1
|
Koshizuka S, Oka Y. Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid. NUCL SCI ENG 2017. [DOI: 10.13182/nse96-a24205] [Citation(s) in RCA: 1203] [Impact Index Per Article: 150.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
1203 |
2
|
Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 1990; 127:126-32. [PMID: 2163307 DOI: 10.1210/endo-127-1-126] [Citation(s) in RCA: 992] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two cell lines have been established from insulinomas obtained by targeted expression of the simian virus 40 T antigen gene in transgenic mice. These cell lines, designated MIN6 and MIN7, produce insulin and T antigen and have morphological characteristics of pancreatic beta cells. MIN6 cells exhibit glucose-inducible insulin secretion comparable with cultured normal mouse islet cells, whereas MIN7 cells do not. Both cell lines produce liver-type glucose transporter (GT) mRNA at high level. Brain-type GT mRNA is also present at considerable level in MIN7 cells, but is barely detectable in MIN6 cells, suggesting that exclusive expression of the liver-type GT is related to glucose-inducible insulin secretion. MIN6 cells do not express either major histocompatibility (MHC) class I or class II antigens on the cell surface. However, treatment with interferon-gamma induces high levels of MHC class I antigens, and a combination of interferon-gamma and tumor necrosis factor-alpha induces a MHC class II antigen on the cell surface. These results emphasize that the MIN6 cell line retains physiological characteristics of normal beta cells. The MIN6 cell line will be especially useful to analyze the molecular mechanisms by which beta cells regulate insulin secretion in response to extracellular glucose concentrations. We discuss a possible role of GT isoforms in glucose sensing by beta cells.
Collapse
|
|
35 |
992 |
3
|
Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998; 20:143-8. [PMID: 9771706 DOI: 10.1038/2441] [Citation(s) in RCA: 533] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wolfram syndrome (WFS; OMIM 222300) is an autosomal recessive neurodegenerative disorder defined by young-onset non-immune insulin-dependent diabetes mellitus and progressive optic atrophy. Linkage to markers on chromosome 4p was confirmed in five families. On the basis of meiotic recombinants and disease-associated haplotypes, the WFS gene was localized to a BAC/P1 contig of less than 250 kb. Mutations in a novel gene (WFS1) encoding a putative transmembrane protein were found in all affected individuals in six WFS families, and these mutations were associated with the disease phenotype. WFS1 appears to function in survival of islet beta-cells and neurons.
Collapse
|
|
27 |
533 |
4
|
Ishihara H, Asano T, Tsukuda K, Katagiri H, Inukai K, Anai M, Kikuchi M, Yazaki Y, Miyazaki JI, Oka Y. Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 1993; 36:1139-45. [PMID: 8270128 DOI: 10.1007/bf00401058] [Citation(s) in RCA: 329] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glucose-stimulated insulin secretion, glucose transport, glucose phosphorylation and glucose utilization have been characterized in the insulinoma cell line MIN6, which is derived from a transgenic mouse expressing the large T-antigen of SV40 in pancreatic beta cells. Glucose-stimulated insulin secretion occurred progressively from 5 mmol/l glucose, reached the maximal level approximately seven-fold above the basal level at 25 mmol/l, and remained at this level up to 50 mmol/l. Glucose transport was very rapid with the half-maximal uptake of 3-O-methyl-D-glucose being reached within 15 s at 22 degrees C. Glucose phosphorylating activity in the cell homogenate was due mainly to glucokinase; the Vmax value of glucokinase activity was estimated to be 255 +/- 37 nmol.h-1.mg protein-1, constituting approximately 80% of total phosphorylating activity, whereas hexokinase activity constituted less than 20%. MIN6 cells exhibited mainly the high Km component of glucose utilization with a Vmax of 289 +/- 18 nmol.h-1.mg protein-1. Thus, glucose utilization quantitatively and qualitatively reflected glucose phosphorylation in MIN6 cells. In contrast, MIN7 cells, which exhibited only a small increase in insulin secretion in response to glucose, had 4.7-fold greater hexokinase activity than MIN6 cells with a comparable activity of glucokinase. These characteristics of MIN6 cells are very similar to those of isolated islets, indicating that this cell line is an appropriate model for studying the mechanism of glucose-stimulated insulin secretion in pancreatic beta cells.
