1 as large unbudded cells with low Cdc28p-Clnp kinase activity. Wild-type Far1p, but not Far1-22p, was readily ubiquitinated in vitro in a CDC34- and CDC4-dependent manner. Far1-22p harbors a single amino acid change, from serine to proline at residue 87, which alters phosphorylation by Cdc28p-Cln2p in vitro. Our results show that Far1p is regulated by ubiquitin-mediated proteolysis and suggest that phosphorylation of Far1p by the Cdc28p-Clnp kinase is part of the recognition signal for ubiquitination.
Collapse
|
research-article |
28 |
175 |
7
|
Li SQ, Yao Q, Chi Y, Yan JH, Cen KF. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor. Ind Eng Chem Res 2004. [DOI: 10.1021/ie030115m] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
21 |
171 |
8
|
Ellis CN, Varani J, Fisher GJ, Zeigler ME, Pershadsingh HA, Benson SC, Chi Y, Kurtz TW. Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. ARCHIVES OF DERMATOLOGY 2000; 136:609-16. [PMID: 10815854 DOI: 10.1001/archderm.136.5.609] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Psoriasis is often treated with agents that activate nuclear hormone receptors for glucocorticoids, retinoids, and vitamin D. The peroxisome proliferator-activated receptor-gamma (PPARgamma) is a related nuclear hormone receptor that can be activated by its ligands, including the thiazolidinediones. OBJECTIVE To assess whether treatment with troglitazone, a currently available thiazolidinedione used to treat diabetes mellitus, has an effect on psoriasis in normoglycemic patients and whether ligands for PPARgamma have an effect on models of psoriasis. DESIGN Open-label administration of troglitazone in patients with psoriasis and evaluation of drug actions in cellular, organ, and transplant models of psoriasis. SETTING University and community hospital outpatient departments and university laboratories. PATIENTS Patients with chronic, stable plaque psoriasis and control subjects. Five patients with psoriasis received troglitazone (none withdrew); 10 different untreated patients and 10 controls provided tissue samples. INTERVENTIONS Oral troglitazone therapy at various dosages in patients with psoriasis; also, use of troglitazone, ciglitazone, and 15-deoxy-delta-12,14-prostaglandinJ2 in psoriasis models. MAIN OUTCOME MEASURES Investigator-determined clinical results in patients and cell counts and histological evidence in models. RESULTS All patients' psoriasis improved substantially during troglitazone therapy. Peroxisome proliferator-activated receptor-gamma was expressed in human keratinocytes; ligands for PPARgamma inhibited the proliferation of normal and psoriatic human keratinocytes in culture. Troglitazone treatment normalized the histological features of psoriatic skin in organ culture and reduced the epidermal hyperplasia of psoriasis in the severe combined immunodeficient mouse and human skin transplant model of psoriasis (P<.05 compared with untreated controls). CONCLUSIONS Peroxisome proliferator-activated receptor-gamma might be a useful intracellular target for the treatment of psoriasis; further study is needed to assess the clinical value of ligands for PPARgamma, including troglitazone.
Collapse
|
Case Reports |
25 |
155 |
9
|
Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev 2010; 68:270-9. [PMID: 20500788 DOI: 10.1111/j.1753-4887.2010.00282.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Leucine, a branched-chain amino acid that must be supplied in the daily diet, plays an important role in controlling protein synthesis and regulating cell metabolism in various cell types. In pancreatic beta cells, leucine acutely stimulates insulin secretion by serving as both metabolic fuel and allosteric activator of glutamate dehydrogenase to enhance glutaminolysis. Leucine has also been shown to regulate gene transcription and protein synthesis in pancreatic islet beta cells via both mTOR-dependent and -independent pathways at physiological concentrations. Long-term treatment with leucine has been shown to improve insulin secretory dysfunction of human diabetic islets via upregulation of certain key metabolic genes. In vivo, leucine administration improves glycemic control in humans and rodents with type 2 diabetes. This review summarizes and discusses the recent findings regarding the effects of leucine metabolism on pancreatic beta-cell function.
