1
|
Jiang W, Hou Y, Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 1997; 272:196-202. [PMID: 8995247 DOI: 10.1074/jbc.272.1.196] [Citation(s) in RCA: 469] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
CspA, the major cold-shock protein of Escherichia coli, is dramatically induced during the cold-shock response. The amino acid sequence of CspA shows 43% identity to the "cold-shock domain" of the eukaryotic Y-box protein family, which interacts with RNA and DNA to regulate their functions. Here, we demonstrate that CspA binds to RNA as a chaperone. First, CspA cooperatively binds to heat-denatured single-stranded RNA if it is larger than 74 bases, causing a supershift in gel electrophoresis. A minimal concentration of CspA at 2.7 x 10(-5) M is absolutely required for this cooperative binding, which is sufficiently lower than the estimated cellular concentration of CspA (10(-4) M) in cold-shocked cells. No specific RNA sequences for CspA binding were identified, indicating that it has a broad sequence specificity for its binding. When the 142-base 5'-untranslated region of the cspA mRNA was used as a substrate for ribonucleases A and T1, the addition of CspA significantly stimulated RNA hydrolysis by preventing the formation of RNase-resistant bands due to stable secondary structures in the 5'-untranslated region. These results indicate that binding of CspA to RNA destabilizes RNA secondary structures to make them susceptible to ribonucleases. We propose that CspA functions as an RNA chaperone to prevent the formation of secondary structures in RNA molecules at low temperature. Such a function may be crucial for efficient translation of mRNAs at low temperatures and may also have an effect on transcription.
Collapse
|
|
28 |
469 |
2
|
Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A 2001; 98:8809-14. [PMID: 11427731 PMCID: PMC37517 DOI: 10.1073/pnas.141226398] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2001] [Indexed: 02/07/2023] Open
Abstract
Most tumor-associated antigens represent self-proteins and as a result are poorly immunogenic due to immune tolerance. Here we show that tolerance to carcinoembryonic antigen (CEA), which is overexpressed by the majority of lethal malignancies, can be reversed by immunization with a CEA-derived peptide. This peptide was altered to make it a more potent T cell antigen and loaded onto dendritic cells (DCs) for delivery as a cellular vaccine. Although DCs are rare in the blood, we found that treatment of advanced cancer patients with Flt3 ligand, a hematopoietic growth factor, expanded DCs 20-fold in vivo. Immunization with these antigen-loaded DCs induced CD8 cytotoxic T lymphocytes that recognized tumor cells expressing endogenous CEA. Staining with peptide-MHC tetramers demonstrated the expansion of CD8 T cells that recognize both the native and altered epitopes and possess an effector cytotoxic T lymphocyte phenotype (CD45RA(+)CD27(-)CCR7(-)). After vaccination, two of 12 patients experienced dramatic tumor regression, one patient had a mixed response, and two had stable disease. Clinical response correlated with the expansion of CD8 tetramer(+) T cells, confirming the role of CD8 T cells in this treatment strategy.
Collapse
|
Clinical Trial |
24 |
382 |
3
|
Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 1998; 17:6879-87. [PMID: 9843494 PMCID: PMC1171036 DOI: 10.1093/emboj/17.23.6879] [Citation(s) in RCA: 299] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Maturation of wild-type CFTR nascent chains at the endoplasmic reticulum (ER) occurs inefficiently; many disease-associated mutant forms do not mature but instead are eliminated by proteolysis involving the cytosolic proteasome. Although calnexin binds nascent CFTR via its oligosaccharide chains in the ER lumen and Hsp70 binds CFTR cytoplasmic domains, perturbation of these interactions alone is without major influence on maturation or degradation. We show that the ansamysin drugs, geldanamycin and herbimycin A, which inhibit the assembly of some signaling molecules by binding to specific sites on Hsp90 in the cytosol or Grp94 in the ER lumen, block the maturation of nascent CFTR and accelerate its degradation. The immature CFTR molecule was detected in association with Hsp90 but not with Grp94, and geldanamycin prevented the Hsp90 association. The drug-enhanced degradation was decreased by lactacystin and other proteasome inhibitors. Therefore, consistent with other examples of countervailing effects of Hsp90 and the proteasome, it would seem that this chaperone may normally contribute to CFTR folding and, when this function is interfered with by an ansamycin, there is a further shift to proteolytic degradation. This is the first direct evidence of a role for Hsp90 in the maturation of a newly synthesized integral membrane protein by interaction with its cytoplasmic domains on the ER surface.
