1
|
Ushkaryov YA, Petrenko AG, Geppert M, Südhof TC. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 1992; 257:50-6. [PMID: 1621094 DOI: 10.1126/science.1621094] [Citation(s) in RCA: 530] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A family of highly polymorphic neuronal cell surface proteins, the neurexins, has been identified. At least two genes for neurexins exist. Each gene uses alternative promoters and multiple variably spliced exons to potentially generate more than a 100 different neurexin transcripts. The neurexins were discovered by the identification of one member of the family as the receptor for alpha-latrotoxin. This toxin is a component of the venom from black widow spiders; it binds to presynaptic nerve terminals and triggers massive neurotransmitter release. Neurexins contain single transmembrane regions and extracellular domains with repeated sequences similar to sequences in laminin A, slit, and agrin, proteins that have been implicated in axon guidance and synaptogenesis. An antibody to neurexin I showed highly concentrated immunoreactivity at the synapse. The polymorphic structure of the neurexins, their neural localization, and their sequence similarity to proteins associated with neurogenesis suggest a function as cell recognition molecules in the nerve terminal.
Collapse
|
Comparative Study |
33 |
530 |
2
|
McMahon HT, Ushkaryov YA, Edelmann L, Link E, Binz T, Niemann H, Jahn R, Südhof TC. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 1993; 364:346-9. [PMID: 8332193 DOI: 10.1038/364346a0] [Citation(s) in RCA: 407] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tetanus toxin inhibits neurotransmitter release by selectively blocking fusion of synaptic vesicles. Recently tetanus toxin was shown to proteolytically degrade synaptobrevin II (also named VAMP-2), a synaptic vesicle-specific protein, in vitro and in nerve terminals. As targets of tetanus toxin, synaptobrevins probably function in the exocytotic fusion of synaptic vesicles. Here we describe a new synaptobrevin homologue, cellubrevin, that is present in all cells and tissues tested and demonstrate that it is a membrane trafficking protein of a constitutively recycling pathway. Like synaptobrevin II, cellubrevin is proteolysed by tetanus toxin light chain in vitro and after transfection. Our results suggest that constitutive and regulated vesicular pathways use homologous proteins for membrane trafficking, probably for membrane fusion at the plasma membrane, indicating a greater mechanistic and evolutionary similarity between these pathways than previously thought.
Collapse
|
|
32 |
407 |
3
|
Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R, Hall RA, Harty BL, Kirchhoff C, Knapp B, Krishnan A, Liebscher I, Lin HH, Martinelli DC, Monk KR, Peeters MC, Piao X, Prömel S, Schöneberg T, Schwartz TW, Singer K, Stacey M, Ushkaryov YA, Vallon M, Wolfrum U, Wright MW, Xu L, Langenhan T, Schiöth HB. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 2015; 67:338-67. [PMID: 25713288 PMCID: PMC4394687 DOI: 10.1124/pr.114.009647] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.
Collapse
|
Review |
10 |
359 |
4
|
Ullrich B, Ushkaryov YA, Südhof TC. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 1995; 14:497-507. [PMID: 7695896 DOI: 10.1016/0896-6273(95)90306-2] [Citation(s) in RCA: 333] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurexins, a family of cell surface proteins specific to brain, are transcribed from two promoters in three genes, resulting in three alpha- and three beta-neurexins. In situ hybridization revealed differential but overlapping distributions of neurexin isoforms in different classes of neurons. PCRs demonstrated that alpha-neurexins are alternatively spliced at five canonical positions, and beta-neurexins at two. Characterization of many independent bovine neurexin I alpha cDNAs suggests that different splice sites are used independently. This creates the potential to express more than 1000 distinct neurexin proteins in brain. The splicing pattern is conserved in rat and cow. Thus, in addition to somatic gene rearrangement (immunoglobulins and T cell receptors) and large gene families (odorant receptors), alternative splicing potentially represents a third mechanism for creating a large number of cell surface receptors that are expressed by specific subsets of cells.
Collapse
|
Comparative Study |
30 |
333 |
5
|
Abstract
Inositol 1,4,5-trisphosphate (InsP3) constitutes a major intracellular second messenger that transduces many growth factor and neurotransmitter signals. InsP3 causes the release of Ca2+ from intracellular stores by binding to specific receptors that are coupled to Ca2+ channels. One such receptor from cerebellum has previously been extensively characterized. We have now determined the full structure of a second, novel InsP3 receptor which we refer to as type 2 InsP3 receptor as opposed to the cerebellar type 1 InsP3 receptor. The type 2 InsP3 receptor has the same general structural design as the cerebellar type 1 InsP3 receptor with which it shares 69% sequence identity. Expression of the amino-terminal 1078 amino acids of the type 2 receptor demonstrates high affinity binding of InsP3 to the type 2 receptor with a similar specificity but higher affinity than observed for the type 1 receptor. These results demonstrate the presence of several types of InsP3 receptor in brain and raise the possibility that intracellular Ca2+ signaling may involve multiple pathways with different regulatory properties dependent on different InsP3 receptors.