Collapse
|
Review |
15 |
138 |
10
|
Elsasser S, Chi Y, Yang P, Campbell JL. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol Biol Cell 1999; 10:3263-77. [PMID: 10512865 PMCID: PMC25589 DOI: 10.1091/mbc.10.10.3263] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The replication initiation protein Cdc6p forms a tight complex with Cdc28p, specifically with forms of the kinase that are competent to promote replication initiation. We now show that potential sites of Cdc28 phosphorylation in Cdc6p are required for the regulated destruction of Cdc6p that has been shown to occur during the Saccharomyces cerevisiae cell cycle. Analysis of Cdc6p phosphorylation site mutants and of the requirement for Cdc28p in an in vitro ubiquitination system suggests that targeting of Cdc6p for degradation is more complex than previously proposed. First, phosphorylation of N-terminal sites targets Cdc6p for polyubiquitination probably, as expected, through promoting interaction with Cdc4p, an F box protein involved in substrate recognition by the Skp1-Cdc53-F-box protein (SCF) ubiquitin ligase. However, in addition, mutation of a single, C-terminal site stabilizes Cdc6p in G2 phase cells without affecting substrate recognition by SCF in vitro, demonstrating a second and novel requirement for specific phosphorylation in degradation of Cdc6p. SCF-Cdc4p- and N-terminal phosphorylation site-dependent ubiquitination appears to be mediated preferentially by Clbp/Cdc28p complexes rather than by Clnp/Cdc28ps, suggesting a way in which phosphorylation of Cdc6p might control the timing of its degradation at then end of G1 phase of the cell cycle. The stable cdc6 mutants show no apparent replication defects in wild-type strains. However, stabilization through mutation of three N-terminal phosphorylation sites or of the single C-terminal phosphorylation site leads to dominant lethality when combined with certain mutations in the anaphase-promoting complex.
Collapse
|
research-article |
26 |
125 |
11
|
Han ZB, Ren H, Zhao H, Chi Y, Chen K, Zhou B, Liu YJ, Zhang L, Xu B, Liu B, Yang R, Han ZC. Hypoxia-inducible factor (HIF)-1 directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis 2008; 29:1853-61. [DOI: 10.1093/carcin/bgn066] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
|
17 |
107 |
12
|
Blondel M, Galan JM, Chi Y, Lafourcade C, Longaretti C, Deshaies RJ, Peter M. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J 2000; 19:6085-97. [PMID: 11080155 PMCID: PMC305831 DOI: 10.1093/emboj/19.22.6085] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Far1 is a bifunctional protein that is required to arrest the cell cycle and establish cell polarity during yeast mating. Here we show that SCF(Cdc4) ubiquitylates Far1 in the nucleus, which in turn targets the multi-ubiquitylated protein to 26S proteasomes most likely located at the nuclear envelope. In response to mating pheromones, a fraction of Far1 was stabilized after its export into the cytoplasm by Ste21/Msn5. Preventing nuclear export destabilized Far1, while conversely cytoplasmic Far1 was stabilized, although the protein was efficiently phosphorylated in a Cdc28-Cln-dependent manner. The core SCF subunits Cdc53, Hrt1 and Skp1 were distributed in the nucleus and the cytoplasm, whereas the F-box protein Cdc4 was exclusively nuclear. A cytoplasmic form of Cdc4 was unable to complement the growth defect of cdc4-1 cells, but it was sufficient to degrade Far1 in the cytoplasm. Our results illustrate the importance of subcellular localization of F-box proteins, and provide an example of how an extracellular signal regulates protein stability at the level of substrate localization.