Collapse
|
research-article |
27 |
299 |
4
|
Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW, Greenlee WJ, Tagat JR, McCombie S, Cox K, Fawzi AB, Chou CC, Pugliese-Sivo C, Davies L, Moreno ME, Ho DD, Trkola A, Stoddart CA, Moore JP, Reyes GR, Baroudy BM. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 2001; 98:12718-23. [PMID: 11606733 PMCID: PMC60120 DOI: 10.1073/pnas.221375398] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Indexed: 11/18/2022] Open
Abstract
We describe here the identification and properties of SCH-C (SCH 351125), a small molecule inhibitor of HIV-1 entry via the CCR5 coreceptor. SCH-C, an oxime-piperidine compound, is a specific CCR5 antagonist as determined in multiple receptor binding and signal transduction assays. This compound specifically inhibits HIV-1 infection mediated by CCR5 in U-87 astroglioma cells but has no effect on infection of CXCR4-expressing cells. SCH-C has broad and potent antiviral activity in vitro against primary HIV-1 isolates that use CCR5 as their entry coreceptor, with mean 50% inhibitory concentrations ranging between 0.4 and 9 nM. Moreover, SCH-C strongly inhibits the replication of an R5-using HIV-1 isolate in SCID-hu Thy/Liv mice. SCH-C has a favorable pharmacokinetic profile in rodents and primates with an oral bioavailability of 50-60% and a serum half-life of 5-6 h. On the basis of its novel mechanism of action, potent antiviral activity, and in vivo pharmacokinetic profile, SCH-C is a promising new candidate for therapeutic intervention of HIV infection.
Collapse
|
research-article |
24 |
255 |
5
|
Lin JS, Hou Y, Jouvet M. Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc Natl Acad Sci U S A 1996; 93:14128-33. [PMID: 8943072 PMCID: PMC19505 DOI: 10.1073/pnas.93.24.14128] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Much experimental and clinical data suggest that the pharmacological profile of modafinil, a newly discovered waking substance, differs from those of amphetamine and methylphenidate, two classical psychostimulants. The brain targets on which modafinil acts to induce wakefulness, however, remain unknown. A double-blind study using the protooncogene c-fos as experimental marker in the cat was, therefore, carried out to identify the potential target neurons of modafinil and compare them with those for amphetamine and methylphenidate. Cats were sacrificed after a single oral administration of amphetamine, methylphenidate, or modafinil at equivalent doses for wake induction (1, 2.5, or 5 mg/kg, respectively) and brain sections examined for Fos by immunocytochemistry. Administration of either amphetamine or methylphenidate evoked Fos-like immunoreactivity in a large number of neurons in the striatum and whole cortex, especially in the caudate nucleus and mediofrontal cortex, which are known to be dopaminergic targets. In contrast, administration of modafinil resulted in the labeling of few cells in these structures, but did induce marked Fos labeling in neurons of the anterior hypothalamic nucleus and adjacent areas. These results provide evidence for the potential brain targets of modafinil, which differ from those of amphetamine or methylphenidate, and suggest that modafinil induces wakefulness by mechanisms distinct from those of the two stimulants.
Collapse
|
research-article |
29 |
198 |
6
|
Jacobson K, Derzko Z, Wu ES, Hou Y, Poste G. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. JOURNAL OF SUPRAMOLECULAR STRUCTURE 1976; 5:565(417)-576(428). [PMID: 800621 DOI: 10.1002/jss.400050411] [Citation(s) in RCA: 159] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of fluorescence recovery after photobleaching (FRAP) techniques to monitor the lateral mobility of plant lectin-receptor complexes on the surface of single, living mammalian cells is described in detail. FRAP measurements indicate that over 75% of the wheat germ agglutinin receptor (WGA-receptor) complexes on the surface of human embryo fibroblasts are mobile. These WGS-receptor complexes diffuse laterally (as opposed to flow) on the cell surface with a diffusion coefficient in the range of 2 X 10(-11) to 2 X 10(-10) cm2/sec. Both the percentage of mobile WGA-receptor complexes and the mean diffusion coefficient of these complexes are higher than that obtained from earlier FRAP measurements of the mobility of concanavalin A-receptor (Con A-receptor) complexes in a variety of cell types. The possible reasons for the differing mobilities of WGA and Con A receptors are discussed.