Collapse
|
|
34 |
286 |
6
|
Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF, Ushkaryov YA. Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem 1997; 272:21504-8. [PMID: 9261169 DOI: 10.1074/jbc.272.34.21504] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
alpha-Latrotoxin (LTX) stimulates massive exocytosis of synaptic vesicles and may help to elucidate the mechanism of regulation of neurosecretion. We have recently isolated latrophilin, the synaptic Ca2+-independent LTX receptor. Now we demonstrate that latrophilin is a novel member of the secretin family of G protein-coupled receptors that are involved in secretion. Northern blot analysis shows that latrophilin message is present only in neuronal tissue. Upon expression in COS cells, the cloned protein is indistinguishable from brain latrophilin and binds LTX with high affinity. Latrophilin physically interacts with a Galphao subunit of heterotrimeric G proteins, because the two proteins co-purify in a two-step affinity chromatography. Interestingly, extracellular domain of latrophilin is homologous to olfactomedin, a soluble neuronal protein thought to participate in odorant binding. Our findings suggest that latrophilin may bind unidentified endogenous ligands and transduce signals into nerve terminals, thus implicating G proteins in the control of synaptic vesicle exocytosis.
Collapse
|
|
28 |
225 |
7
|
Petrenko AG, Perin MS, Davletov BA, Ushkaryov YA, Geppert M, Südhof TC. Binding of synaptotagmin to the alpha-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 1991; 353:65-8. [PMID: 1881448 DOI: 10.1038/353065a0] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A vertebrate neurotoxin, alpha-latrotoxin, from black widow spider venom causes synaptic vesicle exocytosis and neurotransmitter release from presynaptic nerve terminals. Although the mechanism of action of alpha-latrotoxin is not known, it does require binding of alpha-latrotoxin to a high-affinity receptor on the presynaptic plasma membrane. The alpha-latrotoxin receptor seems to be exclusively at the presynaptic plasmamembrane. Here we report that the alpha-latrotoxin receptor specifically binds to a synaptic vesicle protein, synaptotagmin, and modulates its phosphorylation. Synaptotagmin is a synaptic vesicle-specific membrane protein that binds negatively charged phospholipids and contains two copies of a putative Ca(2+)-binding domain from protein kinase C (the C2-domain), suggesting a regulatory role in synaptic vesicle fusion. Our findings suggest that a physiological role of the alpha-latrotoxin receptor may be the docking of synaptic vesicles at the active zone. The direct interaction of the alpha-latrotoxin receptor with a synaptic vesicle protein also suggests a mechanism of action for this toxin in causing neurotransmitter release.
Collapse
|
|
34 |
179 |
8
|
Gonçalves Silva I, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, Bardelli M, Varani L, Hussain R, Siligardi G, Ceccone G, Berger SM, Ushkaryov YA, Gibbs BF, Fasler-Kan E, Sumbayev VV. The Tim-3-galectin-9 Secretory Pathway is Involved in the Immune Escape of Human Acute Myeloid Leukemia Cells. EBioMedicine 2017; 22:44-57. [PMID: 28750861 PMCID: PMC5552242 DOI: 10.1016/j.ebiom.2017.07.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe and often fatal systemic malignancy. Malignant cells are capable of escaping host immune surveillance by inactivating cytotoxic lymphoid cells. In this work we discovered a fundamental molecular pathway, which includes ligand-dependent activation of ectopically expressed latrophilin 1 and possibly other G-protein coupled receptors leading to increased translation and exocytosis of the immune receptor Tim-3 and its ligand galectin-9. This occurs in a protein kinase C and mTOR (mammalian target of rapamycin)-dependent manner. Tim-3 participates in galectin-9 secretion and is also released in a free soluble form. Galectin-9 impairs the anti-cancer activity of cytotoxic lymphoid cells including natural killer (NK) cells. Soluble Tim-3 prevents secretion of interleukin-2 (IL-2) required for the activation of cytotoxic lymphoid cells. These results were validated in ex vivo experiments using primary samples from AML patients. This pathway provides reliable targets for both highly specific diagnosis and immune therapy of AML.