Collapse
|
research-article |
25 |
105 |
13
|
Liu LK, Chi Y, Jen KY. Copper-catalyzed additions of sulfonyl iodides to simple and cyclic alkenes. J Org Chem 2002. [DOI: 10.1021/jo01291a006] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
23 |
100 |
14
|
Wang C, Chi Y, Li J, Miao Y, Li S, Su W, Jia S, Chen Z, Du S, Zhang X, Zhou Y, Wu W, Zhu M, Wang Z, Yang H, Xu G, Wang S, Yang J, Guan Y. FAM3A activates PI3K p110α/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology 2014; 59:1779-90. [PMID: 24806753 DOI: 10.1002/hep.26945] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/18/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED FAM3A belongs to a novel cytokine-like gene family, and its physiological role remains largely unknown. In our study, we found a marked reduction of FAM3A expression in the livers of db/db and high-fat diet (HFD)-induced diabetic mice. Hepatic overexpression of FAM3A markedly attenuated hyperglycemia, insulin resistance, and fatty liver with increased Akt (pAkt) signaling and repressed gluconeogenesis and lipogenesis in the livers of those mice. In contrast, small interfering RNA (siRNA)-mediated knockdown of hepatic FAM3A resulted in hyperglycemia with reduced pAkt levels and increased gluconeogenesis and lipogenesis in the livers of C57BL/6 mice. In vitro study revealed that FAM3A was mainly localized in the mitochondria, where it increases adenosine triphosphate (ATP) production and secretion in cultured hepatocytes. FAM3A activated Akt through the p110α catalytic subunit of PI3K in an insulin-independent manner. Blockade of P2 ATP receptors or downstream phospholipase C (PLC) and IP3R and removal of medium calcium all significantly reduced FAM3A-induced increase in cytosolic free Ca(2+) levels and attenuated FAM3A-mediated PI3K/Akt activation. Moreover, FAM3A-induced Akt activation was completely abolished by the inhibition of calmodulin (CaM). CONCLUSION FAM3A plays crucial roles in the regulation of glucose and lipid metabolism in the liver, where it activates the PI3K-Akt signaling pathway by way of a Ca(2+) /CaM-dependent mechanism. Up-regulating hepatic FAM3A expression may represent an attractive means for the treatment of insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).
Collapse
|
|
11 |
88 |
15
|
Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G. Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles. J Biol Chem 2001; 276:44936-43. [PMID: 11568182 DOI: 10.1074/jbc.m106733200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EVI1 is a very complex protein with two domains of zinc fingers and is inappropriately expressed in many types of human myeloid leukemias. Using reporter gene assays, several investigators showed that EVI1 is a transcription repressor, and recently it was shown that EVI1 interacts with the co-repressor carboxyl-terminal binding protein 1 (CtBP1). Earlier, we showed that the inappropriate expression of EVI1 in murine hematopoietic precursor cells leads to their abnormal differentiation and to increased proliferation. Using biochemical assays, we have identified two groups of transcription co-regulators that associate with EVI1 presumably to regulate gene expression. One group of co-regulators includes the CtBP1 and histone deacetylase. The second group includes the two co-activators cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF), both of which have histone acetyltransferase (HAT) activity. All of these proteins require separate regions of EVI1 for efficient interaction, and they divergently affect the ability of EVI1 to regulate gene transcription in reporter gene assays. Confocal microscopy analysis shows that in the majority of the cells, EVI1 is nuclear and diffused, whereas in about 10% of the cells EVI1 localizes in nuclear speckles. However, in the presence of the added exogenous co-repressors histone deacetylase or CtBP1, all of the nuclei have a diffuse EVI1 staining, and the proteins do not appear to reside together in obvious nuclear structures. In contrast, when CBP or P/CAF are added, defined speckled bodies appear in the nucleus. Analysis of the staining pattern indicates that EVI1 and CBP or EVI1 and P/CAF are contained within these structures. These nuclear structures are not observed when CBP is substituted with a point mutant HAT-inactive CBP with which EVI1 also physically interacts. Finally, we show that the interaction of EVI1 with either CBP or P/CAF leads to acetylation of EVI1. These results suggest that the assembly of EVI1 in nuclear speckles requires the intact HAT activity of the co-activators.