Collapse
|
|
49 |
159 |
7
|
Tang X, Hou Y, Yang G, Wang X, Tang S, Du YE, Yang L, Yu T, Zhang H, Zhou M, Wen S, Xu L, Liu M. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ 2015; 23:132-45. [PMID: 26068592 PMCID: PMC4815985 DOI: 10.1038/cdd.2015.78] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 02/07/2023] Open
Abstract
The activation of cancer-associated fibroblasts (CAFs) is a key event in tumor progression, and alternative extracellular matrix (ECM) proteins derived from CAFs induce ECM remodeling and cancer cell invasion. Here we found that miR-200 s, which are generally downregulated in activated CAFs in breast cancer tissues and in normal fibroblasts (NFs) activated by breast cancer cells, are direct mediators of NF reprogramming into CAFs and of ECM remodeling. NFs with downregulated miR-200 s displayed the traits of activated CAFs, including accelerated migration and invasion. Ectopic expression of miR-200 s in CAFs at least partially restored the phenotypes of NFs. CAF activation may be governed by the targets of miR-200 s, Fli-1 and TCF12, which are responsible for cell development and differentiation; Fli-1 and TCF12 were obviously elevated in CAFs. Furthermore, miR-200 s and their targets influenced collagen contraction by CAFs. The upregulation of fibronectin and lysyl oxidase directly by miR-200 or indirectly through Fli-1 or TCF12 contributed to ECM remodeling, triggering the invasion and metastasis of breast cancer cells both in vitro and vivo. Thus, these data provide important and novel insights into breast CAF activation and ECM remodeling, which trigger tumor cell invasion.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
139 |
8
|
Chen LY, Chen N, Hou Y, Wang ZC, Lv SH, Fujita T, Jiang JH, Hirata A, Chen MW. Geometrically Controlled Nanoporous PdAu Bimetallic Catalysts with Tunable Pd/Au Ratio for Direct Ethanol Fuel Cells. ACS Catal 2013. [DOI: 10.1021/cs400135k] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
12 |
134 |
9
|
Zhang F, Crise B, Su B, Hou Y, Rose JK, Bothwell A, Jacobson K. Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J Cell Biol 1991; 115:75-84. [PMID: 1680869 PMCID: PMC2289918 DOI: 10.1083/jcb.115.1.75] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the plasma membrane of animal cells, many membrane-spanning proteins exhibit lower lateral mobilities than glycosylphosphatidylinositol (GPI)-linked proteins. To determine if the GPI linkage was a major determinant of the high lateral mobility of these proteins, we measured the lateral diffusion of chimeric membrane proteins composed of normally transmembrane proteins that were converted to GPI-linked proteins, or GPI-linked proteins that were converted to membrane-spanning proteins. These studies indicate that GPI linkage contributes only marginally (approximately twofold) to the higher mobility of several GPI-linked proteins. The major determinant of the high mobility of these proteins resides instead in the extracellular domain. We propose that lack of interaction of the extracellular domain of this protein class with other cell surface components allows diffusion that is constrained only by the diffusion of the membrane anchor. In contrast, cell surface interactions of the ectodomain of membrane-spanning proteins exemplified by the vesicular stomatitis virus G glycoprotein reduces their lateral diffusion coefficients by nearly 10-fold with respect to many GPI-linked proteins.
Collapse
|
research-article |
34 |
127 |
10
|
Mayhew J, Zheng Y, Hou Y, Vuksanovic B, Berwick J, Askew S, Coffey P. Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain. Neuroimage 1999; 10:304-26. [PMID: 10458944 DOI: 10.1006/nimg.1999.0460] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imaging of neural activation has been used to produce maps of functional architecture and metabolic activity. There is some uncertainty associated with the sources underlying the intrinsic signals. It has been reported that following increased neural activity there was little increased oxygen consumption ( approximately 5%), although glucose consumption increased by approximately 50%. The research we describe uses a modification of the Beer-Lambert Law called path-length scaling analysis (PLSA) to analyze the spectra of the hemodynamic and metabolic responses to vibrissal stimulation in rat somatosensory cortex. The results of the PLSA algorithm were compared with those obtained using a linear spectrographic analysis method (we refer to this as LMCA). There are differences in the results of the analysis depending on which of the two algorithms (PLSA or LMCA) is used. Using the LMCA algorithm, we obtain results showing an increase in the volume of Hbr at approximately 2 s, following onset of stimulation but no complementary decrease in oxygenated haemoglobin (HbO(2)). These results are similar to a previous report. In contrast, after using the PLSA algorithm, the time series of the chromophore changes shows no evidence for an increase in the volume of deoxygenated haemoglobin (Hbr). However, after further analysis of the time series from the PLSA using general linear models (GLM) to remove contributions from low frequency baseline oscillations, both the HbO(2) and Hbr times series of the response to stimulation were found to be biphasic with an early decrease in saturation peaking approximately 1 s after onset of stimulation followed by a larger increase in saturation peaking at approximately 3 s. Finally, following the PLSA-then-GLM analysis procedure, we do not find convincing evidence for an increase in cytochrome oxidation following stimulation, though we demonstrate the PLSA algorithm to be capable of disassociating changes in cytochrome oxidation state from changes in hemoglobin oxygenation.