Collapse
|
research-article |
8 |
173 |
9
|
Davletov BA, Shamotienko OG, Lelianova VG, Grishin EV, Ushkaryov YA. Isolation and biochemical characterization of a Ca2+-independent alpha-latrotoxin-binding protein. J Biol Chem 1996; 271:23239-45. [PMID: 8798521 DOI: 10.1074/jbc.271.38.23239] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
alpha-Latrotoxin, a black widow spider neurotoxin, can bind to high affinity receptors on the presynaptic plasma membrane and stimulate massive neurotransmitter release in the absence of Ca2+. Neurexins, previously isolated as alpha-latrotoxin receptors, require Ca2+ for their interaction with the toxin and, thus, may not participate in the Ca2+-independent alpha-latrotoxin activity. We now report the isolation of a novel protein that binds alpha-latrotoxin with high affinity in the presence of various divalent cations (Ca2+, Mg2+, Ba2+, and Sr2+) as well as in EDTA. This protein, termed here latrophilin, has been purified from detergent-solubilized bovine brain membranes by affinity chromatography on immobilized alpha-latrotoxin and concentrated on a wheat germ agglutinin affinity column. The single polypeptide chain of latrophilin is N-glycosylated and has an apparent molecular weight of 120,000. Sucrose gradient centrifugations demonstrated that latrophilin and alpha-latrotoxin form a stable equimolar complex. In the presence of the toxin, anti-alpha-latrotoxin antibodies precipitated iodinated latrophilin, whose binding to immobilized toxin was characterized by a dissociation constant of 0.5-0.7 nM. This presumably membrane-bound protein is localized to and differentially distributed among neuronal tissues, with about four times more latrophilin expressed in the cerebral cortex than in the cerebellum; subcellular fractionation showed that the protein is highly enriched in synaptosomal plasma membranes. Our data suggest that latrophilin may represent the Ca2+-independent receptor and/or molecular target for alpha-latrotoxin.
Collapse
|
|
29 |
122 |
10
|
Yasinska IM, Sakhnevych SS, Pavlova L, Teo Hansen Selnø A, Teuscher Abeleira AM, Benlaouer O, Gonçalves Silva I, Mosimann M, Varani L, Bardelli M, Hussain R, Siligardi G, Cholewa D, Berger SM, Gibbs BF, Ushkaryov YA, Fasler-Kan E, Klenova E, Sumbayev VV. The Tim-3-Galectin-9 Pathway and Its Regulatory Mechanisms in Human Breast Cancer. Front Immunol 2019; 10:1594. [PMID: 31354733 PMCID: PMC6637653 DOI: 10.3389/fimmu.2019.01594] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
Human cancer cells operate a variety of effective molecular and signaling mechanisms which allow them to escape host immune surveillance and thus progress the disease. We have recently reported that the immune receptor Tim-3 and its natural ligand galectin-9 are involved in the immune escape of human acute myeloid leukemia (AML) cells. These cells use the neuronal receptor latrophilin 1 (LPHN1) and its ligand fibronectin leucine rich transmembrane protein 3 (FLRT3, and possibly other ligands) to trigger the pathway. We hypothesized that the Tim-3-galectin-9 pathway may be involved in the immune escape of cancer cells of different origins. We found that studied breast tumors expressed significantly higher levels of both galectin-9 and Tim-3 compared to healthy breast tissues of the same patients and that these proteins were co-localized. Increased levels of LPHN2 and expressions of LPHN3 as well as FLRT3 were also detected in breast tumor cells. Activation of this pathway facilitated the translocation of galectin-9 onto the tumor cell surface, however no secretion of galectin-9 by tumor cells was observed. Surface-based galectin-9 was able to protect breast carcinoma cells against cytotoxic T cell-induced death. Furthermore, we found that cell lines from brain, colorectal, kidney, blood/mast cell, liver, prostate, lung, and skin cancers expressed detectable amounts of both Tim-3 and galectin-9 proteins. The majority of cell lines expressed one of the LPHN isoforms and FLRT3. We conclude that the Tim-3-galectin-9 pathway is operated by a wide range of human cancer cells and is possibly involved in prevention of anti-tumor immunity.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
119 |
11
|
Ushkaryov YA, Südhof TC. Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms. Proc Natl Acad Sci U S A 1993; 90:6410-4. [PMID: 8341647 PMCID: PMC46941 DOI: 10.1073/pnas.90.14.6410] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The structure of neurexin III alpha was elucidated from overlapping cDNA clones. Neurexin III alpha is highly homologous to neurexins I alpha and II alpha and shares with them a distinctive domain structure that resembles a cell surface receptor. cDNA cloning and PCR experiments revealed alternative splicing at four positions in the mRNA for neurexin III alpha. Alternative splicing was previously observed at the same positions in either neurexin I alpha or neurexin II alpha or both, suggesting that the three neurexins are subject to extensive alternative splicing. This results in hundreds of different neurexins with variations in small sequences at similar positions in the proteins. The most extensive alternative splicing of neurexin III alpha was detected at its C-terminal site, which exhibits a minimum of 12 variants. Some of the alternatively spliced sequences at this position contain in-frame stop codons, suggesting the synthesis of secreted proteins. None of the sequences of the other splice sites in this or the other two neurexins include stop codons. RNA blot analysis demonstrate that neurexin III alpha is expressed in a brain-specific pattern. Our results suggest that the neurexins constitute a large family of polymorphic cell surface proteins that includes secreted variants, indicating a possible role as signaling molecules.