Collapse
|
|
24 |
75 |
16
|
Varani J, Hattori Y, Chi Y, Schmidt T, Perone P, Zeigler ME, Fader DJ, Johnson TM. Collagenolytic and gelatinolytic matrix metalloproteinases and their inhibitors in basal cell carcinoma of skin: comparison with normal skin. Br J Cancer 2000; 82:657-65. [PMID: 10682680 PMCID: PMC2363319 DOI: 10.1054/bjoc.1999.0978] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue from 54 histologically-identified basal cell carcinomas of the skin was obtained at surgery and assayed using a combination of functional and immunochemical procedures for matrix metalloproteinases (MMPs) with collagenolytic activity and for MMPs with gelatinolytic activity. Collagenolytic enzymes included MMP-1 (interstitial collagenase), MMP-8 (neutrophil collagenase) and MMP-13 (collagenase-3). Gelatinolytic enzymes included MMP-2 (72-kDa gelatinase A/type IV collagenase) and MMP-9 (92-kDa gelatinase B/type IV collagenase). Inhibitors of MMP activity including tissue inhibitor of metalloproteinases-1 and -2 (TIMP-1 and TIMP-2) were also assessed. All three collagenases and both gelatinases were detected immunochemically. MMP-1 appeared to be responsible for most of the functional collagenolytic activity while gelatinolytic activity reflected both MMP-2 and MMP-9. MMP inhibitor activity was also present, and appeared, based on immunochemical procedures, to reflect the presence of TIMP-1 but not TIMP-2. As a group, tumours identified as having aggressive-growth histologic patterns were not distinguishable from basal cell carcinomas with less aggressive-growth histologic patterns. In normal skin, the same MMPs were detected by immunochemical means. However, only low to undetectable levels of collagenolytic and gelatinolytic activities were present. In contrast, MMP inhibitor activity was comparable to that seen in tumour tissue. In previous studies we have shown that exposure of normal skin to epidermal growth factor in organ culture induces MMP up-regulation and activation. This treatment concomitantly induces stromal invasion by the epithelium (Varani et al (1995) Am J Pathol 146: 210-217; Zeigler et al (1996b) Invasion Metastasis 16: 11-18). Taken together with these previous data, the present findings allow us to conclude that the same profile of MMP/MMP inhibitors that is associated with stromal invasion in the organ culture model is expressed endogenously in basal cell carcinomas of skin.
Collapse
|
research-article |
25 |
74 |
17
|
Finnson KW, Parker WL, Chi Y, Hoemann CD, Goldring MB, Antoniou J, Philip A. Endoglin differentially regulates TGF-β-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellular differentiation state in human chondrocytes. Osteoarthritis Cartilage 2010; 18:1518-27. [PMID: 20833252 DOI: 10.1016/j.joca.2010.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/12/2010] [Accepted: 09/03/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Transforming growth factor-β (TGF-β) plays a critical role in cartilage homeostasis and deregulation of its signalling is implicated in osteoarthritis (OA). TGF-β isoforms signal through a pair of transmembrane serine/threonine kinases known as the type I and type II TGF-β receptors. Endoglin is a TGF-β co-receptor that binds TGF-β with high affinity in the presence of the type II TGF-β receptor. We have previously shown that endoglin is expressed in human chondrocytes and that it forms a complex with the TGF-β signalling receptors. However, the functional significance of endoglin expression in chondrocytes is unknown. Our objective was to determine whether endoglin regulates TGF-β/Smad signalling and extracellular matrix (ECM) production in human chondrocytes and whether its expression varies with chondrocyte differentiation state. METHOD Endoglin function was determined by overexpression or antisense morpholino/siRNA knockdown of endoglin in human chondrocytes and measuring TGF-β-induced Smad phosphorylation, transcriptional activity and ECM production. Alterations in endoglin expression levels were determined during subculture-induced dedifferentiation of human chondrocytes and in normal vs OA cartilage samples. RESULTS Endoglin enhances TGF-β1-induced Smad1/5 phosphorylation and inhibits TGF-β1-induced Smad2 phosphorylation, Smad3-driven transcriptional activity and ECM production in human chondrocytes. In addition, the enhancing effect of endoglin siRNA knockdown on TGF-β1-induced Smad3-driven transcription is reversed by ALK1 overexpression. Furthermore, endoglin levels are increased in chondrocytes following subculture-induced dedifferentiation and in OA cartilage as compared to normal cartilage. CONCLUSION Together, our results suggest that endoglin regulates the balance between TGF-β/ALK1/Smad1/5 and ALK5/Smad2/3 signalling and ECM production in human chondrocytes and that endoglin may represent a marker for chondrocyte phenotype.