Collapse
|
|
26 |
122 |
11
|
Ishihara A, Hou Y, Jacobson K. The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts. Proc Natl Acad Sci U S A 1987; 84:1290-3. [PMID: 2881297 PMCID: PMC304413 DOI: 10.1073/pnas.84.5.1290] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Thy-1 is a plasma membrane protein, but its primary structure lacks the typical membrane-spanning sequence. Recent studies revealed that a glycophospholipid is covalently bound to the carboxyl terminus, suggesting that the protein is integrated into the plasma membrane by this lipid moiety. Lateral diffusion of Thy-1 was measured in mouse thymocytes, lymphoma cells, and fibroblasts by the fluorescence recovery after photobleaching technique. Thy-1 was labeled with rhodamine-conjugated anti-Thy-1 monoclonal antibodies. Diffusion coefficients of 2-4 X 10(-9) cm2/sec were obtained for the antigen-antibody complex in all the cell types. About 50% of the Thy-1 was mobile. The diffusion coefficient for the mobile fraction of Thy-1 is considerably larger than the diffusion coefficients of many other plasma membrane proteins. Rather, the diffusion coefficient of Thy-1 is similar to those of lipid analogs embedded in the same membrane, providing strong support for the suggested lipid anchoring of this antigen.
Collapse
|
research-article |
38 |
121 |
12
|
Hou Y, Cui L, Riordan JR, Chang X. Allosteric interactions between the two non-equivalent nucleotide binding domains of multidrug resistance protein MRP1. J Biol Chem 2000; 275:20280-7. [PMID: 10781583 DOI: 10.1074/jbc.m001109200] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane transporters of the adenine nucleotide binding cassette (ABC) superfamily utilize two either identical or homologous nucleotide binding domains (NBDs). Although the hydrolysis of ATP by these domains is believed to drive transport of solute, it is unknown why two rather than a single NBD is required. In the well studied P-glycoprotein multidrug transporter, the two appear to be functionally equivalent, and a strongly supported model proposes that ATP hydrolysis occurs alternately at each NBD (Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett 377, 285-289). To assess how applicable this model may be to other ABC transporters, we have examined adenine nucleotide interactions with the multidrug resistance protein, MRP1, a member of a different ABC family that transports conjugated organic anions and in which sequences of the two NBDs are much less similar than in P-glycoprotein. Photoaffinity labeling experiments with 8-azido-ATP, which strongly supports transport revealed ATP binding exclusively at NBD1 and ADP trapping predominantly at NBD2. Despite this apparent asymmetry in the two domains, they are entirely interdependent as substitution of key lysine residues in the Walker A motif of either impaired both ATP binding and ADP trapping. Furthermore, the interaction of ADP at NBD2 appears to allosterically enhance the binding of ATP at NBD1. Glutathione, which supports drug transport by the protein, does not enhance ATP binding but stimulates the trapping of ADP. Thus MRP1 may employ a more complex mechanism of coupling ATP utilization to the export of agents from cells than P-glycoprotein.
Collapse
|
|
25 |
119 |
13
|
Matsuura M, Okubo Y, Toru M, Kojima T, He Y, Hou Y, Shen Y, Lee CK. A cross-national EEG study of children with emotional and behavioral problems: a WHO collaborative study in the Western Pacific Region. Biol Psychiatry 1993; 34:59-65. [PMID: 8373939 DOI: 10.1016/0006-3223(93)90257-e] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Electroencephalograms (EEGs) of children from the general population, assessed by Rutter's questionnaires as having deviant behavior, were quantitatively evaluated in Japan (n = 27), China (n = 39), and Korea (n = 87). Compared with age-matched normal behavior children in Japan (n = 30), China (n = 27), and Korea (n = 26), there were no differences either in the EEG frequency pattern or other EEG variables. The EEGs of age-matched children diagnosed with attention deficit disorder with hyperactivity in psychiatric clinics in Japan (n = 21), China (n = 41), and Korea (n = 29), were significantly different from those of normal and deviant behavior groups. There were more delta and fast theta waves and fewer alpha waves in all three countries, and hypothetical EEG maturation was retarded in Japan and China. These results suggest that the deviant behavior of children in the general population had no biological background, but presumably stemmed from psychosocial disadvantages. In contrast, the symptoms of hyperactive children seemed to be related to a biological dysfunction such as brain immaturity.