Collapse
|
|
32 |
329 |
5
|
Oka Y, Orth DN. Human plasma epidermal growth factor/beta-urogastrone is associated with blood platelets. J Clin Invest 1983; 72:249-59. [PMID: 6603475 PMCID: PMC1129180 DOI: 10.1172/jci110964] [Citation(s) in RCA: 318] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human epidermal growth factor (hEGF) has previously been isolated from urine and probably is identical to human beta-urogastrone (hUG). Immunoreactive hEGF/UG has been found in the plasma of normal subjects. In this study, using immunoaffinity chromatography to extract hEGF/UG from plasma, we found that immunoreactive hEGF/UG in blood was associated with blood platelets. It was present in platelet-rich, but not platelet-poor plasma and serum, and was found predominantly in the platelet fraction of whole blood. Sephadex G-50 Fine gel-exclusion chromatography of an extract of outdated blood bank platelets revealed two hEGF/UG components, one of which eluted in the void volume, and the other of which coeluted with purified standard hEGF/UG. The former hEGF/UG component was a high-molecular weight form that was cleaved into hEGF/UG by incubation with either mouse EGF/UG-associated arginine esterase or trypsin. It appeared to be identical to the high-molecular weight hEGF/UG previously reported in human urine, except for its apparently equal activities in radioimmunoassay and radioreceptor assay. The latter hEGF/UG component was immunologically, biologically, and physiochemically indistinguishable from highly purified hEGF/UG from human urine and was immunologically different from purified human platelet-derived growth factor. Platelet-associated hEGF/UG may account for the mitogenic activity of serum in cell lines in which platelet-derived growth factor is not active. Since hEGF/UG appears to be liberated from platelets during coagulation, platelet-associated EGF/UG may be involved in normal vascular and tissue repair and in the pathogenesis of atherosclerotic lesions. The discovery that the EGF/UG in plasma is associated with blood platelets raises important new possibilities for its role in human health and disease.
Collapse
|
research-article |
42 |
318 |
6
|
Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y. Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 1998; 273:8741-8. [PMID: 9535851 DOI: 10.1074/jbc.273.15.8741] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinases (PIP5K) catalyze the synthesis of phosphatidylinositol 4, 5-bisphosphate, an essential lipid molecule in various cellular processes. Here, we report the cloning of the third member (PIP5Kgamma) and the characterization of members of the type I PIP5K family. Type I PIP5Kgamma has two alternative splicing forms, migrating at 87 and 90 kDa on SDS-polyacrylamide gel electrophoresis. The amino acid sequence of the central portion of this isoform shows approximately 80% identity with those of the alpha and beta isoforms. Northern blot analysis revealed that the gamma isoform is highly expressed in the brain, lung, and kidneys. Among three isoforms, the beta isoform has the greatest Vmax value for the PtdIns(4)P kinase activity and the gamma isoform is most markedly stimulated by phosphatidic acid. By analyzing deletion mutants of the three isoforms, the minimal kinase core sequence of these isoforms were determined as an approximately 380-amino acid region. In addition, carboxyl-terminal regions of the beta and gamma isoforms were found to confer the greatest Vmax value and the highest phosphatidic acid sensitivity, respectively. It was also discovered that lysine 138 in the putative ATP binding motif of the alpha isoform is essential for the PtdIns(4)P kinase activity. As was the case with the alpha isoform reported previously (Shibasaki, Y., Ishihara, H., Kizuki, N., Asano, T., Oka, Y., Yazaki, Y. (1997) J. Biol. Chem. 272, 7578-7581), overexpression of either the beta or the gamma isoform induced an increase in short actin fibers and a decrease in actin stress fibers in COS7 cells. Surprisingly, a kinase-deficient substitution mutant also induced an abnormal actin polymerization, suggesting a role of PIP5Ks via structural interactions with other molecules.
Collapse
|
Comparative Study |
27 |
240 |
7
|
Takeda K, Inoue H, Tanizawa Y, Matsuzaki Y, Oba J, Watanabe Y, Shinoda K, Oka Y. WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 2001; 10:477-84. [PMID: 11181571 DOI: 10.1093/hmg/10.5.477] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wolfram (DIDMOAD) syndrome is an autosomal recessive neurodegenerative disorder accompanied by insulin-dependent diabetes mellitus and progressive optic atrophy. Recent positional cloning led to identification of the WFS1 (Wolfram syndrome 1) gene, a member of a novel gene family of unknown function. In this study, we generated a specific antibody against the C-terminus of the WFS1 protein and investigated its subcellular localization in cultured cells. We also studied its distribution in the rat brain. Biochemical studies indicated the WFS1 protein to be an integral, endoglycosidase H-sensitive membrane glycoprotein that localizes primarily in the endoplasmic reticulum (ER). Consistent with this, immunofluorescence cell staining of overexpressed WFS1 showed a characteristic reticular pattern over the cytoplasm and overlapped with the ER marker staining. No co-localization of WFS1 with mitochondria argues against an earlier clinical hypothesis that Wolfram syndrome is a mitochondria-mediated disorder. In the rat brain, at both the protein and mRNA level, WFS1 was found to be present predominantly in selected neurons in the hippocampus CA1, amygdaloid areas, olfactory tubercle and superficial layer of the allocortex. These expression sites, i.e. components of the limbic system or structures closely associated with this system, may be involved in the psychiatric, behavioral and emotional abnormalities characteristic of this syndrome. ER localization of WFS1 suggests that this protein plays an as yet undefined role in membrane trafficking, protein processing and/or regulation of ER calcium homeostasis. These studies represent a first step toward the characterization of WFS1 protein, which presumably functions to maintain certain populations of neuronal and endocrine cells.