Collapse
|
|
15 |
72 |
18
|
Fragkoudis R, Chi Y, Siu RWC, Barry G, Attarzadeh-Yazdi G, Merits A, Nash AA, Fazakerley JK, Kohl A. Semliki Forest virus strongly reduces mosquito host defence signaling. INSECT MOLECULAR BIOLOGY 2008; 17:647-56. [PMID: 18811601 PMCID: PMC2710796 DOI: 10.1111/j.1365-2583.2008.00834.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Alphavirus genus within the Togaviridae family contains several important mosquito-borne arboviruses. Other than the antiviral activity of RNAi, relatively little is known about alphavirus interactions with insect cell defences. Here we show that Semliki Forest virus (SFV) infection of Aedes albopictus-derived U4.4 mosquito cells reduces cellular gene expression. Activation prior to SFV infection of pathways involving STAT/IMD, but not Toll signaling reduced subsequent virus gene expression and RNA levels. These pathways are therefore not only able to mediate protective responses against bacteria but also arboviruses. However, SFV infection of mosquito cells did not result in activation of any of these pathways and suppressed their subsequent activation by other stimuli.
Collapse
|
Comparative Study |
17 |
68 |
19
|
Wu J, Wang C, Li S, Li S, Wang W, Li J, Chi Y, Yang H, Kong X, Zhou Y, Dong C, Wang F, Xu G, Yang J, Gustafsson JÅ, Guan Y. Thyroid hormone-responsive SPOT 14 homolog promotes hepatic lipogenesis, and its expression is regulated by liver X receptor α through a sterol regulatory element-binding protein 1c-dependent mechanism in mice. Hepatology 2013; 58:617-28. [PMID: 23348573 DOI: 10.1002/hep.26272] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023]
Abstract
UNLABELLED The protein, thyroid hormone-responsive SPOT 14 homolog (Thrsp), has been reported to be a lipogenic gene in cultured hepatocytes, implicating an important role of Thrsp in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Thrsp expression is known to be regulated by a variety of transcription factors, including thyroid hormone receptor, pregnane X receptor, and constitutive androstane receptor. Emerging in vitro evidence also points to a critical role of liver X receptor (LXR) in regulating Thrsp transcription in hepatocytes. In the present study, we showed that Thrsp was up-regulated in livers of db/db mice and high-fat-diet-fed mice, two models of murine NAFLD. Hepatic overexpression of Thrsp increased triglyceride accumulation with enhanced lipogenesis in livers of C57Bl/6 mice, whereas hepatic Thrsp gene silencing attenuated the fatty liver phenotype in db/db mice. LXR activator TO901317 induced Thrsp expression in livers of wild-type (WT) and LXR-β gene-deficient mice, but not in LXR-α or LXR-α/β double-knockout mice. TO901317 treatment significantly enhanced hepatic sterol regulatory element-binding protein 1c (SREBP-1c) expression and activity in WT mice, but failed to induce Thrsp expression in SREBP-1c gene-deficient mice. Sequence analysis revealed four LXR response-element-like elements and one sterol regulatory element (SRE)-binding site within a -2,468 ∼+1-base-pair region of the Thrsp promoter. TO901317 treatment and LXR-α overexpression failed to induce, whereas overexpression of SREBP-1c significantly increased Thrsp promoter activity. Moreover, deletion of the SRE site completely abolished SREBP-1c-induced Thrsp transcription. CONCLUSION Thrsp is a lipogenic gene in the liver that is induced by the LXR agonist through an LXR-α-mediated, SREBP-1c-dependent mechanism. Therefore, Thrsp may represent a potential therapeutic target for the treatment of NAFLD.