Collapse
|
Comparative Study |
32 |
109 |
14
|
Hou Y, Guo Z, Li J, Wang PG. Seleno compounds and glutathione peroxidase catalyzed decomposition of S-nitrosothiols. Biochem Biophys Res Commun 1996; 228:88-93. [PMID: 8912640 DOI: 10.1006/bbrc.1996.1620] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Seleno compounds such as selenocystamine and seleno-D, L-cystine were found to catalyze the decomposition of S-nitrosothiols (e.g. S-nitroso-glutathione and S-nitroso-N-acetyl-D, L-penicillamine) in the presence of different thiols (e.g. glutathione, N-acetyl-D-penicillamine and 2-mercaptoethanol), and liberate nitric oxide. It was also found that glutathione peroxidase itself can catalyze the decomposition of S-nitrosoglutathione without the presence of any thiol or H2O2.
Collapse
|
|
29 |
107 |
15
|
Gu Z, Akiyama K, Ma X, Zhang H, Feng X, Yao G, Hou Y, Lu L, Gilkeson GS, Silver RM, Zeng X, Shi S, Sun L. Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus 2010; 19:1502-14. [PMID: 20647254 DOI: 10.1177/0961203310373782] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease, which, despite the advances in immunosuppressive medical therapies, remains potentially fatal in some patients, especially in treatment-refractory patients. This study found that transplantation of umbilical cord mesenchymal stem cells (UC-MSCs) has the same therapeutic effect as transplantation of bone marrow mesenchymal stem cells (BM-MSCs), which has been reported to be efficient in treating SLE-related symptoms in MRL/lpr mice. Multi-treatment (at the 18th, 19th, and 20th weeks of age) of 1 × 10(6) UC-MSCs was able to decrease the levels of 24-h proteinuria, serum creatinine, and anti-double-stranded DNA (dsDNA) antibody, and the extent of renal injury such as crescent formation in MRL/lpr mice. A lower, but still significant, reduction in these parameters was also observed in mice receiving a single dose of UC-MSCs (at the 18th week). UC-MSCs treatment also inhibited expression of monocyte chemotactic protein-1 (MCP-1) and high-mobility group box 1 (HMGB-1) expression in a similar fashion. UC-MSCs labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE) were found in the lungs and kidneys 1 week post infusion. In addition, after 11 weeks post UC-MSCs infusion, human cells were found in kidney of UC-MSCs-treated mice. These findings indicated that UC-MSCs transplantation might be a potentially promising approach in the treatment of lupus nephritis, possibly by inhibiting MCP-1 and HMGB-1 production.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
105 |
16
|
Yu T, Yang G, Hou Y, Tang X, Wu C, Wu XA, Guo L, Zhu Q, Luo H, Du YE, Wen S, Xu L, Yin J, Tu G, Liu M. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene 2017; 36:2131-2145. [PMID: 27721408 DOI: 10.1038/onc.2016.370] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 07/07/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
Abstract
Multiple drug resistance is a challenging issue in the clinic. There is growing evidence that the G-protein-coupled estrogen receptor (GPER) is a novel mediator in the development of multidrug resistance in both estrogen receptor (ER)-positive and -negative breast cancers, and that cancer-associated fibroblasts (CAFs) in the tumor microenvironment may be a new agent that promotes drug resistance in tumor cells. However, the role of cytoplasmic GPER of CAFs on tumor therapy remains unclear. Here we first show that the breast tumor cell-activated PI3K/AKT (phosphoinositide 3-kinase/AKT) signaling pathway induces the cytoplasmic GPER translocation of CAFs in a CRM1-dependent pattern, and leads to the activation of a novel estrogen/GPER/cAMP/PKA/CREB signaling axis that triggers the aerobic glycolysis switch in CAFs. The glycolytic CAFs feed the extra pyruvate and lactate to tumor cells for augmentation of mitochondrial activity, and this energy metabolically coupled in a 'host-parasite relationship' between catabolic CAFs and anabolic cancer cells confers the tumor cells with multiple drug resistance to several conventional clinical treatments including endocrine therapy (tamoxifen), Her-2-targeted therapy (herceptin) and chemotherapy (epirubicin). Moreover, the clinical data from 18F-fluorodeoxyglucose positron emission tomography/computed tomography further present a strong association between the GPER/cAMP/PKA/CREB pathway of stromal fibroblasts with tumor metabolic activity and clinical treatment, suggesting that targeting cytoplasmic GPER in CAFs may rescue the drug sensitivity in patients with breast cancer. Thus, our data define novel insights into the stromal GPER-mediated multiple drug resistance from the point of reprogramming of tumor energy metabolism and provide the rationale for CAFs as a promising target for clinical therapy.