Collapse
|
|
24 |
240 |
8
|
Hiramatsu Y, Oka Y. Determination of the tensile strength of rock by a compression test of an irregular test piece. ACTA ACUST UNITED AC 1966. [DOI: 10.1016/0148-9062(66)90002-7] [Citation(s) in RCA: 235] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
59 |
235 |
9
|
Matsumoto M, Oka Y, Strom J, Frishman W, Kadish A, Becker RM, Frater RW, Sonnenblick EH. Application of transesophageal echocardiography to continuous intraoperative monitoring of left ventricular performance. Am J Cardiol 1980; 46:95-105. [PMID: 7386399 DOI: 10.1016/0002-9149(80)90611-6] [Citation(s) in RCA: 214] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transesophageal M mode echocardiography was used for continuous monitoring of left ventricular dimensions in 21 patients (11 with valvular and 10 with coronary heart disease) undergoing open heart surgery. Echocardiograms were recorded in six stages of the procedure and simultaneous measurements of cardiac output (with dye dilution) and atrial pressures were made. Measurements of left ventricular diameters with the transesophageal technique correlated excellently with the corresponding measurements obtained with the standard parasternal method. In patients with volume overload, surgical correction was accompanied by a decrease in diastolic dimension, velocity of circumferential fiber shortening, mid wall stress and end-diastolic stiffness, and an increase in cardiac output. Pericardial and chest wall closures generally caused a significant decrease in cardiac output, and correlated with a decrease in diastolic diameter and an increase in the stiffness constant of the left ventricle. Thus, the decrease in cardiac output may have been due to decreased distensibility of the ventricular cavity secondary to mechanical restriction by the pericardium and chest wall. Pericardial opening caused a significant delay in septal motion that was reversed by closing the pericardium. This study confirms the validity of transesophageal echocardiography and its usefulness in monitoring changes in ventricular function during cardiac surgery.
Collapse
|
|
45 |
214 |
10
|
Yujiri T, Ware M, Widmann C, Oyer R, Russell D, Chan E, Zaitsu Y, Clarke P, Tyler K, Oka Y, Fanger GR, Henson P, Johnson GL. MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation. Proc Natl Acad Sci U S A 2000; 97:7272-7. [PMID: 10852963 PMCID: PMC16535 DOI: 10.1073/pnas.130176697] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MEK kinase 1 (MEKK1) is a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase that, in addition to regulating the c-Jun NH(2)-terminal kinase (JNK) pathway, is involved in the control of cell motility. MEKK1(-/-) mice are defective in eyelid closure, a TGFalpha-directed process involving the migration of epithelial cells. MEKK1 expression in epithelial cells stimulates lamellipodia formation, a process required for cell movement. In addition, mouse embryo fibroblasts derived from MEKK1(-/-) mice are inhibited in their migration relative to MEKK1(+/+) fibroblasts. MEKK1 is required for JNK but not NF-kappaB activation in response to virus infection, microtubule disruption, and stimulation of embryonic stem cells with lysophosphatidic acid. MEKK1 is not required for TNFalpha or IL-1 regulation of JNK or NF-kappaB activation in macrophages or fibroblasts. Thus, MEKK1 senses microtubule integrity, contributes to the regulation of fibroblast and epithelial cell migration, and is required for activation of JNK but not NF-kappaB in response to selected stress stimuli.
Collapse
|
research-article |
25 |
200 |
11
|
Oka Y, Elisseeva OA, Tsuboi A, Ogawa H, Tamaki H, Li H, Oji Y, Kim EH, Soma T, Asada M, Ueda K, Maruya E, Saji H, Kishimoto T, Udaka K, Sugiyama H. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms' tumor gene (WT1 ) product. Immunogenetics 2000; 51:99-107. [PMID: 10663572 DOI: 10.1007/s002510050018] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The product of the Wilms' tumor gene WT1 is a transcription factor overexpressed not only in leukemic blast cells of almost all patients with acute myeloid leukemia, acute lymphoid leukemia, and chronic myeloid leukemia, but also in various types of solid tumor cells. Thus, it is suggested that the WT1 gene plays an important role in both leukemogenesis and tumorigenesis. Here we tested the potential of WT1 to serve as a target for immunotherapy against leukemia and solid tumors. Four 9-mer WT1 peptides that contain HLA-A2.1-binding anchor motifs were synthesized. Two of them, Db126 and WH187, were determined to bind to HLA-A2.1 molecules in a binding assay using transporter associated with antigen processing-deficient T2 cells. Peripheral blood mononuclear cells from an HLA-A2.1-positive healthy donor were repeatedly sensitized in vitro with T2 cells pulsed with each of these two WT1 peptides, and CD8(+) cytotoxic T lymphocytes (CTLs) that specifically lyse WT1 peptide-pulsed T2 cells in an HLA-A2.1-restricted fashion were induced. The CTLs also exerted specific lysis against WT1-expressing, HLA-A2.1-positive leukemia cells, but not against WT1-expressing, HLA-A2.1-negative leukemia cells, or WT1-nonexpressing, HLA-A2. 1-positive B-lymphoblastoid cells. These data provide the first evidence of human CTL responses specific for the WT1 peptides, and provide a rationale for developing WT1 peptide-based adoptive T-cell therapy and vaccination against leukemia and solid tumors.