Collapse
|
|
12 |
67 |
20
|
Mitchell HM, Hu P, Chi Y, Chen MH, Li YY, Hazell SL. A low rate of reinfection following effective therapy against Helicobacter pylori in a developing nation (China). Gastroenterology 1998; 114:256-61. [PMID: 9453484 DOI: 10.1016/s0016-5085(98)70475-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS In developed countries, reinfection after successful eradication of Helicobacter pylori appears unusual. High prevalences of H. pylori in developing countries may result in high reinfection rates. The aim of this study was to determine the rate of reinfection and ulcer recurrence in Chinese patients cured of H. pylori and duodenal ulcer disease. METHODS One hundred eighty-four patients with duodenal ulcer disease shown by endoscopic examination (1 month) and 14C-urea breath test (3 months) after termination of treatment to have cleared their H. pylori were investigated. Patients were followed up by endoscopy (12 and 24 months) and breath test (6, 9, 12, 18, and 24 months). H. pylori status at endoscopic examination was determined by rapid urease, histology, and culture. In reinfected patients, random amplification of polymorphic DNA fingerprinting was used to compare isolates before and after therapy. RESULTS Four patients were reinfected with H. pylori over 24 months (3 within 6 months and 1 at 24 months; average annual recurrence rate, 1.08%). Fingerprinting of isolates from 3 patients showed 1 patient (6 months) to have identical strains and the remainder to have nonidentical strains before and after treatment. Ulcer relapse occurred in 6 patients (4 H. pylori positive). CONCLUSIONS Reinfection with H. pylori is rare in developing countries where treatment is effective.
Collapse
|
|
27 |
64 |
21
|
Li J, Chi Y, Wang C, Wu J, Yang H, Zhang D, Zhu Y, Wang N, Yang J, Guan Y. Pancreatic-derived factor promotes lipogenesis in the mouse liver: role of the Forkhead box 1 signaling pathway. Hepatology 2011; 53:1906-16. [PMID: 21412813 DOI: 10.1002/hep.24295] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 03/07/2011] [Indexed: 12/29/2022]
Abstract
UNLABELLED Pancreatic-derived factor (PANDER) is a pancreatic islet-specific cytokine that cosecretes with insulin and is important for β cell function. Here, we show that PANDER is constitutively expressed in hepatocytes, and its expression is significantly increased in steatotic livers of diabetic insulin-resistant db/db mice and mice fed a high-fat diet. Overexpression of PANDER in the livers of C57Bl/6 mice promoted lipogenesis, with increased Forkhead box 1 (FOXO1) expression, whereas small interfering RNA-mediated knockdown of hepatic PANDER significantly attenuated steatosis, with reduced FOXO1 expression in db/db mice. Hepatic PANDER silencing also attenuated insulin resistance and hyperglycemia in db/db mice. In cultured hepatocytes, PANDER overexpression induced lipid deposition, increased FOXO1 expression, and suppressed insulin-stimulated Akt activation and FOXO1 inactivation. Moreover, FOXO1 overexpression increased PANDER expression in cultured hepatocytes and mouse livers. CONCLUSION PANDER promotes lipogenesis and compromises insulin signaling in the liver by increasing FOXO1 activity. PANDER may represent a potential therapeutic target for the treatment of fatty liver and insulin resistance.
Collapse
|
|
14 |
47 |
22
|
Chi Y, Liang J, Yan D. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical modelsa). Med Phys 2006; 33:421-33. [PMID: 16532950 DOI: 10.1118/1.2163838] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationships between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty, the registration error is limited to within 1.3 mm. For a solid organ such as the prostate, the registration errors are much larger. Given 30% in material uncertainty, the registration error can reach 4.5 mm. However, the registration error distribution for prostates shows that most of the subvolumes have a much smaller registration error. A deformable organ registration technique that uses FEM is a good candidate in IGART if the mean material parameters are available.