Collapse
|
research-article |
32 |
116 |
12
|
Orlova EV, Rahman MA, Gowen B, Volynski KE, Ashton AC, Manser C, van Heel M, Ushkaryov YA. Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. NATURE STRUCTURAL BIOLOGY 2000; 7:48-53. [PMID: 10625427 DOI: 10.1038/71247] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report here the first three-dimensional structure of alpha-latrotoxin, a black widow spider neurotoxin, which forms membrane pores and stimulates secretion in the presence of divalent cations. We discovered that alpha-latrotoxin exists in two oligomeric forms: it is dimeric in EDTA but forms tetramers in the presence of Ca2+ or Mg2+. The dimer and tetramer structures were determined independently at 18 A and 14 A resolution, respectively, using cryo-electron microscopy and angular reconstitution. The alpha-latrotoxin monomer consists of three domains. The N- and C-terminal domains have been identified using antibodies and atomic fitting. The C4-symmetric tetramers represent the active form of alpha-latrotoxin; they have an axial channel and can insert into lipid bilayers with their hydrophobic base, providing the first model of alpha-latrotoxin pore formation.
Collapse
|
|
25 |
114 |
13
|
Ushkaryov YA, Volynski KE, Ashton AC. The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon 2004; 43:527-42. [PMID: 15066411 DOI: 10.1016/j.toxicon.2004.02.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The black widow spider venom contains several large protein toxins--latrotoxins--that are selectively targeted against different classes of animals: vertebrates, insects, and crustaceans. These toxins are synthesised as large precursors that undergo proteolytic processing and activation in the lumen of the venom gland. The mature latrotoxins demonstrate strong functional structure conservation and contain multiple ankyrin repeats, which mediate toxin oligomerisation. The three-dimensional structure has been determined for alpha-latrotoxin (alphaLTX), a representative venom component toxic to vertebrates. This reconstruction explains the mechanism of alphaLTX pore formation by showing that it forms tetrameric complexes, harbouring a central channel, and that it is able to insert into lipid membranes. All latrotoxins cause massive release of neurotransmitters from nerve terminals of respective animals after binding to specific neuronal receptors. A G protein-coupled receptor latrophilin and a single-transmembrane receptor neurexin have been identified as major high-affinity receptors for alphaLTX. Latrotoxins act by several Ca(2+)-dependent and -independent mechanisms based on pore formation and activation of receptors. Mutant recombinant alphaLTX that does not form pores has been used to dissect the multiple actions of this toxin. As a result, important insights have been gained into the receptor signalling and the role of intracellular Ca(2+) stores in the effect of alphaLTX.
Collapse
|
Review |
21 |
105 |
14
|
Davletov BA, Meunier FA, Ashton AC, Matsushita H, Hirst WD, Lelianova VG, Wilkin GP, Dolly JO, Ushkaryov YA. Vesicle exocytosis stimulated by alpha-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+. EMBO J 1998; 17:3909-20. [PMID: 9670008 PMCID: PMC1170726 DOI: 10.1093/emboj/17.14.3909] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
alpha-Latrotoxin (LTX) stimulates massive neurotransmitter release by two mechanisms: Ca2+-dependent and -independent. Our studies on norepinephrine secretion from nerve terminals now reveal the different molecular basis of these two actions. The Ca2+-dependent LTX-evoked vesicle exocytosis (abolished by botulinum neurotoxins) is 10-fold more sensitive to external Ca2+ than secretion triggered by depolarization or A23187; it does not, however, depend on the cation entry into terminals but requires intracellular Ca2+ and is blocked by drugs depleting Ca2+ stores and by inhibitors of phospholipase C (PLC). These data, together with binding studies, prove that latrophilin, which is linked to G proteins and inositol polyphosphate production, is the major functional LTX receptor. The Ca2+-independent LTX-stimulated release is not inhibited by botulinum neurotoxins or drugs interfering with Ca2+ metabolism and occurs via pores in the presynaptic membrane, large enough to allow efflux of neurotransmitters and other small molecules from the cytoplasm. Our results unite previously contradictory data about the toxin's effects and suggest that LTX-stimulated exocytosis depends upon the co-operative action of external and intracellular Ca2+ involving G proteins and PLC, whereas the Ca2+-independent release is largely non-vesicular.