Collapse
|
|
25 |
191 |
12
|
Mori H, Ikegami H, Kawaguchi Y, Seino S, Yokoi N, Takeda J, Inoue I, Seino Y, Yasuda K, Hanafusa T, Yamagata K, Awata T, Kadowaki T, Hara K, Yamada N, Gotoda T, Iwasaki N, Iwamoto Y, Sanke T, Nanjo K, Oka Y, Matsutani A, Maeda E, Kasuga M. The Pro12 -->Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes 2001; 50:891-4. [PMID: 11289058 DOI: 10.2337/diabetes.50.4.891] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The allele frequencies for a Pro12-->Ala substitution in peroxisome proliferator-activated receptor-gamma differ among ethnic groups, and its relationship with diabetes and associated diseases is controversial. The prevalence of this polymorphism and its effects on clinical characteristics have now been evaluated with a large number of Japanese individuals with type 2 diabetes (n = 2,201) and normal control subjects (n = 1,212) recruited by 10 institutions located in seven different cities in Japan. The allele frequency for the Ala12 variant was significantly lower in the type 2 diabetic group than in the control group (2.39 vs. 4.13%, P = 0.000054). However, compared with subjects without the Ala12 variant, the diabetic subjects with this variant exhibited a significantly higher serum concentration of total cholesterol (P = 0.001), manifested a reduced capacity for insulin secretion as evaluated by homeostasis model assessment (P = 0.007), and tended to possess a higher level of HbA1c. These data suggest that the Ala12 variant is associated with a reduced risk for the development of diabetes in the general population, but that it may be also a risk factor for insulin deficiency and disease severity in individuals with type 2 diabetes.
Collapse
|
|
24 |
179 |
13
|
Ishihara H, Shibasaki Y, Kizuki N, Katagiri H, Yazaki Y, Asano T, Oka Y. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 1996; 271:23611-4. [PMID: 8798574 DOI: 10.1074/jbc.271.39.23611] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence suggests that phosphatidylinositol metabolism is essential for membrane traffic in the cell. Of particular importance, phosphatidylinositol transfer protein and the type I phosphatidylinositol- 4-phosphate 5-kinase (PI4P5K) have been identified as cytosolic components required for ATP-dependent, Ca2+-activated secretion. In order to identify PI4P5K isoforms that may play important roles in regulated insulin secretion from pancreatic beta-cells, we employed the polymerase chain reaction with degenerate primers and screening of a cDNA library of the murine pancreatic beta-cell line MIN6. Two novel cDNAs, designated PI4P5K-Ialpha and PI4P5K-Ibeta, were identified, which contained complete coding sequences encoding 539- or 546-amino acid proteins, respectively. These cDNAs were expressed in mammalian cells with an adenoviral expression vector. Proteins of both isoforms migrated at 68 kDa on SDS-polyacrylamide gel electrophoresis and exhibited phosphatidylinositol-4-phosphate 5-kinase activity, which was activated by phosphatidic acid, indicating that these proteins were type I isoforms. While these isoforms share a marked amino acid sequence homology in their central portion, the amino- and carboxyl-terminal regions differ significantly. Northern blot analysis depicted that tissue distributions differed between the two isoforms. Molecular identification of type I PI4P5K isoforms in insulin-secreting cells should provide insights into the role of phosphatidylinositol metabolism in regulated exocytosis of insulin-containing large dense core vesicles.