Collapse
|
|
19 |
45 |
23
|
Wang C, Chen Z, Li S, Zhang Y, Jia S, Li J, Chi Y, Miao Y, Guan Y, Yang J. Hepatic overexpression of ATP synthase β subunit activates PI3K/Akt pathway to ameliorate hyperglycemia of diabetic mice. Diabetes 2014; 63:947-59. [PMID: 24296716 DOI: 10.2337/db13-1096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ATP synthase β subunit (ATPSβ) had been previously shown to play an important role in controlling ATP synthesis in pancreatic β-cells. This study aimed to investigate the role of ATPSβ in regulation of hepatic ATP content and glucose metabolism in diabetic mice. ATPSβ expression and ATP content were both reduced in the livers of type 1 and type 2 diabetic mice. Hepatic overexpression of ATPSβ elevated cellular ATP content and ameliorated hyperglycemia of streptozocin-induced diabetic mice and db/db mice. ATPSβ overexpression increased phosphorylated Akt (pAkt) levels and reduced PEPCK and G6pase expression levels in the livers. Consistently, ATPSβ overexpression repressed hepatic glucose production in db/db mice. In cultured hepatocytes, ATPSβ overexpression increased intracellular and extracellular ATP content, elevated the cytosolic free calcium level, and activated Akt independent of insulin. The ATPSβ-induced increase in cytosolic free calcium and pAkt levels was attenuated by inhibition of P2 receptors. Notably, inhibition of calmodulin (CaM) completely abolished ATPSβ-induced Akt activation in liver cells. Inhibition of P2 receptors or CaM blocked ATPSβ-induced nuclear exclusion of forkhead box O1 in liver cells. In conclusion, a decrease in hepatic ATPSβ expression in the liver, leading to the attenuation of ATP-P2 receptor-CaM-Akt pathway, may play an important role in the progression of diabetes.
Collapse
|
|
11 |
42 |
24
|
Zeigler M, Chi Y, Tumas DB, Bodary S, Tang H, Varani J. Anti-CD11a ameliorates disease in the human psoriatic skin-SCID mouse transplant model: comparison of antibody to CD11a with Cyclosporin A and clobetasol propionate. J Transl Med 2001; 81:1253-61. [PMID: 11555673 DOI: 10.1038/labinvest.3780339] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The present study assesses the applicability of human skin-SCID (severe combined immunodeficiency) mouse chimeras in testing antipsoriatic therapeutics. Three agents were examined: (1) a monoclonal antibody to the alpha subunit of leukocyte function associated antigen-1 integrin (CD11a); (2) Cyclosporin A; and (3) clobetasol propionate (Temovate), a potent topical corticosteroid used clinically in the treatment of psoriasis. Skin transplanted to SCID mice from normal human volunteers or from psoriatic lesional skin was allowed to heal for 3 to 5 weeks before application of test reagents. During this period, psoriatic skin, which was 3.8-fold thicker than the corresponding normal skin before transplantation, maintained its phenotype (ie, increased epidermal thickness, rete ridges with blunted ends, and intralesional presence of T lymphocytes). Transplanted normal human skin, however, underwent a hyperplastic response during this period, resulting in a 2.4-fold increase in epidermal thickness. After the healing period, animals transplanted with normal or psoriatic skin were treated for 14 days by daily intraperitoneal injection of either Cyclosporin A or a monoclonal antibody to human CD11a, or by topical application of clobetasol propionate. At the end of the treatment period, the mice were killed and the tissue evaluated morphometrically for changes in epidermal thickness and immunohistologically for the presence of T lymphocytes. Both Cyclosporin A and anti-CD11a reduced the epidermal thickness of transplanted psoriatic skin, whereas neither reagent significantly reduced the thickness of transplanted normal skin. T lymphocytes were detected in the skin from treated animals; there did not seem to be any reduction in the number of T lymphocytes. Clobetasol propionate reduced the epidermal thickness of both normal and psoriatic skin. These data indicate that, in this model, therapies directed against pathophysiologic mechanisms that contribute to psoriasis can be distinguished from treatments that block epidermal hyperplasia occurring as a consequence of xenografting. Our observations provide evidence for the activity of anti-CD11a in an animal model of human psoriasis.
Collapse
|
Comparative Study |
24 |
38 |
25
|
Chen RS, Chen YS, Huang YS, Chen YL, Chi Y, Liu CS, Tiong KK, Carty A. Growth of IrO2 Films and Nanorods by Means of CVD: An Example of Compositional and Morphological Control of Nanostructures. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/cvde.200304153] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
22 |
34 |