Collapse
|
research-article |
27 |
103 |
15
|
Volynski KE, Silva JP, Lelianova VG, Atiqur Rahman M, Hopkins C, Ushkaryov YA. Latrophilin fragments behave as independent proteins that associate and signal on binding of LTX(N4C). EMBO J 2004; 23:4423-33. [PMID: 15483624 PMCID: PMC526461 DOI: 10.1038/sj.emboj.7600443] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 09/20/2004] [Indexed: 11/09/2022] Open
Abstract
Heptahelical, or G-protein-coupled, receptors control many cellular functions and normally consist of one polypeptide chain. In contrast, heptahelical receptors that belong to the long N-terminus, group B (LNB) family are cleaved constitutively into two fragments. The N-terminal fragments (NTFs) resemble cell-adhesion proteins and the C-terminal fragments (CTFs) are typical G-protein-coupled receptors (GPCRs) with seven transmembrane regions. However, the functional roles of this cleavage and of any subsequent NTF-CTF interactions remain to be identified. Using latrophilin, a well-studied member of the LNB family, we now demonstrate that cleavage is critical for delivery of this receptor to the cell surface. On the plasma membrane, NTF and CTF behave as separate membrane proteins involved, respectively, in cell-surface reception and signalling. The two fragments can also internalise independently. However, separated NTF and CTF can re-associate on solubilisation. Agonist binding to NTF on the cell surface also induces re-association of fragments and provokes signal transduction via CTF. These findings define a novel principle of structural and functional organisation of the cleaved, two-subunit GPCRs.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
85 |
16
|
O'Hanlon GM, Humphreys PD, Goldman RS, Halstead SK, Bullens RWM, Plomp JJ, Ushkaryov Y, Willison HJ. Calpain inhibitors protect against axonal degeneration in a model of anti-ganglioside antibody-mediated motor nerve terminal injury. Brain 2003; 126:2497-509. [PMID: 12937083 DOI: 10.1093/brain/awg254] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Miller Fisher syndrome-associated anti-GQ1b ganglioside antibodies produce an acute complement-dependent neuroexocytic effect at the mouse neuromuscular junction (NMJ) that closely resembles the effect of alpha-latrotoxin (LTx). This pathophysiological effect is accompanied by morphological disruption of the nerve terminal involving the loss of major cytoskeletal components, including neurofilament. Both LTx and the membrane attack complex of complement form membrane pores that allow free ionic movement and we have previously hypothesized that Ca2+ ingress and the subsequent activation of Ca2+-dependent proteases, calpains, may lead to substrate degradation resulting in structural disorganization of the terminal. Here, we treated mouse NMJs in hemidiaphragm preparations with anti-GQ1b antibodies and complement, or with LTx in the presence and absence of extracellular Ca2+, and studied possible neuroprotective effects of the calpain inhibitors calpeptin and calpain inhibitor V. Both Ca2+ depletion and calpain inhibition protected the cytoskeleton from degradation, as assessed by immunohistological and ultrastructural analysis. Calpain inhibitors may therefore be useful therapeutically in limiting nerve terminal and axonal injury in autoimmune peripheral neuropathy and in human latrodectism.
Collapse
|
|
22 |
75 |
17
|
Rahman MA, Ashton AC, Meunier FA, Davletov BA, Dolly JO, Ushkaryov YA. Norepinephrine exocytosis stimulated by alpha-latrotoxin requires both external and stored Ca2+ and is mediated by latrophilin, G proteins and phospholipase C. Philos Trans R Soc Lond B Biol Sci 1999; 354:379-86. [PMID: 10212487 PMCID: PMC1692485 DOI: 10.1098/rstb.1999.0390] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
alpha-latrotoxin (LTX) stimulates massive release of neurotransmitters by binding to a heptahelical transmembrane protein, latrophilin. Our experiments demonstrate that latrophilin is a G-protein-coupled receptor that specifically associates with heterotrimeric G proteins. The latrophilin-G protein complex is very stable in the presence of GDP but dissociates when incubated with GTP, suggesting a functional interaction. As revealed by immunostaining, latrophilin interacts with G alpha q/11 and G alpha o but not with G alpha s, G alpha i or G alpha z, indicating that this receptor may couple to several G proteins but it is not promiscuous. The mechanisms underlying LTX-evoked norepinephrine secretion from rat brain nerve terminals were also studied. In the presence of extracellular Ca2+, LTX triggers vesicular exocytosis because botulinum neurotoxins E, Cl or tetanus toxin inhibit the Ca(2+)-dependent component of the toxin-evoked release. Based on (i) the known involvement of G alpha q in the regulation of inositol-1,4,5-triphosphate generation and (ii) the requirement for Ca2+ in LTX action, we tested the effect of inhibitors of Ca2+ mobilization on the toxin-evoked norepinephrine release. It was found that aminosteroid U73122, which inhibits the coupling of G proteins to phospholipase C, blocks the Ca(2+)-dependent toxin's action. Thapsigargin, which depletes intracellular Ca2+ stores, also potently decreases the effect of LTX in the presence of extracellular Ca2+. On the other hand, clostridial neurotoxins or drugs interfering with Ca2+ metabolism do not inhibit the Ca2(+)-independent component of LTX-stimulated release. In the absence of Ca2+, the toxin induces in the presynaptic membrane non-selective pores permeable to small fluorescent dyes; these pores may allow efflux of neurotransmitters from the cytoplasm. Our results suggest that LTX stimulates norepinephrine exocytosis only in the presence of external Ca2+ provided intracellular Ca2+ stores are unperturbed and that latrophilin, G proteins and phospholipase C may mediate the mobilization of stored Ca2+, which then triggers secretion.