Collapse
|
|
29 |
166 |
14
|
Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, Katagiri H, Fukushima Y, Onishi Y, Ono H, Fujishiro M, Kikuchi M, Oka Y, Asano T. Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes 2000; 49:1700-8. [PMID: 11016454 DOI: 10.2337/diabetes.49.10.1700] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticoids reportedly induce insulin resistance. In this study, we investigated the mechanism of glucocorticoid-induced insulin resistance using 3T3-L1 adipocytes in which treatment with dexamethasone has been shown to impair the insulin-induced increase in glucose uptake. In 3T3-L1 adipocytes treated with dexamethasone, the GLUT1 protein expression level was decreased by 30%, which possibly caused decreased basal glucose uptake. On the other hand, dexamethasone treatment did not alter the amount of GLUT4 protein in total cell lysates but decreased the insulin-stimulated GLUT4 translocation to the plasma membrane, which possibly caused decreased insulin-stimulated glucose uptake. Dexamethasone did not alter tyrosine phosphorylation of insulin receptors, and it significantly decreased protein expression and tyrosine phosphorylation of insulin receptor substrate (IRS)-1. Interestingly, however, protein expression and tyrosine phosphorylation of IRS-2 were increased. To investigate whether the reduced IRS-1 content is involved in insulin resistance, IRS-1 was overexpressed in dexamethasone-treated 3T3-L1 adipocytes using an adenovirus transfection system. Despite protein expression and phosphorylation levels of IRS-1 being normalized, insulin-induced 2-deoxy-D-[3H]glucose uptake impaired by dexamethasone showed no significant improvement. Subsequently, we examined the effect of dexamethasone on the glucose uptake increase induced by overexpression of GLUT2-tagged p110alpha, constitutively active Akt (myristoylated Akt), oxidative stress (30 mU glucose oxidase for 2 h), 2 mmol/l 5-aminoimidazole-4-carboxamide ribonucleoside for 30 min, and osmotic shock (600 mmol/l sorbitol for 30 min). Dexamethasone treatment clearly inhibited the increases in glucose uptake produced by these agents. Thus, in conclusion, the GLUT1 decrease may be involved in the dexamethasone-induced decrease in basal glucose transport activity, and the mechanism of dexamethasone-induced insulin resistance in glucose transport activity (rather than the inhibition of phosphatidylinositol 3-kinase activation resulting from a decreased IRS-1 content) is likely to underlie impaired glucose transporter regulation.
Collapse
|
|
25 |
165 |
15
|
Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim EH, Soma T, Tatekawa T, Kawakami M, Asada M, Kishimoto T, Sugiyama H. Expression of the Wilms' tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 1999; 90:194-204. [PMID: 10189890 PMCID: PMC5926055 DOI: 10.1111/j.1349-7006.1999.tb00733.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To determine the role of the Wilms' tumor gene WT1 in tumorigenesis of solid tumors, expression of the WT1 gene was examined in 34 solid tumor cell lines (four gastric cancer cell lines, five colon cancer cell lines, 15 lung cancer cell lines, four breast cancer cell lines, one germ cell tumor cell line, two ovarian cancer cell lines, one uterine cancer cell line, one thyroid cancer cell line, and one hepatocellular carcinoma cell line) by means of quantitative reverse transcriptase-polymerase chain reaction. WT1 gene expression was detected in three of the four gastric cancer cell lines, all of the five colon cancer cell lines, 12 of the 15 lung cancer cell lines, two of the four breast cancer cell lines, the germ cell tumor cell line, the two ovarian cancer cell lines, the uterine cancer cell line, the thyroid cancer cell line, and the hepatocellular carcinoma cell line. Therefore, of the 34 solid tumor cell lines examined, 28 (82%) expressed WT1. Three cell lines expressing WT1 (gastric cancer cell line AZ-521, lung cancer cell line OS3, and ovarian cancer cell line TYK-nu) were further analyzed for mutations and/or deletions in the WT1 gene by means of single-strand conformation polymorphism analysis. However, no mutations or deletions were detected in the region of the WT1 gene ranging from the 3' end of exon 1 to exon 10 (the WT1 gene consists of 10 exons) in these three cell lines. Furthermore, when AZ-521, OS3, and TYK-nu cells were treated with WT1 antisense oligomers, the growth of these cells was significantly inhibited in association with a reduction in WT1 protein levels. Furthermore, constitute expression of the transfected WT1 gene in cancer cells inhibited the antisense effect of WT1 antisense oligomer on cell growth. These results indicated that the WT1 gene plays an essential role in the growth of solid tumors and performs an oncogenic rather than a tumor-suppressor gene function.
Collapse
|
research-article |
26 |
162 |
16
|
Oka Y, Udaka K, Tsuboi A, Elisseeva OA, Ogawa H, Aozasa K, Kishimoto T, Sugiyama H. Cancer immunotherapy targeting Wilms' tumor gene WT1 product. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1873-80. [PMID: 10657636 DOI: 10.4049/jimmunol.164.4.1873] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Wilms' tumor gene WT1 is expressed at high levels not only in acute myelocytic and lymphocytic leukemia and in chronic myelocytic leukemia but also in various types of solid tumors including lung cancers. To determine whether the WT1 protein can serve as a target Ag for tumor-specific immunity, three 9-mer WT1 peptides (Db126, Db221, and Db235), which contain H-2Db-binding anchor motifs and have a comparatively higher binding affinity for H-2Db molecules, were tested in mice (C57BL/6, H-2Db) for in vivo induction of CTLs directed against these WT1 peptides. Only one peptide, Db126, with the highest binding affinity for H-2Db molecules induced vigorous CTL responses. The CTLs specifically lysed not only Db126-pulsed target cells dependently upon Db126 concentrations but also WT1-expressing tumor cells in an H-2Db-restricted manner. The sensitizing activity to the Db126-specific CTLs was recovered from the cell extract of WT1-expressing tumor cells targeted by the CTLs in the same retention time as that needed for the synthetic Db126 peptide in RP-HPLC, indicating that the Db126-specific CTLs recognize the Db126 peptide to kill WT1-expressing target cells. Furthermore, mice immunized with the Db126 peptide rejected challenges by WT1-expressing tumor cells and survived for a long time with no signs of autoaggression by the CTLs. Thus, the WT1 protein was identified as a novel tumor Ag. Immunotherapy targeting the WT1 protein should find clinical application for various types of human cancers.