Collapse
|
|
8 |
102 |
17
|
Cao W, Li XQ, Wang X, Fan HT, Zhang XN, Hou Y, Liu SB, Mei QB. A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:598-605. [PMID: 20092988 DOI: 10.1016/j.phymed.2009.12.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/28/2009] [Accepted: 12/16/2009] [Indexed: 05/28/2023]
Abstract
A novel polysaccharide isolated from Angelica sinensis, named APS-1d showed cytotoxic activity towards several cancer cell lines in vitro. However, the precise antitumor mechanisms of this compound are unknown. In this study, we investigated the pro-apoptotic effects of APS-1d in human cervical cancer HeLa cells both in vitro and in vivo, and further elucidated the mechanisms of this action. Inhibition of HeLa cell proliferation was determined by MTT assay and the therapeutic efficacy of APS-1d was evaluated by human cancer xenografts in nude mice. Cell apoptosis was examined with flow cytometry and TUNEL assay. The mechanism of action of APS-1d was investigated by Western blot analysis. APS-1d decreased HeLa cell proliferation in a concentration- and time-dependent manner in vitro. In addition, APS-1d significantly inhibited tumor growth in athymic nude mice. Characteristic manifestations of apoptosis including apoptotic morphological features and the sub- G(0)/G(1) peaks were observed when the cells were treated with APS-1d. Further analysis showed that APS-1d-induced apoptosis was associated with the regulation of Bcl-2 family protein expression, a decrease in the mitochondrial membrane potential, and an increase in the cytosolic cytochrome c levels. Sequentially, APS-1d increased the activities of caspase-9, -3, and poly (ADP-ribose) polymerase in a concentration-dependent manner, however, no obvious activation of Bid and caspase-8 was observed. Pretreatment with Z-LEHD-FMK, a specific inhibitor of caspase-9, significantly attenuated APS-1d-induced cell apoptosis, and activation of caspase-3. Taken together, our studies indicate that APS-1d is capable of inhibiting HeLa cell proliferation and inducing apoptosis in these cells which primarily involves the activation of the intrinsic mitochondrial pathway.
Collapse
|
|
15 |
98 |
18
|
Ou XH, Li S, Wang ZB, Li M, Quan S, Xing F, Guo L, Chao SB, Chen Z, Liang XW, Hou Y, Schatten H, Sun QY. Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod 2012; 27:2130-45. [DOI: 10.1093/humrep/des137] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
13 |
91 |
19
|
Wang LH, Li Y, Yang SN, Wang FY, Hou Y, Cui W, Chen K, Cao Q, Wang S, Zhang TY, Wang ZZ, Xiao W, Yang JY, Wu CF. Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br J Cancer 2013; 110:341-52. [PMID: 24300974 PMCID: PMC3899775 DOI: 10.1038/bjc.2013.752] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022] Open
Abstract
Background: Gambogic acid (GA) has been reported to have potent anticancer activity and is authorised to be tested in phase II clinical trials for treatment of non-small-cell lung cancer (NSCLC). The present study aims to investigate whether GA would be synergistic with cisplatin (CDDP) against the NSCLC. Methods: 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI) isobologram, western blot, quantitative PCR, flow cytometry, electrophoretic mobility shift assay, xenograft tumour models and terminal deoxynucleotide transferase-mediated dUTP nick-end labelling analysis were used in this study. Results: The cell viability results showed that sequential CDDP-GA treatment resulted in a strong synergistic action in A549, NCI-H460, and NCI-H1299 cell lines, whereas the reverse sequence and simultaneous treatments led to a slight synergistic or additive action. Increased sub-G1 phase cells and enhanced PARP cleavage demonstrated that the sequence of CDDP-GA treatment markedly increased apoptosis in comparison with other treatments. Furthermore, the sequential combination could enhance the activation of caspase-3, -8, and 9, increase the expression of Fas and Bax, and decrease the expression of Bcl-2, survivin and X-inhibitor of apoptosis protein (X-IAP) in A549 and NCI-H460 cell lines. In addition, increased apoptosis was correlated with enhanced reactive oxygen species generation. Importantly, it was found that, followed by CDDP treatment, GA could inhibit NF-κB and mitogen-activated protein kinase (MAPK)/heme oxygenase-1 (HO-1) signalling pathways, which have been validated to reduce ROS release and confer CDDP resistance. The roles of NF-κB and MAPK pathways were further confirmed by using specific inhibitors, which significantly increased ROS release and apoptosis induced by the sequential combination of CDDP and GA. Moreover, our results indicated that the combination of CDDP and GA exerted increased antitumour effects on A549 xenograft models through inhibiting NF-κB, HO-1, and subsequently inducing apoptosis. Conclusion: Gambogic acid sensitises lung cancer cells to CDDP in vitro and in vivo in NSCLC through inactivation of NF-κB and MAPK/HO-1 signalling pathways, providing a rationale for the combined use of CDDP and GA in lung cancer chemotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
85 |
20
|
Wang S, Zhu M, Wang Q, Hou Y, Li L, Weng H, Zhao Y, Chen D, Ding H, Guo J, Li M. Alpha-fetoprotein inhibits autophagy to promote malignant behaviour in hepatocellular carcinoma cells by activating PI3K/AKT/mTOR signalling. Cell Death Dis 2018; 9:1027. [PMID: 30301886 PMCID: PMC6177398 DOI: 10.1038/s41419-018-1036-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Alpha-fetoprotein (AFP) has been recognized as a key regulator of cell proliferation in hepatocellular carcinoma (HCC). However, whether AFP functions in cancer cell autophagy remains unknown. This study investigated the effects of AFP on autophagy in HCC cells. The role of AFP was studied in two HCC cell lines, PLC/PRF/5 and HLE. Cell autophagy, apoptosis, proliferation, migration and invasion were analysed with Western blotting, co-immunoprecipitation (CoIP), immunofluorescence, animal models, MTT assays, flow cytometry (FCM), Cell Counting Kit (CCK)-8, and scratch and transwell assays. In PLC/PRF/5 cells, AFP interacted with PTEN and activated PI3K/Akt/mTOR signalling. In HLE cells, overexpressed AFP similarly interacted with PTEN, leading to PI3K/Akt/mTOR activation and reduced cell autophagy. When AFP was silenced in PLC/PRF/5 cells, cell proliferation, tumour growth, migration and invasion were inhibited, and the numbers of S-phase and apoptotic cells were increased. In contrast, AFP overexpression in HLE cells enhanced cell proliferation, migration and invasion and reduced apoptosis. AFP-dependent autophagy, proliferation, migration and apoptosis were inhibited by rapamycin. In summary, AFP plays critical roles in the inhibition of autophagy and apoptosis in HCC cells and promotes proliferation, migration and invasion. The role of AFP in autophagy inhibition in HCC cells may involve the activation of PI3K/Akt/mTOR signalling.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
84 |
21
|
Huang CC, Hou Y, Woods LK, Moore GE, Minowada J. Cytogenetic study of human lymphoid T-cell lines derived from lymphocytic leukemia. J Natl Cancer Inst 1974; 53:655-60. [PMID: 4547172 DOI: 10.1093/jnci/53.3.655] [Citation(s) in RCA: 84] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
|
51 |
84 |
22
|
Konen J, Summerbell E, Dwivedi B, Galior K, Hou Y, Rusnak L, Chen A, Saltz J, Zhou W, Boise LH, Vertino P, Cooper L, Salaita K, Kowalski J, Marcus AI. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat Commun 2017; 8:15078. [PMID: 28497793 PMCID: PMC5437311 DOI: 10.1038/ncomms15078] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. The mechanisms linking phenotypic heterogeneity to collective cancer invasion are unclear. Here the authors develop an image-guided genomic technique to select and amplify leader and follower cells from in vitro invading cell packs and find a cooperative symbiotic relationship between these two cell populations.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
84 |
23
|