Collapse
|
review-article |
26 |
70 |
18
|
Matsushita H, Lelianova VG, Ushkaryov YA. The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution. FEBS Lett 1999; 443:348-52. [PMID: 10025961 DOI: 10.1016/s0014-5793(99)00005-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Latrophilin is a brain-specific Ca2+-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin. We now report the finding of two novel latrophilin homologues. All three latrophilins are unusual G protein-coupled receptors. They exhibit strong similarities within their lectin, olfactomedin and transmembrane domains but possess variable C-termini. Latrophilins have up to seven sites of alternative splicing; some splice variants contain an altered third cytoplasmic loop or a truncated cytoplasmic tail. Only latrophilin-1 binds alpha-latrotoxin; it is abundant in brain and is present in endocrine cells. Latrophilin-3 is also brain-specific, whereas latrophilin-2 is ubiquitous. Together, latrophilins form a novel family of heterogeneous G protein-coupled receptors with distinct tissue distribution and functions.
Collapse
|
|
26 |
69 |
19
|
Lang J, Ushkaryov Y, Grasso A, Wollheim CB. Ca2+-independent insulin exocytosis induced by alpha-latrotoxin requires latrophilin, a G protein-coupled receptor. EMBO J 1998; 17:648-57. [PMID: 9450990 PMCID: PMC1170414 DOI: 10.1093/emboj/17.3.648] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
alpha-Latrotoxin (alpha-LTX) induces exocytosis of small synaptic vesicles (SSVs) in neuronal cells both by a calcium-independent mechanism and by opening cation-permeable pores. Since the basic molecular events regulating exocytosis in neurons and endocrine cells may be similar, we have used the exocytosis of insulin-containing large dense core vesicles (LDCVs) as a model system. In primary pancreatic beta-cells and in the derived cell lines INS-1 and MIN6, alpha-LTX increased insulin release in the absence of extracellular calcium, but the insulin-secreting cell lines HIT-T15 and RINm5F were unresponsive. alpha-LTX did not alter membrane potential or cytosolic calcium, and its stimulatory effect on exocytosis was still observed in pre-permeabilized INS-1 cells kept at 0.1 microM Ca2+. Consequently, pore formation or ion fluxes induced by alpha-LTX could be excluded. The Ca2+-independent alpha-LTX-binding protein, latrophilin, is a novel member of the secretin family of G protein-coupled receptors (GPCR). Sensitivity to alpha-LTX correlated with expression of latrophilin, but not with synaptotagmin I or neurexin Ialpha expression. Moreover, transient expression of latrophilin in HIT-T15 cells conferred alpha-LTX-induced exocytosis. Our results indicate that direct stimulation of exocytosis by a GPCR mediates the Ca2+-independent effects of alpha-LTX in the absence of altered ion fluxes. Therefore, direct regulation by receptor-activated heterotrimeric G proteins constitutes an important feature of the endocrine exocytosis of insulin-containing LDCVs and may also apply to SSV exocytosis in neurons.