Collapse
|
|
25 |
158 |
17
|
Katagiri H, Asano T, Ishihara H, Inukai K, Shibasaki Y, Kikuchi M, Yazaki Y, Oka Y. Overexpression of catalytic subunit p110alpha of phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3-L1 adipocytes. J Biol Chem 1996; 271:16987-90. [PMID: 8663584 DOI: 10.1074/jbc.271.29.16987] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To elucidate the mechanisms of phosphatidylinositol (PI) 3-kinase involvement in insulin-stimulated glucose transport activity, the epitope-tagged p110alpha subunit of PI 3-kinase was overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Overexpression of p110alpha was confirmed by immunoblot using anti-tagged epitope antibody. p110alpha overexpression induced a 2.5-fold increase in PI 3-kinase activity associated with its regulatory subunits in the basal state, an increase exceeding that of the maximally insulin-stimulated control cells, while PI 3-kinase activity associated with phosphotyrosyl protein was only modestly elevated. Overexpression of p110alpha induced an approximately 14-fold increase in the basal glucose transport rate, which was also greater than that observed in the stimulated control. No apparent difference was observed in the cellular expression level of either GLUT1 or GLUT4 proteins between control and p110alpha-overexpressing 3T3-L1 adipocytes. Subcellular fractionation revealed translocation of glucose transporters from intracellular to plasma membranes in basal p110alpha-overexpressing cells. The translocation of GLUT4 protein to the plasma membrane was further confirmed using a membrane sheet assay. These findings indicate that an increment in PI 3-kinase activity induced by overexpression of p110alpha of PI 3-kinase stimulates glucose transport activity with translocation of glucose transporters, i.e., mimics the effect of insulin.
Collapse
|
|
29 |
151 |
18
|
Oka Y, Rozek LM, Czech MP. Direct demonstration of rapid insulin-like growth factor II Receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39385-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
40 |
148 |
19
|
Yamamoto N, Oka Y, Kawashima S. Lesions of gonadotropin-releasing hormone-immunoreactive terminal nerve cells: effects on the reproductive behavior of male dwarf gouramis. Neuroendocrinology 1997; 65:403-12. [PMID: 9208402 DOI: 10.1159/000127203] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Functions of the terminal nerve (TN) are largely unknown. To examine whether gonadotropin-releasing hormone (GnRH)-immunoreactive TN cells (TN-GnRH cells) are involved in the control of reproductive behavior, effects of lesions of TN-GnRH cells were studied in male dwarf gouramis, Colisa lalia. After bilateral electrolytic lesion, a characteristic impairment was observed in one of the repertoires of male reproductive behavior, nest-building. The occurrence of mating trials in which males showed no nest-building was increased. However, the incidence of nest-building behavior during postoperative trials was not affected by the lesion. No impairment was observed in other reproductive repertoires. These results suggest that (1) TN-GnRH cells are involved in the control of the threshold for nest-building behavior initiation and (2) TN-GnRH cells are not a prerequisite for other aspects of reproductive behavior in the male gouramis.
Collapse
|
|
28 |
144 |
20
|
Shibasaki Y, Ishihara H, Kizuki N, Asano T, Oka Y, Yazaki Y. Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J Biol Chem 1997; 272:7578-81. [PMID: 9065410 DOI: 10.1074/jbc.272.12.7578] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Rho family GTP-binding proteins have been known to mediate extracellular signals to the actin cytoskeleton. Although several Rho interacting proteins have been found, downstream signals have yet to be determined. Many actin-binding proteins are known to be regulated by phosphatidylinositol 4,5-bisphosphate in vitro. Rho has been shown to enhance the activity of phosphatidylinositol-4-phosphate 5-kinase (PI4P5K), the phosphatidylinositol 4,5-bisphosphate synthesizing enzyme. Recently we isolated several isoforms of type I PI4P5K. Here we report that PI4P5K Ialpha induces massive actin polymerization resembling "pine needles" in COS-7 cells in vivo. When truncated from the C terminus to amino acid 308 of PI4P5K Ialpha, both kinase activity and actin polymerizing activity were lost. Although the dominant negative form of Rho, RhoN19, alone decreased actin fibers, those induced by PI4P5K were not affected by the coexpression of RhoN19. These results suggest that PI4P5K is located downstream from Rho and mediates signals for actin polymerization through its phosphatidylinositol-4-phosphate 5-kinase activity.