Peng J, Ma SH, Liu J, Hou Y, Liu XM, Niu T, Xu RR, Guo CS, Wang XM, Cheng YF, Ni H, Hou M. Association of autoantibody specificity and response to intravenous immunoglobulin G therapy in immune thrombocytopenia: a multicenter cohort study. J Thromb Haemost 2014; 12:497-504. [PMID: 24517219 DOI: 10.1111/jth.12524] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/31/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is a common autoimmune bleeding disorder, in which platelet glycoprotein (GP)IIb-IIIa and GPIb-IX are the two most frequently targeted autoantigens. Our previous studies in animal models of ITP demonstrated that intravenous immunoglobulin G (IVIG) could protect against anti-GPIIb-IIIa autoantibody-mediated thrombocytopenia but failed to ameliorate ITP induced by most anti-GPIb-IX autoantibodies. OBJECTIVES The objective of this human study was to evaluate the association between the specificity of antiplatelet autoantibodies and response to IVIG treatment. PATIENTS/METHODS In this retrospective study, a cohort of 156 previously untreated adults with severe ITP who underwent IVIG therapy (0.4 g kg(-1) day(-1) for 5 days) was analyzed. The primary outcome was response defined as platelet counts of ≥ 30 × 10(9) L(-1) and a doubling of baseline counts within 7 days of dosing, and an absence of bleeding. RESULTS AND CONCLUSIONS Among the 66 patients with anti-GPIb-IX autoantibodies, only 24 (36.4%) achieved a response, as compared with 72 of 90 patients (80.0%) who were negative for anti-GPIb-IX autoantibodies (relative risk 2.2; 95% confidence interval 1.6-3.1). This study found no difference in response between patients with anti-GPIIb-IIIa autoantibodies (61.7%) and those without anti-GPIIb-IIIa autoantibodies (61.3%). Logistic regressions, including main effects and the interaction between these two autoantibodies, showed no influence of anti-GPIIb-IIIa autoantibodies on the effects of anti-GPIb-IX autoantibodies with regard to their association with IVIG response. Thus, in adults with ITP, the presence of anti-GPIb-IX autoantibodies is a predictive factor for poor response to IVIG treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT01666795.
Collapse
|
Clinical Trial |
11 |
83 |
24
|
Lutterbach B, Hou Y, Durst KL, Hiebert SW. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci U S A 1999; 96:12822-7. [PMID: 10536006 PMCID: PMC23113 DOI: 10.1073/pnas.96.22.12822] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inv(16) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). The inv(16) fusion protein acts by dominantly interfering with AML-1/core binding factor beta-dependent transcriptional regulation. Here we demonstrate that the inv(16) fusion protein cooperates with AML-1B to repress transcription. This cooperativity requires the ability of the translocation fusion protein to bind to AML-1B. Mutational analysis and cell fractionation experiments indicated that the inv(16) fusion protein acts in the nucleus and that repression occurs when the complex is bound to DNA. We also found that the inv(16) fusion protein binds to AML-1B when it is associated with the mSin3A corepressor. An AML-1B mutant that fails to bind mSin3A was impaired in cooperative repression, suggesting that the inv(16) fusion protein acts through mSin3 and possibly other corepressors. Finally, we demonstrate that the C-terminal portion of the inv(16) fusion protein contains a repression domain, suggesting a molecular mechanism for AML-1-mediated repression.
Collapse
|
research-article |
26 |
81 |
25
|
Guo HF, Tian J, Wang X, Fang Y, Hou Y, Han J. Brain substrates activated by electroacupuncture of different frequencies (I): Comparative study on the expression of oncogene c-fos and genes coding for three opioid peptides. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 43:157-66. [PMID: 9037529 DOI: 10.1016/s0169-328x(96)00170-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low and high frequency electroacupuncture (EA)-produced analgesia have been shown to be mediated by different brain substrates and different opioid peptides. In this study, Fos-like immunoreactivity (FLI) and in situ hybridization of the three opioid mRNAs were used to examine the effect of low (2 Hz) and high (100 Hz) frequency EA on neuronal activities, and the expression of opioid genes. 2 Hz and 100 Hz EA induced a markedly different spatial patterns of Fos expression in the rat brain, suggesting there are distinct neuronal pathways underlying EA of different frequencies. Likewise, 2 Hz and 100 Hz EA exert differential effects on opioid gene expression: while 2 Hz EA induced a more extensive and intensive preproenkephalin (PPE) mRNA expression than 100 Hz EA, it had no effect on preprodynorphin (PPD) mRNA expression which was significantly increased by 100 Hz EA stimulation. In contrast, EA of both frequencies did not affect POMC mRNA expression.
Collapse
|
Comparative Study |
29 |
76 |