Collapse
|
research-article |
27 |
67 |
20
|
Abstract
alpha-Latrotoxin (alpha-LTX) from black widow spider venom induces exhaustive release of neurotransmitters from vertebrate nerve terminals and endocrine cells. This 130-kDa protein has been employed for many years as a molecular tool to study exocytosis. However, its action is complex: in neurons, alpha-LTX induces massive secretion both in the presence of extracellular Ca(2+) (Ca(2+) (e)) and in its absence; in endocrine cells, it usually requires Ca(2+) (e). To use this toxin for further dissection of secretory mechanisms, one needs an in-depth understanding of its functions. One such function that explains some alpha-LTX effects is its ability to form cation-permeable channels in artificial lipid bilayers. The mechanism of alpha-LTX pore formation, revealed by cryo-electron microscopy, involves toxin assembly into homotetrameric complexes which harbor a central channel and can insert into lipid membranes. However, in biological membranes, alpha-LTX cannot exert its actions without binding to specific receptors of the plasma membrane. Three proteins with distinct structures have been found to bind alpha-LTX: neurexin Ialpha, latrophilin 1, and receptor-like protein tyrosine phosphatase sigma. Upon binding a receptor, alpha-LTX forms channels permeable to cations and small molecules; the toxin may also activate the receptor. To distinguish between the pore- and receptor-mediated effects, and to study structure-function relationships in the toxin, alpha-LTX mutants have been used.
Collapse
|
Review |
17 |
62 |
21
|
Ashton AC, Volynski KE, Lelianova VG, Orlova EV, Van Renterghem C, Canepari M, Seagar M, Ushkaryov YA. alpha-Latrotoxin, acting via two Ca2+-dependent pathways, triggers exocytosis of two pools of synaptic vesicles. J Biol Chem 2001; 276:44695-703. [PMID: 11572875 DOI: 10.1074/jbc.m108088200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Latrotoxin stimulates three types of [(3)H]gamma-aminobutyric acid and [(14)C]glutamate release from synaptosomes. The Ca(2+)-independent component (i) is insensitive to SNAP-25 cleavage or depletion of vesicle contents by bafilomycin A1 and represents transmitter efflux mediated by alpha-latrotoxin pores. Two other components of release are Ca(2+)-dependent and vesicular but rely on distinct mechanisms. The fast receptor-mediated pathway (ii) involves intracellular Ca(2+) stores and acts upon sucrose-sensitive readily releasable vesicles; this mechanism is insensitive to inhibition of phosphatidylinositol 4-kinase (PI 4-kinase). The delayed pore-dependent exocytotic component (iii) is stimulated by Ca(2+) entering through alpha-latrotoxin pores; it requires PI 4-kinase and occurs mainly from depot vesicles. Lanthanum perturbs alpha-latrotoxin pores and blocks the two pore-mediated components (i, iii) but not the receptor-mediated release (ii). alpha-Latrotoxin mutant (LTX(N4C)) cannot form pores and stimulates only the Ca(2+)-dependent receptor-mediated amino acid exocytosis (ii) (detectable biochemically and electrophysiologically). These findings explain experimental data obtained by different laboratories and implicate the toxin receptors in the regulation of the readily releasable pool of synaptic vesicles. Our results also suggest that, similar to noradrenergic vesicles, amino acid-containing vesicles at some point in their cycle require PI 4-kinase.
Collapse
|
|
24 |
61 |
22
|
Silva JP, Lelianova V, Hopkins C, Volynski KE, Ushkaryov Y. Functional cross-interaction of the fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. J Biol Chem 2009; 284:6495-506. [PMID: 19124473 DOI: 10.1074/jbc.m806979200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The unusual adhesion G-protein-coupled receptors (aGPCRs) contain large extracellular N-terminal domains, which resemble cell-adhesion receptors, and C-terminal heptahelical domains, which may couple to G-proteins. These receptors are cleaved post-translationally between these domains into two fragments (NTF and CTF). Using the aGPCR latrophilin 1, we previously demonstrated that the fragments behave as independent cell-surface proteins. Upon binding the agonist, alpha-latrotoxin (LTX), latrophilin fragments reassemble and induce intracellular signaling. Our observations raised important questions: is the aGPCR signaling mediated by reassembled fragments or by any non-cleaved receptors? Also, can the fragments originating from distinct aGPCRs form hybrid complexes? To answer these questions, we created two types of chimerical constructs. One contained the CTF of latrophilin joined to the NTF of another aGPCR, EMR2; the resulting protein did not bind LTX but, similar to latrophilin, could couple to G-proteins. In another construct, the NTF of latrophilin was fused with the C terminus of neurexin; this chimera bound LTX but could not signal via G-proteins. Both constructs were efficiently cleaved in cells. When the two constructs were co-expressed, their fragments could cross-interact, as shown by immunoprecipitation. Furthermore, LTX(N4C) induced intracellular Ca2+ signaling only in cells expressing both constructs but not each individual construct. Finally, we demonstrated that fragments of unrelated aGPCRs can be cross-immunoprecipitated from live tissues. Thus, (i) aGPCR fragments behave as independent proteins, (ii) the complementary fragments from distinct aGPCRs can cross-interact, and (iii) these cross-complexes are functionally active. This unusual cross-assembly of aGPCR fragments could couple cell-surface interactions to multiple signaling pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