Collapse
|
|
28 |
139 |
21
|
Tamaki H, Ogawa H, Ohyashiki K, Ohyashiki JH, Iwama H, Inoue K, Soma T, Oka Y, Tatekawa T, Oji Y, Tsuboi A, Kim EH, Kawakami M, Fuchigami K, Tomonaga M, Toyama K, Aozasa K, Kishimoto T, Sugiyama H. The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999; 13:393-9. [PMID: 10086730 DOI: 10.1038/sj.leu.2401341] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Wilms' tumor gene, WT1, is a tumor marker for leukemic blast cells. The WT1 expression levels were examined for 57 patients with myelodysplastic syndromes (MDS) (refractory anemia (RA), 35; RA with excess of blasts (RAEB) 14; RAEB in transformation (RAEB-t), six; and MDS with fibrosis, two) and 12 patients with acute myeloid leukemia (AML) evolved from MDS. These levels significantly increased in proportion to the disease progression of MDS from RA to overt AML via RAEB and RAEB-t in both bone marrow (BM) and peripheral blood (PB). WT1 expression levels in PB significantly correlated with the evolution of RAEB or RAEB-t to overt AML within 6 months. Therefore, WT1 expression levels in PB were superior to those in BM for early prediction of the evolution to AML by means of quantitation of the WT1 expression levels. Furthermore, WT1 expression in PB of patients with overt AML evolved from MDS was significantly decreased by effective chemotherapy or allogeneic stem cell transplantation and became undetectable in long-term survivors. These results clearly showed that WT1 expression levels are a tumor marker for preleukemic or leukemic blast cells of MDS and thus reflect the disease progression of MDS. Therefore, monitoring of WT1 expression levels has made continuous assessment of the disease progression of MDS possible, as well as the prediction of the evolution of RAEB or RAEB-t to overt AML within 6 months. The results also showed that quantitation of WT1 expression levels is useful for diagnosis of minimal residual disease of MDS with high sensitivity, thus making it possible to evaluate the efficacy of treatment for MDS.
Collapse
|
|
26 |
133 |
22
|
Ogihara T, Isobe T, Ichimura T, Taoka M, Funaki M, Sakoda H, Onishi Y, Inukai K, Anai M, Fukushima Y, Kikuchi M, Yazaki Y, Oka Y, Asano T. 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. J Biol Chem 1997; 272:25267-74. [PMID: 9312143 DOI: 10.1074/jbc.272.40.25267] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin binding to its receptor induces the phosphorylation of cytosolic substrates, insulin receptor substrate (IRS)-1 and IRS-2, which associate with several Src homology-2 domain-containing proteins. To identify unique IRS-1-binding proteins, we screened a human heart cDNA library with 32P-labeled recombinant IRS-1 and obtained two isoforms (epsilon and zeta) of the 14-3-3 protein family. 14-3-3 protein has been shown to associate with IRS-1 in L6 myotubes, HepG2 hepatoma cells, Chinese hamster ovary cells, and bovine brain tissue. IRS-2, a protein structurally similar to IRS-1, was also shown to form a complex with 14-3-3 protein using a baculovirus expression system. The amount of 14-3-3 protein associated with IRS-1 was not affected by insulin stimulation but was increased significantly by treatment with okadaic acid, a potent serine/threonine phosphatase inhibitor. Peptide inhibition experiments using phosphoserine-containing peptides of IRS-1 revealed that IRS-1 contains three putative binding sites for 14-3-3 protein (Ser-270, Ser-374, and Ser-641). Among these three, the motif around Ser-270 is located in the phosphotyrosine binding domain of IRS-1, which is responsible for the interaction with the insulin receptor. Indeed, a truncated mutant of IRS-1 consisting of only the phosphotyrosine binding domain retained the capacity to bind to 14-3-3 protein in vivo. Finally, the effect of 14-3-3 protein binding on the insulin-induced phosphorylation of IRS-1 was investigated. Phosphoamino acid analysis revealed that IRS-1 coimmunoprecipitated with anti-14-3-3 antibody to be weakly phosphorylated after insulin stimulation, on tyrosine as well as serine residues, compared with IRS-1 immunoprecipitated with anti-IRS-1 antibody. Thus, the association with 14-3-3 protein may play a role in the regulation of insulin sensitivity by interrupting the association between the insulin receptor and IRS-1.
Collapse
|
|
28 |
129 |
23
|
Amano M, Oka Y, Aida K, Okumoto N, Kawashima S, Hasegawa Y. Immunocytochemical demonstration of salmon GnRH and chicken GnRH-II in the brain of masu salmon, Oncorhynchus masou. J Comp Neurol 1991; 314:587-97. [PMID: 1814976 DOI: 10.1002/cne.903140313] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently developed sensitive and specific radioimmunoassays (RIAs) for salmon gonadotropin-releasing hormone (sGnRH) and chicken GnRH-II (cGnRH-II) and have measured the contents of both GnRHs in the rainbow trout brain. Our results showed that contents of the two GnRHs are variable among different brain regions. Therefore, in order to confirm the differential distribution of the two GnRHs by a different technique, we examined the distribution of immunoreactive sGnRH and cGnRH-II in the brain of masu salmon by using immunocytochemical techniques. sGnRH immunoreactive (ir) cell bodies were scattered in the transitional areas between the olfactory nerve and the olfactory bulb, the ventral olfactory bulb, between the olfactory bulb and the telencephalon, the ventral telencephalon, and the preoptic area. These sGnRH-ir cell bodies were dispersed in a strip-like region running rostrocaudally in the most ventral part of the ventral telencephalon. sGnRH-ir fibers were distributed in the various brain regions from the olfactory bulb to the spinal cord. They were especially abundant in the olfactory bulb, ventral telencephalon, preoptic area, hypothalamus, deep layers of the optic tectum, and thalamus. sGnRH-ir fibers also innervated the pituitary directly. cGnRH-II-ir cell bodies were found in the nucleus of the medial longitudinal fasciculus (nMLF). The distribution of cGnRH-II-ir fibers was similar to that of sGnRH-ir fibers, except that cGnRH-II-ir fibers were absent in the pituitary. The number of cGnRH-II-ir fibers was much fewer than that of sGnRH-ir fibers. The results of the present immunocytochemical study are in basic agreement with those of our previous RIA study. Thus, we suggest that in masu salmon, sGnRH not only regulates gonadotropin (GTH) release from the pituitary but also functions as a neuromodulator in the brain, whereas cGnRH-II functions only as a neuromodulator.
Collapse
|
Comparative Study |
34 |
127 |
24
|
Utsugi T, Ohno T, Ohyama Y, Uchiyama T, Saito Y, Matsumura Y, Aizawa H, Itoh H, Kurabayashi M, Kawazu S, Tomono S, Oka Y, Suga T, Kuro-o M, Nabeshima Y, Nagai R. Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 2000; 49:1118-23. [PMID: 11016890 DOI: 10.1053/meta.2000.8606] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have recently identified a novel gene, klotho (kl), which may suppress several aging phenotypes. A defect of kl gene expression in the mouse results in a syndrome resembling human aging, such as arteriosclerosis, skin atrophy, osteoporosis, and pulmonary emphysema. To determine whether mouse homozygotes for the kl mutation (kl/kl) show abnormal glucose metabolism, an oral glucose tolerance test (OGTT) was performed at 6 to 8 weeks of age. Blood glucose levels during the OGTT were significantly lower in kl/kl mice versus wild-type mice. The insulin content of the pancreas was significantly lower in kl/kl mice compared with wild-type mice. Decreased insulin production was also supported by Northern blot analysis showing lower levels of insulin mRNA in kl/kl mice. To examine how lower blood glucose levels may exist in kl/kl mice despite decreased insulin production, insulin tolerance tests (ITTs) were performed. The glucose decline following insulin injection was more severe in kl/kl mice versus wild-type mice, suggesting that insulin sensitivity was higher in kl/kl mice versus wild-type mice. In kl/kl mice, an augmented expression of GLUT4 in skeletal muscle was demonstrated by both Northern blot analysis and Western blot analysis. Thus, we conclude that insulin production is decreased and insulin sensitivity is increased in the klotho mouse, a novel animal model for human aging.
Collapse
|
|
25 |
120 |
25
|
Okunishi H, Oka Y, Shiota N, Kawamoto T, Song K, Miyazaki M. Marked species-difference in the vascular angiotensin II-forming pathways: humans versus rodents. JAPANESE JOURNAL OF PHARMACOLOGY 1993; 62:207-10. [PMID: 8371519 DOI: 10.1254/jjp.62.207] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using isolated arteries, we demonstrated a marked difference in the angiotensin II-forming systems between human and rodent vessels. In human arteries, only 30-40% of the conversion of angiotensin I to angiotensin II depended on the angiotensin-converting enzyme (ACE), and the rest of the angiotensin II formation was ascribed to chymostatin-sensitive angiotensin II-generating enzyme (CAGE). On the contrary, angiotensin II formation in rodent arteries totally depended upon ACE, without any sign of CAGE involvement. Such a marked species-difference can be relevant to the reported difference between humans and rodents in the ACE inhibitor effects on the myointimal hyperplasia after intimal balloon injury.
Collapse
|
|
32 |
119 |