54 |
23
|
Nersisyan S, Novosad V, Engibaryan N, Ushkaryov Y, Nikulin S, Tonevitsky A. ECM-Receptor Regulatory Network and Its Prognostic Role in Colorectal Cancer. Front Genet 2021; 12:782699. [PMID: 34938324 PMCID: PMC8685507 DOI: 10.3389/fgene.2021.782699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions of the extracellular matrix (ECM) and cellular receptors constitute one of the crucial pathways involved in colorectal cancer progression and metastasis. With the use of bioinformatics analysis, we comprehensively evaluated the prognostic information concentrated in the genes from this pathway. First, we constructed a ECM-receptor regulatory network by integrating the transcription factor (TF) and 5'-isomiR interaction databases with mRNA/miRNA-seq data from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD). Notably, one-third of interactions mediated by 5'-isomiRs was represented by noncanonical isomiRs (isomiRs, whose 5'-end sequence did not match with the canonical miRBase version). Then, exhaustive search-based feature selection was used to fit prognostic signatures composed of nodes from the network for overall survival prediction. Two reliable prognostic signatures were identified and validated on the independent The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ) cohort. The first signature was made up by six genes, directly involved in ECM-receptor interaction: AGRN, DAG1, FN1, ITGA5, THBS3, and TNC (concordance index 0.61, logrank test p = 0.0164, 3-years ROC AUC = 0.68). The second hybrid signature was composed of three regulators: hsa-miR-32-5p, NR1H2, and SNAI1 (concordance index 0.64, logrank test p = 0.0229, 3-years ROC AUC = 0.71). While hsa-miR-32-5p exclusively regulated ECM-related genes (COL1A2 and ITGA5), NR1H2 and SNAI1 also targeted other pathways (adhesion, cell cycle, and cell division). Concordant distributions of the respective risk scores across four stages of colorectal cancer and adjacent normal mucosa additionally confirmed reliability of the models.
Collapse
|
research-article |
4 |
46 |
24
|
Silva JP, Ushkaryov YA. The latrophilins, "split-personality" receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 706:59-75. [PMID: 21618826 DOI: 10.1007/978-1-4419-7913-1_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Latrophilin, a neuronal "adhesion-G protein-coupled receptor", is the major brain receptor for alpha-latrotoxin, a black widow spidertoxin which stimulates strong neuronal exocytosis in vertebrates. Latrophilin has an unusual structure consisting of two fragments that are produced by the proteolytic cleavage of the parental molecule and that behave independently in the plasma membrane. On binding an agonist, the fragments reassociate and send an intracellular signal. This signal, transduced by a heterotrimeric G protein, causes release of calcium from intracellular stores and massive release of neurotransmitters. Latrophilin represents a phylogenetically conserved family of receptors, with orthologues found in all animals and up to three homologues present in most chordate species. From mammalian homologues, latrophilins 1 and 3 are expressed in neurons, while latrophilin 2 is ubiquitous. Latrophilin 1 may control synapse maturation and exocytosis, whereas latrophilin 2 may be involved in breast cancer. Latrophilins may play different roles during development and in adult animals: thus, LAT-1 determines cell fate in early embryogenesis in Caenorhabditis elegans and controls neurotransmitter release in adult nematodes. This diversity suggests that the functions of latrophilins may be determined by their interactions with respective ligands. The finding of the ligand of latrophilin 1, the large postsynaptic protein lasso, is the first step in the quest for the physiological functions of latrophilins.
Collapse
|
Review |
15 |
45 |
25
|
Song I, Volynski K, Brenner T, Ushkaryov Y, Walker M, Semyanov A. Different transporter systems regulate extracellular GABA from vesicular and non-vesicular sources. Front Cell Neurosci 2013; 7:23. [PMID: 23494150 PMCID: PMC3595500 DOI: 10.3389/fncel.2013.00023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/25/2013] [Indexed: 11/25/2022] Open
Abstract
Tonic GABA type A (GABAA) conductance is a key factor regulating neuronal excitability and computation in neuronal networks. The magnitude of the tonic GABAA conductance depends on the concentration of ambient GABA originating from vesicular and non-vesicular sources and is tightly regulated by GABA uptake. Here we show that the transport system regulating ambient GABA responsible for tonic GABAA conductances in hippocampal CA1 interneurons depends on its source. In mice, GABA from vesicular sources is regulated by mouse GABA transporter 1 (mGAT1), while that from non-vesicular sources by mouse GABA transporters 3/4 (mGAT3/4). This finding suggests that the two transporter systems do not just provide backup for each other, but regulate distinct signaling pathways. This allows individual tuning of the two signaling systems and indicates that drugs designed to act at specific transporters will have distinct therapeutic actions.
Collapse
|
Journal Article |
12 |
44 |